
epsilon
Lugaru’s

programmer’s editor
.

 .
 .

. .

. .

This is revision 11k of the manual.

It describes version 11.05 of Epsilon and EEL.

Copyright c 1984, 2002 by Lugaru Software Ltd.

All rights reserved.

Lugaru Software Ltd.
1645 Shady Avenue

Pittsburgh, PA 15217

TEL: (412) 421-5911
FAX: (412) 421-6371
E-mail: support@lugaru.com or sales@lugaru.com

ii

LIMITED WARRANTY

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FOR EITHER THE
INSTRUCTION MANUAL, OR FOR THE EPSILON PROGRAMMER’S EDITOR AND THE EEL SOFTWARE
(COLLECTIVELY, THE “SOFTWARE”).

Lugaru warrants the medium on which the Software is furnished to be free from defects in material under normal
use for ninety (90) days from the original date of purchase, provided that the limited warranty has been registered by
mailing in the registration form accompanying the Software.

LIMITED LIABILITY AND RETURN POLICY

Lugaru will be liable only for the replacement of defective media, as warranted above, which are returned shipping
prepaid to Lugaru within the warranty period. Because Lugaru cannot anticipate the intended use to which its Software
may be applied, it does not warrant the performance of the Software. LUGARU WILL NOT BE LIABLE FOR ANY
SPECIAL, INDIRECT, CONSEQUENTIAL OR OTHER DAMAGES WHATSOEVER. However, Lugaru wants you to
be completely satisfied with the Software. Therefore, THE ORIGINAL PURCHASER OF THIS SOFTWARE MAY
RETURN IT UNCONDITIONALLY TO LUGARU FOR A FULL REFUND FOR ANY REASON WITHIN SIXTY
DAYS OF PURCHASE, PROVIDED THAT THE PRODUCT WAS PURCHASED DIRECTLY FROM LUGARU
SOFTWARE LTD.

COPYRIGHT NOTICE

Copyright c 1984, 2002 by Lugaru Software Ltd. All rights reserved.

Lugaru Software Ltd. recognizes that users of Epsilon may wish to alter the EEL implementations of various editor
commands and circulate their changes to other users of Epsilon. Limited permission is hereby granted to reproduce and
modify the EEL source code to the commands provided that the resulting code is used only in conjunction with Lugaru
products and that this notice is retained in any such reproduction or modification.

TRADEMARKS

“Lugaru” and “EEL” are trademarks of Lugaru Software, Ltd. “Epsilon” is a registered trademark of Epsilon Data
Management, Inc. Lugaru Software Ltd. is licensed by Epsilon Data Management, Inc. to use the “Epsilon” mark in
connection with computer programming software. There is no other affiliation or association between Epsilon Data
Management, Inc. and Lugaru Software Ltd. “Brief” is a registered trademark of Borland International.

SUBMISSIONS

Lugaru Software Ltd. encourages the submission of comments and suggestions concerning its products. All
suggestions will be given serious technical consideration. By submitting material to Lugaru, you are granting Lugaru the
right, at its own discretion and without liability to you, to make any use of the material it deems appropriate.

iii

Note to Our Users

For your convenience, we have not put any annoying copy protection mechanisms into Epsilon. We
hope that you will respect our efforts, and the law, and not allow illegal copying of Epsilon.

Under the Copyright Law, if you provide a copy of Epsilon to anyone else for any reason, you lose the
right to use it yourself. You may under no circumstances transfer the program or manual to more than one
party. The Copyright Law says, in part:

Any exact copies prepared in accordance with the provisions of this section may be leased, sold,
or otherwise transferred, along with the copy from which such copies were prepared, only as
part of the lease, sale, or other transfer of all rights in the program.

In other words, treat Epsilon like a book. If you sell your copy, don’t keep a copy for yourself!

In addition, Lugaru grants the purchaser of Epsilon permission to install Epsilon on up to two computers
at one time, as long as there is no possibility that Epsilon will be in use on more than one computer at a time.
The end-user may, for example, install Epsilon on his or her computer at work and at home, as long as there
is no possibility that Epsilon will be used on both computers at the same time. This permission applies to
copies of Epsilon purchased by an end-user and not subject to a written license agreement.

We wish to thank all of our users who have made Epsilon successful, and extend our welcome to all
new users.

Steven Doerfler
Todd Doucet

We produced this manual using the Epsilon Programmer’s Editor and the TEX typesetting system.
Duane Bibby did the illustrations.

Contents

1 Welcome 1
1.1 Introduction 1
1.2 Features . 1

2 Getting Started 5
2.1 Installing Epsilon for Windows. 5
2.2 Installing Epsilon for Unix . .. 5
2.3 Installing Epsilon for DOS . .. 7
2.4 Installing Epsilon for OS/2 . .. 8
2.5 Tutorial . 8
2.6 Invoking Epsilon . 8
2.7 Configuration Variables: The Environment and The Registry 9
2.8 Epsilon Command Line Flags . 12

2.8.1 DOS-specific and OS/2-specific Flags . 16
2.9 File Inventory . 19

3 General Concepts 23
3.1 Buffers . 23
3.2 Windows . 23
3.3 Epsilon’s Screen Layout 24
3.4 Different Keys for Different Uses: Modes . 25
3.5 Keystrokes and Commands: Bindings . 26
3.6 Repeating: Numeric Arguments . 26
3.7 Viewing Lists . 27
3.8 Typing Less: Completion & Defaults . 27
3.9 Command History . 30
3.10 Mouse Support .. 30
3.11 The Menu Bar . 31

4 Commands by Topic 35
4.1 Getting Help 35

4.1.1 Info Mode . 36
4.1.2 Web-based Epsilon Documentation . 39

4.2 Moving Around . 39
4.2.1 Simple Movement Commands . 39
4.2.2 Moving in Larger Units . 40
4.2.3 Searching . 42
4.2.4 Bookmarks 46
4.2.5 Tags . 47

CONTENTS v

4.2.6 Comparing . 49
4.3 Changing Text . 51

4.3.1 Inserting and Deleting . 51
4.3.2 The Region, the Mark, and Killing 52
4.3.3 Clipboard Access 55
4.3.4 Rectangle Commands . 55
4.3.5 Capitalization . 57
4.3.6 Replacing . 57
4.3.7 Regular Expressions . 59
4.3.8 Rearranging . 67
4.3.9 Indenting Commands . 69
4.3.10 Hex Mode . 70

4.4 Language Modes 71
4.4.1 Asm Mode . 72
4.4.2 C Mode . 72
4.4.3 Configuration File Mode . 75
4.4.4 GAMS Mode . 75
4.4.5 HTML Mode . 75
4.4.6 Ini File Mode . 76
4.4.7 Makefile Mode . 76
4.4.8 Perl Mode . 76
4.4.9 PostScript Mode . 77
4.4.10 Python Mode . 77
4.4.11 Shell Mode . 78
4.4.12 TeX Mode . 78
4.4.13 Visual Basic Mode . 79

4.5 More Programming Features . 80
4.5.1 Pulling Words .. 80
4.5.2 Accessing Help . 80
4.5.3 Commenting Commands . 81

4.6 Fixing Mistakes . 82
4.6.1 Undoing 82
4.6.2 Interrupting a Command . 83

4.7 The Screen . 83
4.7.1 Display Commands . 83
4.7.2 Horizontal Scrolling .. 84
4.7.3 Windows . 85
4.7.4 Customizing the Screen . 87
4.7.5 Fonts . 89
4.7.6 Setting Colors . 89
4.7.7 Code Coloring . 91
4.7.8 Video Display Modes . 92
4.7.9 Window Borders . 93
4.7.10 The Bell . 94

4.8 Buffers and Files . 95
4.8.1 Buffers . 95
4.8.2 Files . 96
4.8.3 Internet Support 104
4.8.4 Printing . 106
4.8.5 Extended file patterns . 107
4.8.6 Directory Editing 108

vi CONTENTS

4.8.7 Buffer List Editing . .. 110
4.9 Starting and Stopping Epsilon. 111

4.9.1 Session Files . 111
4.9.2 File Associations and DDE . 113
4.9.3 Sending Files to a Prior Session . 113
4.9.4 MS-Windows Integration Features . 114

4.10 Running Other Programs 116
4.10.1 The Concurrent Process . 117
4.10.2 Compiling From Epsilon 119
4.10.3 Notes on the Concurrent Process under DOS 121

4.11 Repeating Commands . 123
4.11.1 Repeating a Single Command . 123
4.11.2 Keyboard Macros 123

4.12 Simple Customizing . 124
4.12.1 Bindings . 124
4.12.2 Brief Emulation . 126
4.12.3 CUA Keyboard 126
4.12.4 Variables . 126
4.12.5 Saving Changes to Bindings and Variables . 129
4.12.6 Command Files . 130
4.12.7 Using National Characters . 133

4.13 Advanced Topics . 134
4.13.1 Changing Commands with EEL . 134
4.13.2 Updating from an Old Version . 135
4.13.3 Keys and their Representation . 138
4.13.4 Altering Keys . 141
4.13.5 Customizing the Mouse . 142

4.14 Miscellaneous . 143

5 Alphabetical Command List 145

6 Variables 215

7 Changing Epsilon 287

8 Introduction to EEL 291
8.1 Epsilon Extension Language .. 291
8.2 EEL Tutorial . 291

9 Epsilon Extension Language 299
9.1 EEL Command Line Flags . 299
9.2 The EEL Preprocessor . 300
9.3 Lexical Rules . 302

9.3.1 Identifiers . 302
9.3.2 Numeric Constants . 303
9.3.3 Character Constants . 303
9.3.4 String Constants . 303

9.4 Scope of Variables . 304
9.5 Data Types . 304

9.5.1 Declarations . 305
9.5.2 Simple Declarators . 306
9.5.3 Pointer Declarators . 307

CONTENTS vii

9.5.4 Array Declarators . 307
9.5.5 Function Declarators . 308
9.5.6 Structure and Union Declarations . 308
9.5.7 Complex Declarators . 310
9.5.8 Typedefs . 310
9.5.9 Type Names . 311

9.6 Initialization . 311
9.7 Statements . 313

9.7.1 Expression Statement . 314
9.7.2 If Statement . 314
9.7.3 While, Do While, and For Statements . 314
9.7.4 Switch, Case, and Default Statements . 315
9.7.5 Break and Continue Statements . 315
9.7.6 Return Statement . 315
9.7.7 Save_var and Save_spot Statements . 315
9.7.8 Goto and Empty Statements . 316
9.7.9 Block . 317

9.8 Conversions . 317
9.9 Operator Grouping . .. 317
9.10 Order of Evaluation . 319
9.11 Expressions . 319

9.11.1 Constants and Identifiers . 319
9.11.2 Unary Operators . 320
9.11.3 Simple Binary Operators . 321
9.11.4 Assignment Operators . 322
9.11.5 Function Calls . 323
9.11.6 Miscellaneous Operators . 323

9.12 Constant Expressions . 324
9.13 Global Definitions . 324

9.13.1 Key Tables . 325
9.13.2 Color Classes . 326
9.13.3 Function Definitions . 328

9.14 Differences Between EEL And C . 330
9.15 Syntax Summary . 331

10 Primitives and EEL Subroutines 341
10.1 Buffer Primitives . 341

10.1.1 Changing Buffer Contents . 341
10.1.2 Moving Text Between Buffers . 342
10.1.3 Getting Text from a Buffer . .. 343
10.1.4 Spots . 344
10.1.5 Narrowing . 346
10.1.6 Undo . 346
10.1.7 Searching Primitives . 347
10.1.8 Moving by Lines . 352
10.1.9 Other Movement Functions . 353
10.1.10 Sorting Primitives . 354
10.1.11 Other Formatting Functions .. 354
10.1.12 Comparing . 355
10.1.13 Managing Buffers . 356
10.1.14 Catching Buffer Changes . 357

viii CONTENTS

10.1.15 Listing Buffers . 359
10.2 Display Primitives . 359

10.2.1 Creating & Destroying Windows . 359
10.2.2 Window Resizing Primitives . 361
10.2.3 Preserving Window Arrangements . 362
10.2.4 Pop-up Windows . 363
10.2.5 Pop-up Window Subroutines . 364
10.2.6 Window Attributes . 366
10.2.7 Buffer Text in Windows . 367
10.2.8 Window Titles and Mode Lines 369
10.2.9 Normal Buffer Display . 371
10.2.10 Displaying Status Messages . 377
10.2.11 Printf-style Format Strings . 379
10.2.12 Other Display Primitives . 380
10.2.13 Highlighted Regions . 381
10.2.14 Character Coloring . 384
10.2.15 Code Coloring Internals . 386
10.2.16 Colors . 390

10.3 File Primitives . 392
10.3.1 Reading Files . 392
10.3.2 Writing Files 394
10.3.3 Line Translation . 395
10.3.4 Character Encoding Conversions . 396
10.3.5 More File Primitives . 397
10.3.6 File Properties . 400
10.3.7 Low-level File Primitives . 402
10.3.8 Directories . 403
10.3.9 Manipulating File Names . 405
10.3.10 Internet Primitives . 409
10.3.11 Tagging Internals . 413

10.4 Operating System Primitives . 413
10.4.1 System Primitives . 413
10.4.2 Window System Primitives . 416
10.4.3 Timing . 420
10.4.4 Interrupts (DOS Only) . 421
10.4.5 Calling DLL’s (Windows Only) 424
10.4.6 Calling DLL’s (OS/2 Only) . .. 426
10.4.7 Running a Process . .. 428

10.5 Control Primitives . 433
10.5.1 Control Flow . 433
10.5.2 Character Types . 435
10.5.3 Strings . 436
10.5.4 Memory Allocation . 438
10.5.5 The Name Table . 439
10.5.6 Built-in and User Variables . .. 441
10.5.7 Buffer-specific and Window-specific Variables . 443
10.5.8 Bytecode Files . 443
10.5.9 Starting and Finishing . 445
10.5.10 EEL Debugging and Profiling. 448
10.5.11 Help Subroutines . 448

10.6 Input Primitives .. 449

CONTENTS ix

10.6.1 Keys . 449
10.6.2 The Mouse . 454
10.6.3 Window Events . 460
10.6.4 Completion . 461
10.6.5 Other Input Functions. 466
10.6.6 Dialogs . 468
10.6.7 The Main Loop . 471
10.6.8 Bindings . 472

10.7 Defining Language Modes . .. 476
10.7.1 Language-specific Subroutines. 480

11 Error Messages 483

A Index 487

Chapter 1

Welcome

1

1.1 Introduction

Welcome! We hope you enjoy using Epsilon. We think you’ll find that Epsilon provides power and
flexibility unmatched by any other editor for a personal computer.

Epsilon has a command set and general philosophy similar to the EMACS-style editors used on many
different kinds of computers. If you’ve used an EMACS-style editor before, you will find Epsilon’s most
commonly used commands and keys familiar. If you haven’t used an EMACS-style editor before, you can
use Epsilon’s tutorial program. Chapter 2 tells you how to install Epsilon and how to use the tutorial
program.

1.2 Features

� Full screen editing with an EMACS-style command set.

� An exceptionally powerful embedded programming language, called EEL, that lets you customize or
extend the editor. EEL provides most of the expressive power of the C programming language.

� The ability to invoke other programs from within Epsilon. Under DOS, Epsilon has special features
that let you run even very large programs without leaving the editor. See page 116.

� The ability to run some classes of programs concurrently with the output going to a window. Under
DOS, we know of no other editor with this feature. Details begin on page 117.

� You can invoke your compiler or “make” program from within Epsilon, then have Epsilon scan the
output for error messages, then position you at the offending line in your source file. See page 119.

� An undo command that lets you “take back” your last command, or take back a sequence of
commands. The undo facility works on both simple and complicated commands. Epsilon has aredo
command as well, so you can even undo your undo’s. See page 82.

� Very fast redisplay. We designed Epsilon specifically for the personal computer, so it takes advantage
of the high available display bandwidth.

� Epsilon can dynamically syntax-highlight your C, C++, Perl, Java, or Epsilon extension language
programs, showing keywords in one color, functions in another, string constants in a third, and so
forth. Epsilon also does syntax highlighting for TeX, HTML, and other languages.

� You can interactively rearrange the keyboard to suit your preferences, and save the layout so that
Epsilon uses it the next time. Epsilon can also emulate the Brief text editor’s commands.

� You can edit a virtually unlimited number of files simultaneously. On low-memory systems like DOS,
Epsilon uses aswap fileas necessary to make room for the files you want to edit.

� Epsilon understands Internet URL’s and can asynchronously retrieve and send files via FTP. Telnet
and related commands are also built in.

� The DOS version uses available EMS and XMS memory. See page 16.

� Epsilon provides a multi-windowed editing environment, so you can view several files simultaneously.
You can use as many windows as will fit on the display. See page 85.

� For DOS and OS/2, Epsilon has special support for the expanded screen modes of EGA, VGA, and
SVGA boards.

2 CHAPTER 1. WELCOME

� Non-intrusive mouse support, with a mouse cursor that disappears when you’re not using it, and scroll
bars and a menu bar that don’t occupy valuable screen space until you need them. In DOS, Epsilon
uses an easy-to-position graphic mouse cursor while maintaining the excellent screen updating
performance characteristics of text mode.

� Under Windows, Epsilon provides a customizable tool bar.

� An extensive on-line help system. You can get help on what any command does, what any key does,
and on what the command executing at the moment does. And Epsilon’s help system will
automatically know about any rearrangement you make to the keyboard. See page 35.

� An extensible “tags” system for C, C++, Perl and Assembler that remembers the locations of
subroutine definitions. You provide the subroutine name, and Epsilon takes you to the place that
defines that subroutine. Alternatively, you can position the cursor on a function call, hit a key, and
jump right to the definition of that function. See page 47.

� Completion on file names and command names. Epsilon will help you type the names of files and
commands, and display lists of names that match a pattern that you specify. You can complete on
many other classes of names too. This saves you a lot of typing. See page 28.

� Under Windows, you can drag and drop files or directories onto Epsilon’s window, and Epsilon will
open them.

� Commands to manipulate words, sentences, paragraphs, and parenthetic expressions. See the
commands starting on page 40.

� Indenting and formatting commands. Details start on page 68.

� A kill ring to store text you’ve previously deleted. You can set the number of such items to save. See
page 52.

� A convenientincremental searchcommand (described on page 42), as well as regular searching
commands, and search-and-replace commands.

� Regular expression searches. With regular expressions you can search for complex patterns, using
such things as wildcards, character classes, alternation, and repeating.

� A fast grepcommand that lets you search across a set of files. See page 45. You can also replace text
in a set of files.

� Extended file patterns that let you easily search out files on a disk.

� A directory editing command that lets you navigate among directories, copying, moving, and deleting
files as needed. It even works on remote directories via FTP.

� Fastsort commands that let you quickly sort a buffer. See page 67.

� A powerfulkeyboard macrofacility (see page 123), that allows you to execute sequences of
keystrokes as a unit, and to extend the command set of the editor. You’ll find Epsilon’s keyboard
macros very easy to define and use.

� Commands to compare two files and find the differences between them. You can compare
character-by-character or line-by-line. See page 49.

� You can choose from a variety of built-in screen layouts, making Epsilon’s screen look like those of
other editors, or customize your own look for the editor.

1.2. FEATURES 3

Chapter 2

Getting Started

5

This chapter tells you how to install Epsilon on your system and explains how to invoke Epsilon. We also
describe how to run the tutorial, and list the files in an Epsilon distribution.

2.1 Installing Epsilon for Windows

Epsilon for Windows is provided as a self-installing Windows executable. Run the program

r:\setup.exe

where r represents your CD-ROM drive.

You can also use Add/Remove Programs in the Control Panel. Under older versions of Windows, you
can use the Program Manager’s File/Run command to run the program.

Whichever way you run it, the installation program lets you select which versions of Epsilon to install:

� By default it installs the 32-bit GUI version of Epsilon for Windows, and the 32-bit console version.

� You can also select the 16-bit Windows 3.1 version, but it is not selected by default. (When installing
on 16-bit Windows, this version is selected instead of the 32-bit versions.)

The installation program will prompt you for any necessary information, and guide you through the
installation process.

We named the 32-bit Windows versionepsilon.exe and the console versionepsilonc.exe.

The installation program creates program items to run Epsilon. Under 32-bit Windows versions, it also
sets the registry entry SoftwarenLugarunEpsilonnEpsPathversionin theHKEY_CURRENT_USER hierarchy
to the name of the directory in which you installed Epsilon (whereversionrepresents Epsilon’s version
number).

Under Windows 95/98/ME, the installation program directs the system to install Epsilon’s VxD each
time it starts, by creating the registry entry
SystemnCurrentControlSetnServicesnVxDnEpsilonversionnStaticVxD in theHKEY_LOCAL_MACHINE
hierarchy. If you’re running Windows 95/98/ME, the program will warn that you must restart Windows
before the concurrent process will work.

Under Windows 3.1, the installation program directs the system to install Epsilon’s VxD each time it
starts, by adding a device= line to the 386Enh section of your system.ini file. The program will warn that
you must restart Windows before the concurrent process will work. The installation program also adds lines
to the file lugeps.ini in your Windows directory, creating the file if necessary.

Under Windows NT 3.5 or Windows 3.1, the installer also creates a program item to uninstall Epsilon.
Under later versions of Windows, you can uninstall Epsilon by using Add/Remove Programs in the Control
Panel.

2.2 Installing Epsilon for Unix

Epsilon includes a version for Linux and a separate version for FreeBSD. We describe them collectively as
the “Unix” version of Epsilon. To install either one, mount the CD-ROM, typically by typing

mount /cdrom

6 CHAPTER 2. GETTING STARTED

Then, as root, run the appropriate shell script. For Linux, that would be

/cdrom/linux/einstall

and for FreeBSD that would be

/cdrom/freebsd/einstall

The installation script will prompt you for any necessary information.

(Under Linux, you may need to provide the-o exec option to themount command.)

If for some reason that doesn’t work, you can manually perform the few steps needed to install Epsilon.
For Epsilon for Linux, you would type, as root:

cd /usr/local
tar xzf /cdrom/linux/epsilon11.05.tar.gz

cd epsilon11.05

./esetup

For FreeBSD, substitutefreebsd for linux in the second command.

You can also install Epsilon in a private directory, if you don’t have root access. In that case you will
also need to define an environment variable so Epsilon can locate its files, such as

EPSPATH1105=˜/.epsilon:/home/bob/epsilon11.05

If you install Epsilon in a private directory, theesetup command will display the environment
variable definition you’ll need.

Epsilon for Linux normally uses certain shared library files from the glibc 2.1 NSS subsystem. These
have names such as the following:

/lib/libnss_files.so.2
/lib/libnss_dns.so.2

If the installation script cannot find these shared library files, it will compile a helper program to provide
Epsilon with the necessary services.

Epsilon runs as an X program with X and as a text program outside of X. Epsilon knows to use X when
it inherits aDISPLAY environment variable. You can override Epsilon’s determination by providing a-vt
flag to make Epsilon run as a text program, or an appropriate-display flag to make Epsilon connect to a
given X server.

Epsilon also recognizes these standard X flags:

-bw pixelsor -borderwidth pixels This flag sets the width of the window border in pixels. An
Epsilon.borderWidth resource may be used instead.

-fn font or -font font This flag specifies the font to use. The Alt-xset-font command can select a different
font from within Epsilon. It provides completion, and shows you possible font names when you press
‘?’. But Epsilon will not retain this setting the next time you start it. To make Epsilon use a different
font when it starts, you can add an entry like this to your X resources file. See below.

-geometry geometryThis flag sets the window size and position, using the standard X syntax. Without this
flag, Epsilon looks for anEpsilon.geometry resource.

2.3. INSTALLING EPSILON FOR DOS 7

-name resnameThis flag tells Epsilon to look for X resources using a name other than Epsilon.

-title title This flag sets the title Epsilon displays while starting. AnEpsilon.title resource may be
used instead.

-xrm resourcestringThis flag specifies a specific resource name and value, overriding any defaults.

Epsilon uses various X resources. You can set them from the command line with a flag like-xrm
Epsilon.cursorstyle:1 or put a line likeEpsilon.cursorstyle:1 in your X resources file,
which is usually named̃/.Xdefaults:

Epsilon.font: lucidasanstypewriter-bold-14

You’ll need to tell X to reread the file after making such a change, using a command likexrdb
-merge ˜/.Xdefaults.

Epsilon uses these X resources:

Epsilon.borderWidth This sets the width of the border around Epsilon’s window.

Epsilon.cursorstyle Under X, Epsilon displays a block cursor whose shape does not change. Define a
cursorstyle resource with value 1 and Epsilon will use a line-style cursor, sized to reflect overwrite
mode or virtual space mode. Note this cursor style does not display correctly on some X servers.

Epsilon.font This resource sets Epsilon’s font. It must be a fixed-width font.

Epsilon.geometry This resource provides a geometry setting for Epsilon. See the-geometry flag above.

Epsilon.title This resource sets the title Epsilon displays while starting.

2.3 Installing Epsilon for DOS

An older version of Epsilon for DOS is also provided on the CD-ROM, for users who must use DOS.

The Win32 console version, described previously, and the DOS version have a similar appearance, and
both will run in 32-bit Windows, but of the two, only the Win32 console version can use long file names or
the clipboard in all 32-bit versions of Windows. The DOS version also lacks a number of other features in
the Win32 console version. If you wish to run Epsilon from a command line prompt (a DOS box) within any
32-bit version of Windows, use the Win32 console version, not the DOS version, for the best performance
and feature set.

To install Epsilon for DOS, cd to the\DOS directory on the Epsilon CD-ROM. Run Epsilon’s
installation program by typing:

install

Follow the directions on the screen to install Epsilon. The installation program will ask before it
modifies or replaces any system files. The DOS executable is named epsdos.exe. A list of files provided
with Epsilon starts on page 19.

8 CHAPTER 2. GETTING STARTED

2.4 Installing Epsilon for OS/2

To install Epsilon, start a command prompt and cd to the\OS2 directory on the Epsilon CD-ROM. Run
Epsilon’s installation program by typing:

install

Follow the directions on the screen to install Epsilon. The installation program will ask before it
modifies or replaces any system files. A list of files provided with Epsilon starts on page 19.

You can install Epsilon for OS/2 in the same directory as the Windows version of Epsilon. To do this,
use the Windows-based installer first, and install all desired components. Then run the OS/2 installer and
select the option to only install OS/2-specific files.

2.5 Tutorial

Once you install Epsilon, put the distribution medium away. If you’ve never used Epsilon or EMACS
before, you should run the tutorial to become acquainted with some of Epsilon’s simpler commands.

The easiest way to run the tutorial is to start Epsilon and select Epsilon Tutorial from the Help menu. (If
you’re running a version of Epsilon without a menu bar, you can instead press the F2 key in Epsilon and
type the command nametutorial. Or you can start Epsilon with the-teach flag.)

The tutorial will tell you everything else you need to know to use the tutorial, including how to exit the
tutorial.

2.6 Invoking Epsilon

You can start Epsilon for Windows using the icon created by the installer. Under other operating systems,
you can run Epsilon by simply typing “epsilon”.

Depending on your installation options, you can also run Epsilon for Windows from the command line.
Type “epsilon” to run Epsilon for 32-bit Windows, or “e16” to run Epsilon for Windows 3.1. Under
Windows, “epsilonc” runs the Win32 console version of Epsilon, while “epsdos” runs the DOS version, if
these are installed.

The first time you run Epsilon, you will get a single window containing an empty document. You can
give Epsilon the name of a file to edit on the command line. For example, if you type

epsilon sample.c

then Epsilon will start up and read in the filesample.c. If the file name contains spaces, surround the
entire name with double-quote characters.

epsilon "a sample file.c"

When you name several files on the command line, Epsilon reads each one in, but puts only up to three
in windows (so as not to clutter the screen with tiny windows). You can set this number by modifying the
max-initial-windows variable.

If you specify files on the command line with wild cards, Epsilon will show you a list of the files that
match the pattern indired mode. See page 108 for more information on howdired works. File names that
contain only extended wildcard characters like , ;[or], and no standard wildcard characters like * or ?,
will be interpreted as file names, not file patterns. (If you set the variableexpand-wildcards to 1,

2.7. CONFIGURATION VARIABLES: THE ENVIRONMENT AND THE REGISTRY 9

Epsilon will instead read in each file that matches the pattern, as if you had listed them explicitly. Epsilon
for Unix does this too unless you quote the file pattern.)

Epsilon normally shows you the beginning of each file you name on the command line. If you want to
start at a different line, put “+number” before the file’s name, wherenumberindicates the line number to go
to. You can follow the line number with a:column number too. For example, if you typed

epsilon +26 file.one +144:20 file.two

then you would get file.one with the cursor at the start of line 26, and file.two with the cursor at line 144,
column 20.

By default, Epsilon will also read any files you were editing in your previous editing session, in addition
to those you name on the command line. See page 111 for details.

If you’re running an evaluation version of Epsilon or a beta test version, you may receive a warning
message at startup indicating that soon your copy of Epsilon will expire. You can disable or delay this
warning message (though not the expiration itself). Create a file namedno-expiration-warning in
Epsilon’s main directory. Put in it the maximum number of days warning you want before expiration.

2.7 Configuration Variables: The Environment and The Registry

Versions of Epsilon for Unix, DOS, and OS/2 use several environment variables to set options and say where
to look for files. Epsilon for Windows 3.1 looks for settings like these in the file lugeps.ini, in your main
Windows directory. Epsilon for 32-bit Windows stores such settings in the System Registry, under the key
HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon. Epsilon’s setup program will generally create
all necessary registry keys or lugeps.ini entries automatically.

We use the termconfiguration variableto refer to any setting that appears as an environment variable, a
registry entry, or a lugeps.ini entry, depending on Epsilon’s operating system platform. There are a small
number of settings that are stored in environment variables on all platforms; these are generally settings that
are provided by the operating system. These include COMSPEC, TMP or TEMP, EPSRUNS, and
MIXEDCASEDRIVES. Also, the EEL compiler uses the environment variables EEL and EPSPATH (except
under 32-bit Windows, where it uses configuration variables by these names).

In DOS or OS/2, you can set environment variables using the command processor’s “set” command:

set epspath=c:nepsilon

Put this command in your autoexec.bat file, under DOS, or in your config.sys file, under OS/2, so that
you don’t have to type it each time. Make sure there are no spaces before or after the= sign, or at the end of
the line. In Unix, see your shell’s documentation for directions on setting environment variables. For sh and
bash, you can useEPSPATH=/some/path; export EPSPATH.

Under Windows 3.1, the installation program automatically adds a similar line to set the EpsPath to the
lugeps.ini file in your main Windows directory (creating it if necessary). It looks like this:

[Misc]
EpsPath=c:\epsdir

Similarly, under 32-bit Windows, the installation program creates a registry entry similar to this:

HKEY_CURRENT_USERnSOFTWAREnLugarunEpsilonnEpsPath=c:nepsilon

10 CHAPTER 2. GETTING STARTED

Of course, the actual entry, whether it’s an environment variable setting in an autoexec.bat file, an .ini
file entry, or an entry in the system registry, would contain whatever directory Epsilon was actually installed
in, not c:nepsilon.

If you have more than one version of Epsilon on your computer, you may want each to use a different
set of options. You can override many of the configuration variables listed below by using a configuration
variable whose name includes the specific version of Epsilon in use. For example, when Epsilon needs to
locate its help file, it normally uses a configuration variable named EPSPATH. Epsilon version 6.01 would
first check to see if a configuration variable named EPSPATH601 existed. If so, it would use that variable. If
not, it would then try EPSPATH60, then EPSPATH6, and finally EPSPATH. Epsilon does the same sort of
thing with all the configuration variables it uses, with the exception of DISPLAY, EPSRUNS, TEMP, and
TMP.

Epsilon uses a similar procedure to distinguish registry entries for the Win32 console mode version
from registry entries for the Win32 GUI version of Epsilon. For the console version, it checks registry
names with an -NTCON suffix before the actual names; for the GUI version it checks for a -WIN suffix. So
Epsilon 10.2 for Win32 console would seek an EPSPATH configuration variable using the names
EPSPATH102-NTCON, EPSPATH102, EPSPATH10-NTCON, EPSPATH10, EPSPATH-NTCON, and
finally EPSPATH, using the first one it finds.

For example, the Windows installation program for Epsilon doesn’t actually add the EPSPATH entry
shown above to the system registry. It really uses an entry like

HKEY_CURRENT_USERnSOFTWAREnLugarunEpsilonnEpsPath80=c:nepsilon

where EpsPath80 indicates that the entry should be used by version 8.0 of Epsilon, or version 8.01, or 8.02,
but not by version 8.5. In this way, multiple versions of Epsilon can be installed at once, without overwriting
each other’s settings. This can be helpful when upgrading Epsilon from one version to the next.

Here we list all the configuration variables that Epsilon can use. Remember, under Windows, most of
these names refer to entries in the System Registry or a lugeps.ini file, as described above. Under Unix,
DOS, and OS/2, these are all environment variables.

CMDCONCURSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command
line when you use thestart-process command with a numeric argument. It overrides
CMDSHELLFLAGS. See page 117.

CMDSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command line when
it runs a subshell that should execute a single command and exit.

COMSPEC Epsilon needs a valid COMSPEC environment variable in order to run another program.
Normally, the operating system automatically sets up this variable to give the file name of your
command processor. If you change the variable manually, remember that the file must actually exist.
Don’t include command line options for your command processor in the COMSPEC variable. If a
configuration variable called EPSCOMSPEC exists, Epsilon will use that instead of COMSPEC. (For
Unix, see SHELL below.)

DISPLAY Epsilon for Unix tries to run as an X program if this environment variable is defined, using the X
server display it specifies.

EEL The EEL compiler looks for an environment variable named EEL before examining its command line,
then “types in” the contents of that variable before the compiler’s real command line. See page 299.
Under 32-bit Windows, the EEL compiler uses a registry entry named EEL (a “configuration
variable”, as described above), not an environment variable.

EPSCOMSPEC See COMSPEC above.

2.7. CONFIGURATION VARIABLES: THE ENVIRONMENT AND THE REGISTRY 11

EPSCONCURCOMSPEC If defined, Epsilon for Windows, DOS or OS/2 runs the shell command
processor named by this variable instead of the one named by the EPSCOMSPEC or COMSPEC
variables, when it starts a concurrent process. See page 117.

EPSCONCURSHELL If defined, Epsilon for Unix runs the shell command processor named by this
variable instead of the one named by the EPSSHELL or SHELL variables, when it starts a concurrent
process. See page 117.

EPSILON Before examining the command line, Epsilon looks for a configuration variable named
EPSILON and “types in” the value of that variable to the command line before the real command line.
See page 12.

EPSMIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 103 for details.

EPSPATH Sometimes Epsilon needs to locate one of its files. For example, Epsilon needs to read an .mnu
file like gui.mnu or epsilon.mnu to determine what commands go in its menu bar. Epsilon searches
directories in this order:

1. The directory containing the Epsilon executable, then the parent of that directory. The-w4 and
-w8 flags, respectively, tell Epsilon to skip these two steps. If you tell Epsilon’s Windows installer to
put Epsilon’s executable files in a common directory with other executable programs, the installer will
set up Epsilon to use these flags by creating an EPSILON configuration variable. (Epsilon for Unix
doesn’t look in the parent directory.)

2. The directories specified by the EPSPATH configuration variable. This configuration variable
should contain a list of directories separated by semicolons. Epsilon will then look for the file in each
of these directories. For Windows, the installer creates an EPSPATH configuration variable containing
Epsilon’s installation directory. (In Epsilon for Unix, a missing EPSPATH variable causes Epsilon to
look in ˜/.epsilon, then /usr/local/epsilonVER(whereVERis replaced by text representing the current
version, such as 101 for 10.1), then /usr/local/epsilon and then /opt/epsilon. In other versions, a
missing EPSPATH makes Epsilon skip this step.)

The EEL compiler also uses the EPSPATH environment variable. See page 299.

EPSRUNS Epsilon uses this environment variable to warn you when you try to start Epsilon from within a
shell started by an earlier invocation of Epsilon. Epsilon refuses to start, giving an error message, if
this variable exists in the environment. Otherwise, Epsilon inserts this variable into its copy of the
environment and passes it on to its subprocesses. (Windows and Unix versions set this variable, but
don’t check for it.)

EPSSHELL See SHELL below.

ESESSION Epsilon uses this variable as the name of its session file. See page 111.

INTERCONCURSHELLFLAGS If defined, Epsilon uses the contents of this variable as the command
line to the shell command processor it starts when you use thestart-process command without a
numeric argument. It overrides INTERSHELLFLAGS. See page 117.

INTERSHELLFLAGS If defined, Epsilon uses the contents of this variable as a subshell command line
when it runs a subshell that should prompt for a series of commands to execute. See page 117.

MIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 103 for details.

PATH The operating system uses this variable to find executable programs such as epsilon.exe. Make sure
this variable includes the directory containing Epsilon’s executable files if you want to conveniently
run Epsilon from the command line.

12 CHAPTER 2. GETTING STARTED

SHELL Epsilon for Unix needs a valid SHELL environment variable in order to run another program. If a
configuration variable called EPSSHELL exists, Epsilon will use that instead of SHELL. (See
COMSPEC above for the non-Unix equivalent.)

TEMP Epsilon puts any swap or shrink files it creates in this directory, unless a TMP environment variable
exists. See the description of the-fs flag on page 13.

TMP Epsilon puts any swap or shrink files it creates in this directory. See the description of the-fs flag on
page 13.

2.8 Epsilon Command Line Flags

When you start Epsilon, you may specify a sequence of command line flags (also known as command-line
options, or switches) to alter Epsilon’s behavior. Flags must go before any file name.

Each flag consists of a minus sign (“-”), a letter, and sometimes a parameter. You can use the special
flag-- to mark the end of the flags; anything that follows will be interpreted as a file name even if it starts
with a- like a flag.

If a parameter is required, you can include a space before it or not. If a parameter is optional (-b,-m,
-p) it must immediately follow the flag, with no space.

Before examining the command line, Epsilon looks for a configuration variable (see page 9) named
EPSILON and “types in” the value of that variable to the command line before the real command line. Thus,
if you give the DOS or OS/2 command processor the command:

set epsilon=-m250000 -smine

then Epsilon would behave as if you had typed

epsilon -m250000 -smine myfile

when you actually type

epsilon myfile

Here we list all of the flags, and what they do:

+number Epsilon normally shows you the beginning of each file you name on the command line. If you
want to start at a different line, put “+number” before the file’s name, wherenumberindicates the line
number to go to. You can follow the line number with a colon and a column number if you wish.

-add This flag tells Epsilon for Windows or Unix to locate an existing instance of Epsilon, pass it the rest
of the command line, and exit. (Epsilon ignores the flag if there’s no prior instance.) If you want to
configure another program to run Epsilon to edit a file, but use an existing instance of Epsilon if there
is one, just include this flag in the Epsilon command line. See page 113 for details on Epsilon’s server
support.

-bfilenameEpsilon normally reads all its commands from a state file at startup. (See the-s flag below.)
Alternately, you can have Epsilon start up from a file generated directly by the EEL compiler. These
bytecode filesend with a “.b” extension. This flag says to use the bytecode file with namefilename, or
“epsilon” if you leave out thefilename. You may omit the extension infilename. You would rarely use
this flag, except when building a new version of Epsilon from scratch. Compare the-l flag.

2.8. EPSILON COMMAND LINE FLAGS 13

-dvariable!valueYou can use this flag to set the values of string and integer variables from the command
line. The indicated variable must already exist at startup. You can also use the syntax
-dvariable=value, but beware: if you run Epsilon via a .BAT or .CMD file, the system will replace
any=’s with spaces, and Epsilon will not correctly interpret the flag.

-e flags See page 16 for information on these DOS-specific flags.

-fdfilenameThis flag tells Epsilon where to look for the on-line documentation file. Normally, Epsilon
looks for a file named edoc. This flag tells Epsilon to usefilenamefor the documentation file. If you
provide a relative name forfilename, then Epsilon will search for it; see page 11. Use a file name, not
a directory name, forfilename.

-fhdirnames(DOS and Windows only) This switch tells Epsilon what directories to use for the temporary
files it creates under DOS during “shrinking” and “capturing.” When Epsilon runs another program, it
can move itself out of memory to give the other program more room. We call thisshrinking. Epsilon
can also capture the output of programs it runs, to read compiler error messages, for example. Epsilon
creates temporary files when you use either of these features (by running thepush or make
commands, for example) and this switch lets you tell Epsilon where to put these files. (Only the DOS
version of Epsilon, not the Windows version, uses a shrink file, but both use capture files.) When you
use this switch,dirnamesshould specify a list of one or more directories, separated by semicolons.

When Epsilon needs to create temporary files, it looks through the list of directoriesdirnamesfor a
directory with enough free space. If none have enough, it looks through its list of swap directories
(described next) for one with space. If none of those have enough, it will ask you for a directory name
for temporary files. If you don’t use this switch, Epsilon will go immediately to the list of swap
directories.

For shrinking and capturing, Epsilon uses temporary files named eshrink and eshell. However,
Epsilon will modify the names to avoid a conflict with another Epsilon using these files.

-fsdirnamesThis switch tells Epsilon what directories to use for swap files, if Epsilon needs to use them.
Dirnamesshould indicate a list of one or more directories, separated by semicolons. Epsilon will
always create its first swap file in the first directory named. If it finds that it can no longer expand that
file, it will switch to the second directory, and so forth. If it cannot find any available space, it will ask
you for another directory name.

If you don’t use this switch, Epsilon will create any swap file it needs in the directory named by the
TMP environment variable. If TMP doesn’t exist, Epsilon tries TEMP. If Epsilon can’t find either, it
will create any swap file it needs in the root directory of the drive from which you started Epsilon.
Epsilon calls its swap file eswap, but it will use another name (like eswap0, eswap1, etc.) to avoid a
conflict with another Epsilon using this file. (Under DOS, be sure to load DOS’s share.exe program so
that Epsilon can detect these conflicts.)

-geometry When Epsilon for Unix runs as an X program, it recognizes this standard X flag.

-k flags See page 16 for information on other DOS and OS/2-specific-k flags.

-kanumber (Windows only) This switch turns off certain keyboard functions to help diagnose problems.
It’s followed by a number.-ka1 tells Epsilon not to translate the Ctrl-2 key combination to NUL.
-ka2 tells Epsilon not to translate the Ctrl-hSpacei key combination to NUL.-ka4 tells Epsilon to try
to work around a caret-related screen painting bug on some Windows 3.1 display cards. Also see page
16 for the DOS and OS/2-specific versions of this flag.

-ke This switch tells Epsilon that your computer has an extended keyboard with a separate cursor pad. If
you don’t provide this switch, cursor pad keys will function the same as the corresponding numeric
pad keys. If you use this switch, you can bind different commands to the two sets of keys. See page

14 CHAPTER 2. GETTING STARTED

138. The exact keyboard changes made by this switch vary based on the operating system under
which Epsilon is running.

-ksnumber (Windows, Unix, & OS/2 only) This flag lets you manually adjust the emphasis Epsilon puts on
speed during long operations versus responsiveness to the abort key. Higher numbers make Epsilon
slightly faster overall, but when you press the abort key, Epsilon may not respond as quickly. Lower
numbers make Epsilon respond more quickly to the abort key, but with a performance penalty. The
default setting is-ks100.

-lbytecodeGiving this switch makes Epsilon load a bytecode file namedbytecode.b after loading the state
file. If you give more than one-l flag on the command line, the files load in the order they appear.
Compare the-b flag.

-mbytes This switch controls how much memory Epsilon uses. Epsilon interprets a number less than 1000
as a number of kilobytes, otherwise, as bytes. You may explicitly specify kilobytes by endingbytes
with ‘k’, or megabytes by endingbyteswith ‘m’. Specify-m0 to use as little memory as possible, and
-m to put no limit on memory use.

Except under DOS, this flag tells Epsilon how much memory it may use for the text of buffers. If you
read in more files than will fit in the specified amount of memory, or if despite a high limit, the
operating system refuses Epsilon’s requests for more memory, Epsilon will swap portions of the files
to disk. By default, Epsilon puts no limits on its own memory usage.

Under DOS, this flag tells Epsilon how much “conventional memory” it should reserve for buffer text
when it starts a concurrent process. By default, Epsilon reserves about 25% of the available memory
for buffer text before it starts a concurrent process. This flag does not affect the amount of UMB,
UMA, EMS or XMS memory Epsilon uses, but the presence of these types of memory can reduce
Epsilon’s need for conventional memory. See the description of the-e and-x flags for more
information on these other types of memory.

-nologo In some environments Epsilon prints a short copyright message when it starts. This flag makes it
skip displaying that message.

-noserver This flag tells Epsilon for Windows or Unix that it should not register itself as a server so as to
accept messages from other instances of Epsilon. By default, Epsilon will receive messages from
future instances of Epsilon that are started with the-add flag, or (for Windows) sent via file
associations or DDE. See page 113 for details. The flag-nodde is a synonym.

-pfilenameThis overrides the ESESSION configuration variable to control the name of the session file that
Epsilon uses. When you specify a file name, Epsilon uses that for the session file, just as with
ESESSION. Because the-p0 and-p1 flags enable and disable sessions (see the next item), the given
filenamemust not begin with a digit.

-pnumber This flag controls whether or not Epsilon restores your previous session when it starts up. By
default, Epsilon will try to restore your previous window and buffer configuration. The-p flag with
no number toggles whether Epsilon restores the session. Give the-p0 flag to disable session restoring
and saving, and the-p1 flag to enable session restoring and saving. This flag understands the same
values as thepreserve-session variable; see its description for other options.

-quickup Epsilon uses this flag to help perform certain updates. It searches for and loads a bytecode file
named quickup.b. This flag is similar to the-l flag above, but the-quickup flag doesn’t require any
EEL functions to run. For that reason, it can replace and update any EEL function.

-rcommandGiving this switch makes Epsilon try to run a command or keyboard macro namedcommand
at startup. If the command doesn’t exist, nothing happens. If you specify more than one-r flag on the
command line, they execute in the order they appear.

2.8. EPSILON COMMAND LINE FLAGS 15

-sfilenameWhen Epsilon starts up, it looks for astate filenamed epsilon.sta. The state file contains
definitions for all of Epsilon’s commands. You can create your own state file by using thewrite-state
command. This switch says to use the state file with the namefilename. Epsilon will add the
appropriate extension if you omit it. Specify a file name forfilename, not a directory name. Of course,
the file name may include a directory or drive prefix. If you specify a relative file name, Epsilon will
search for it. See page 11. See also the-b flag, described above.

-server:servername(Windows and Unix only) The command line flag-server may be used to alter the
server name for an instance of Epsilon. An instance of Epsilon started with-server:somename-add
will only pass its command line to a previous instance started with the same-server:somenameflag.
See page 113. The flag-dde is a synonym.

-teach This flag tells Epsilon to load the on-line tutorial file at startup. See page 8.

-v flags See page 18 for information on other DOS-specific-v flags.

-vcx x indicates the number of columns you want displayed while in Epsilon. For example, if your display
board has 132 columns, use the “-vc132” flag. See the-vl flag, described below. See the-geometry
flag for the equivalent in Epsilon for Unix.

-vcolor Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one
based on the type of display in use and its mode. This flag forces Epsilon to use a full-color color
scheme, regardless of the type of the display.

-vlx x indicates the number of screen lines you want to use while in Epsilon. See the-vc switch, described
above, and the discussion of display modes on page 92. See-geometry for the equivalent in Epsilon
for Unix.

-vmono Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one
based on the type of display in use and its mode. This flag forces Epsilon to use its monochrome color
scheme, regardless of the type of the display.

-vt (Unix only) This flag forces Epsilon to run as a curses-style terminal program, not an X program. By
default Epsilon for Unix runs as an X program whenever an X display is specified (either through a
DISPLAY environment variable or a-display flag), and a terminal program otherwise.

-vv This flag instructs Epsilon to split the screen vertically, not horizontally, when more than one file is
specified on the command line.

-vx and -vy These flags let you specify the position of Epsilon’s window in Epsilon for Windows. For
example,-vx20 -vy30 positions the upper left corner of Epsilon’s window at pixel coordinates
20x30. See-geometry for the equivalent in Epsilon for Unix.

-wnumber This flag controls several directory-related settings. Follow it with a number.

The-w1 flag tells Epsilon to remember the current directory from session to session. Without this
flag, Epsilon will remain in whatever current directory it was started from. Epsilon always records the
current directory when it writes a session file; this flag only affects whether or not Epsilon uses this
information when reading a session file.

The-w2 flag has no effect in this version of Epsilon.

The-w4 flag tells Epsilon not to look for its own files in the directory containing the Epsilon
executable. Similarly, the-w8 flag tells Epsilon not to look for its own files in the parent of the
directory containing the Epsilon executable. Epsilon normally looks for its own files in these two
directories, prior to searching the EPSPATH. If you choose to put Epsilon’s executable files in a

16 CHAPTER 2. GETTING STARTED

common directory with other executable files, you may wish to set this flag. If you do this, make sure
the EPSPATH points to the correct directory.

The-w16 flag tells Epsilon to set its current directory to the directory containing the first file named
on its command line. If you edit files by dragging and dropping them onto a shortcut to Epsilon, you
may wish to use this flag in the shortcut.

You can combine-w flags by adding their values together. For example,-w5 makes Epsilon
remember the current directory and exclude its executable’s directory from the EPSPATH. All
Windows program icons for Epsilon invoke it with-w1 so that Epsilon remembers the current
directory. (When you tell the installer to put Epsilon’s executables in a common directory, not in
Epsilon’s normal directory structure, the installer uses the-w13 flag in Epsilon’s icons, and the-w12
flag when Epsilon is invoked from the command line. Epsilon then relies on the EPSPATH setting to
find its files.)

-wait This flag tells Epsilon for Unix to locate an existing instance of Epsilon, pass it the rest of the
command line, and wait for the user in that instance to invoke theresume-client command. (Epsilon
ignores the flag if there’s no prior instance.) If you want to configure another program to run Epsilon
to edit a file, but use an existing instance of Epsilon, just include this flag in the Epsilon command
line. See page 113 for details on Epsilon’s server support.

-x flags See page 18 for information on the DOS-specific-x flags.

2.8.1 DOS-specific and OS/2-specific Flags

This section describes some flags that are only used in Epsilon for DOS or Epsilon for OS/2.

-ebytes (DOS only) This switch controls Epsilon’s use of expanded memory, or EMS, for storing text.
Bytesmay end with ‘k’ to indicate kilobytes, or ’m’ to indicate megabytes. Without either suffix,
Epsilon interprets a number less than 1000 as a number of kilobytes, otherwise as a number of bytes.

You may specify-e0 to disable all use of EMS memory, or-e to place no limit on Epsilon’s use of
EMS memory (the default). This latter switch may come in handy to override a prior limit (perhaps
from an EPSILON configuration variable).

-efbytes (DOS only) This switch controls Epsilon’s use of expanded memory, or EMS, for storing
commands. By default, Epsilon loads its commands into about 80k bytes of EMS memory. This frees
more memory for a concurrent process. You may specify-ef0 to make Epsilon not put commands in
EMS memory. Or you may specify-ef by itself to override a prior-e0 flag, and permit Epsilon to use
EMS memory only for commands, not buffers.

-eibytes (DOS only) By default, Epsilon tries to allocate EMS memory in blocks of 256k bytes. This flag
sets the allocation size.Bytesmay end with ‘k’ to indicate kilobytes, or ’m’ to indicate megabytes.
Epsilon adjusts the value to make it a multiple of 64k bytes.

-kanumber (DOS only) This switch tells Epsilon to work around a BIOS keyboard bug present in some
computers. The problem only shows up on a 101-key keyboard with a separate cursor keypad, where
the Alt key sometimes appears to stick after you type a cursor key with the Alt key held down. To test
your computer for this incompatibility, start Epsilon, type some text, and move to the start of the
buffer. Hold down the left Alt key, then hold down thehLefti key on the separate cursor keypad. Next,
release the Alt key. Finally, release thehLefti key. Now press the F key. If Epsilon inserts an F, your
BIOS doesn’t have the bug. If the cursor moves forward, your computer’s BIOS has this bug, and you
should use the-ka flag when you start Epsilon. Press and release the left Alt key, and the keyboard
should return to normal.

2.8. EPSILON COMMAND LINE FLAGS 17

You can provide a number after-ka to tell Epsilon to take more drastic steps to remedy keyboard
incompatibilities. The value1 tells Epsilon to work around the Alt key problem described above. The
value2 tells Epsilon to avoid a “keyboard intercept” function that some computers don’t handle
correctly. The value4 makes Epsilon pass all keys to the BIOS. (When you use this option, you may
find that Epsilon ignores some non-standard key combinations like Alt-hCommai. Use the-ke flag to
restore some of these key combinations.) The value8 makes Epsilon try to explicitly reset the BIOS’s
notion of the state of the Shift, Ctrl, or Alt keys, whenever you release one of these keys. The value
16 tells Epsilon to use a slower method of initializing the mouse. The value32 tells Epsilon to avoid
using Windows long file name calls.

You can add the above-ka values together. For example,-ka17 works around incompatibilities in
BIOS Alt key handling and mouse support.

-ka (OS/2 only) This switch enables Epsilon’s advanced OS/2 keyboard support. Advanced keyboard
support is only available when Epsilon runs full-screen; Epsilon ignores this switch when running in a
window. With advanced keyboard support:

� Holding down the Alt key and pressing a key on the numeric keypad generates Alt-hDowni and
similar keys. (Without advanced keyboard support, this sequence enters keys by their ASCII
codes, as in other OS/2 programs. Theprogram-keys command can disable this feature.)

� Epsilon prevents cursor run-on by adjusting the repeat rate of repeated keys, as it does in the
DOS and Windows versions.

� Epsilon recognizes the abort key faster, regardless of the setting of the-ks flag below.

� When exiting, OS/2 will sometimes beep as Epsilon removes its advanced keyboard support.

-kcnumber (DOS and OS/2 only) The-kc flag controls the mouse cursor. The-kc2 flag provides a
graphical cursor, but only under DOS on EGA and VGA systems. The-kc1 flag forces Epsilon to use
a block cursor. The-kc0 flag turns off the mouse cursor entirely. (If you run Epsilon for DOS in a
window under Microsoft Windows or OS/2 Presentation Manager, you should provide the-kc0 or
-kw flags to disable the mouse cursor, since these environments always display their own cursors
when running a DOS application like Epsilon.) By default, Epsilon uses a graphical cursor if it can,
and a block cursor otherwise. You can also set the cursor type from within Epsilon via the
mouse-graphic-cursor variable. A non-zero value makes Epsilon use a graphical cursor.

When Epsilon for DOS uses a graphical mouse cursor, it must redefine the appearance of nine
characters. By default, Epsilon uses nine non-ASCII graphic characters, including some math
symbols and some block graphic characters. You can use the commandset-display-characters to
alter the reserved characters Epsilon uses. As you move the mouse around, the appearance of these
characters will change. If you edit a binary file with these characters in single-character graphic mode
(where Epsilon displays the IBM graphic characters for control and meta characters), you may wish to
use a block mouse cursor by settingmouse-graphic-cursor to 0, or starting with the-kc1 flag.

-kmnumber (DOS, Win32 Console, and OS/2 only) The-km flag controls Epsilon’s mouse use. The
-km0 flag tells Epsilon not to use a mouse. The-km2 flag lets Epsilon use relative mouse
coordinates. The-km1 flag forces Epsilon to use absolute mouse coordinates. Relative mouse
coordinates are best, but don’t work in certain windowed environments.

By default, Epsilon uses relative mouse coordinates. Using absolute mouse coordinates ensures that
Epsilon’s idea of the mouse cursor location stays synchronized with the displayed mouse cursor. The
OS/2 version of Epsilon automatically uses absolute mouse coordinates when running in a
Presentation Manager window, but the DOS version requires the-km1 or-kw flag. The Win32
Console version of Epsilon only supports absolute mouse coordinates (via-km1), or a disabled
mouse (-km0).

18 CHAPTER 2. GETTING STARTED

With absolute mouse coordinates, Epsilon can’t detect when the mouse moves past the edge of the
screen. As a result, Epsilon won’t automatically scroll at screen edges or pop up a menu bar or a scroll
bar at the edge of the screen. You can still use Epsilon’s menu system by turning on a permanent
mouse menu with thetoggle-menu-bar command (or via theshow-menu command on Alt-F2), and
you can turn on permanent screen borders to regain the other features. (See page 94.)

-kp (OS/2 only) This flag-kp tells Epsilon how many seconds it should wait for a concurrent process to
start, before giving up and reporting an error. By default, Epsilon waits 8 seconds. Use-kp20 to make
Epsilon for OS/2 wait 20 seconds. You may find this flag useful if you use an alternate command
processor such as 4OS2.

-kt (DOS only) Under DOS, Epsilon gets accurate timing information by reprogramming a system timer.
The-kt flag disables this feature, and forces Epsilon to use the less accurate timing information
provided by DOS. When you provide this flag, Epsilon will no longer be able to detect mouse double
clicks. (When Epsilon for DOS runs under Windows, it gets accurate timing information from
Windows and doesn’t need to reprogram a system timer.)

-kw (DOS only) To run Epsilon for DOS in a window under MS-Windows or OS/2 Presentation Manager,
you must provide the-kw flag for correct mouse behavior. It combines the-kc0 and-km1 flags
described above. If you sometimes run Epsilon in a window, and sometimes full-screen, you may
wish to create two .PIF files or icons for Epsilon. You can turn the action of the-kw flag on or off
from within Epsilon by setting thecatch-mouse variable: see page 454.

With this switch, Epsilon can’t detect when the mouse moves past the edge of the screen. As a result,
Epsilon won’t automatically scroll at screen edges or pop up a menu bar or a scroll bar at the edge of
the screen. You can still use Epsilon’s menu system by turning on a permanent mouse menu with the
toggle-menu-bar command (or via theshow-menu command on Alt-F2), and you can turn on
permanent screen borders to regain the other features. (See page 94.)

-vclean (DOS only) On some video boards, Epsilon must not write to the screen as fast as it can, because
doing so would result in annoying patterns on the screen, calledsnow. The-vclean switch says that
the display board in use doesnot suffer from this problem. It overrides a prior-vsnow flag (see
below).

-vmx (DOS only)x indicates, in hexadecimal, the segment address of the beginning of your display board’s
memory, if different from normal. If Epsilon thinks you have a monochrome adapter, it normally uses
segment B000. Otherwise, it uses segment B800.

For example, if you have a display board that starts at address A000:0, you would tell Epsilon to use
that address for the display by using the switch-vmA000. Specify the hexadecimalsegment address
of the board, not the complete address.

-vsnow (DOS only) On some video boards, Epsilon must not write to the screen as fast as it can, because
doing so would result in annoying patterns on the screen, calledsnow. This switch tells Epsilon that
your video board has this problem. Also see the-vclean switch described above. Typically, only
CGA video boards require this flag.

-xbytes (DOS only) This switch controls Epsilon’s use of extended memory, or XMS, for storing text.
Bytesmay end with ‘k’ to indicate kilobytes, or ‘m’ to indicate megabytes. Without either suffix,
Epsilon interprets a number less than 1000 as a number of kilobytes, otherwise as a number of bytes.
By default, Epsilon uses as much XMS memory as it needs.

You may specify-x0 to disable all use of XMS memory, or-x by itself to override a prior limit
(perhaps from an EPSILON configuration variable) and put no limit on XMS memory use.

2.9. FILE INVENTORY 19

-xfbytes (DOS only) This switch controls Epsilon’s use of extended memory, or XMS, for storing
commands. By default, Epsilon loads its commands into about 80k bytes of XMS memory. This frees
more memory for a concurrent process. You may specify-xf0 to make Epsilon avoid putting
commands into XMS memory. Or you may specify-xf to override a prior-x0 flag, and permit
Epsilon to use XMS memory only for commands, not buffers.

-xibytes (DOS only) By default, Epsilon tries to allocate XMS memory in blocks of 256k bytes. This flag
sets that allocation size.Bytesmay end with ‘k’ to indicate kilobytes, or ‘m’ to indicate megabytes.
Without either suffix, Epsilon interprets a number less than 1000 as a number of kilobytes, otherwise
as a number of bytes. Epsilon adjusts the value to make it a multiple of 64k bytes.

-xubytes (DOS only) This switch controls Epsilon’s use of memory between the 640K and 1M marks (both
UMA and UMB memory). Normally, your system software may provide either UMA memory or
UMB memory, but not both. This flag controls Epsilon’s use of either.

By default, Epsilon will try to allocate as much upper memory as it needs. You may specify-xu0 to
make Epsilon avoid using upper memory at all.Bytesmay end with ‘k’ to indicate kilobytes, or ‘m’ to
indicate megabytes. Without either suffix, Epsilon interprets a number less than 1000 as a number of
kilobytes, otherwise as a number of bytes. Epsilon adjusts the value to make it a multiple of 4k bytes.

2.9 File Inventory

Epsilon consists of the following files:

install.exe (DOS and OS/2 only) Epsilon’s installation program. It copies the files on the distribution
medium to the directories you specify.

install.dat (DOS and OS/2 only) The script file for the install program. It tells the installer what questions
to ask, and what to do with the answers.

setup.exe, setup.w02 (Windows only) Epsilon’s installation program.

epsilon.exe The 32-bit Epsilon for Windows executable program, or the 16-bit OS/2 executable.

e16.exe The 16-bit Epsilon for Windows executable program for Windows 3.1.

epsilonc.exe The Epsilon executable program for Win32 console mode.

epsdos.exe The Epsilon executable program for DOS-only systems.

epsdos.ico and epsdos.pif These files help the DOS version of Epsilon to run under Windows.

eel.exe Epsilon’s compiler. You need this program if you wish to add new commands to Epsilon or modify
existing ones.

eel_lib.dll Under Windows, Epsilon’s compiler eel.exe requires this file. Epsilon itself also uses this file
when you compile from within the editor.

conagent.pif, concur16.exe, concur16.ico, and concur16.pif Epsilon for Windows requires these files to
provide its concurrent process feature.

lugeps1.386 Epsilon for Windows requires this file under Windows 95/98/ME and Windows 3.1 to provide
its concurrent process feature. It’s normally installed in your Windows System directory.

20 CHAPTER 2. GETTING STARTED

inherit.exe and inherit.pif Epsilon for Windows NT uses these files to execute another program and
capture its output.

sheller.exe and sheller.pif Epsilon for Windows 95/98/ME and Windows 3.1 uses these files to execute
another program and capture its output.

edoc.hlp This Windows help file provides help on Epsilon.

epshlp.dll Epsilon’s help file communicates with a running copy of Epsilon so it can display current key
bindings or variable values and let you modify variables from the help file. It uses this file to do that.
There are different versions of this file for 16-bit and 32-bit platforms.

sendeps.exe Epsilon for Windows uses this file to help create desktop shortcuts to Epsilon, or Send To
menu entries.

VisEpsil.dll Epsilon for Windows includes this Developer Studio extension that lets Developer Studio pass
all file-opening requests to Epsilon.

eps-aux.exe (OS/2 only) Epsilon needs this auxiliary program when creating a concurrent process. Epsilon
expects to find it in the same directory as the file epsilon.exe.

eps-lib3.dll (OS/2 only) Epsilon uses this file when it creates a concurrent process. On startup, Epsilon
expects to find it in a directory on your LIBPATH. See page 483.

The installation program puts the following files in the main Epsilon directory, oftennepsilon. (Under
32-bit Windows, this directory is typically namednProgram FilesnEpsilon.)

epsilon.sta This file contains all of Epsilon’s commands. Epsilon needs this file in order to run. If you
customize Epsilon, this file changes. Epsilon for Unix includes a version number in this name.

original.sta This file contains a copy of the original version of epsilon.sta at the time of installation.

edoc Epsilon’s on-line documentation file. Without this file, Epsilon can’t provide basic help on commands
and variables.

infonepsilon.inf Epsilon’s on-line manual, in Info format.

infondir A default top-level Info directory, for non-Unix systems that may lack one. See Info mode for
details.

lhelpn* This directory contains files for the HTML version of Epsilon’s documentation. The lhelp helper
program reads them.

epswhlp.hlp and epswhlp.cnt Epsilon uses these files to provide itssearch-all-help-files command under
32-bit Windows.

eteach Epsilon’s tutorial. Epsilon needs this file to give the tutorial (see page 8). Otherwise, Epsilon does
not need this file to run.

colclass.txt One-line descriptions of each of the different color classes in Epsilon. Theset-color command
reads this file.

brief.kbd Thebrief-keyboard command loads this file. It contains the bindings of all the keys used in
Brief emulation, written in Epsilon’s command file format.

epsilon.kbd Theepsilon-keyboard command loads this file. It contains the standard Epsilon key bindings
for all the keys that are different under Brief emulation, written in Epsilon’s command file format.

2.9. FILE INVENTORY 21

epsilon.mnu Epsilon for Unix, DOS or OS/2 uses this file to construct its menu bar, except in Brief mode.

brief.mnu In Brief mode, Epsilon for Unix, DOS or OS/2 uses this file to construct its menu bar.

gui.mnu Epsilon for Windows uses this file to construct its menu bar.

latex.env Thetex-environment command in LaTeX mode (Alt-Shift-E) gets its list of environments from
this file. You can add new environments by editing this file.

lugaru.url This file contains a link to Lugaru’s World Wide Web site. If you have an Internet browser
installed under Windows, you can open this file via its file association and connect to Lugaru’s Web
site. Theview-lugaru-web-site command uses this file.

primlist.doc This file alphabetically lists all the EEL primitive functions and variables.

os2calls.doc (OS/2 only) This file provides the same information as OS/2’s os2.lib or doscalls.lib files, but
in human-readable form. It lists the OS/2 system calls, their library locations, and the ordinal or
procedure name you need to call them, for use with thedo_interrupt() primitive.

readme.txt This file contains miscellaneous notes, and describes any features or files we added after we
printed this manual. You can use the Alt-x release-notes command to read it.

unwise.exe, unwise.ini If you used the Windows-based installer, you can uninstall Epsilon by running this
program.

install.log The Windows-based installer creates this file to indicate which files it installed. Uninstalling
Epsilon requires this file.

*.b The installation program puts a number ofbytecodefiles in Epsilon’s main directory, typicallynepsilon.
Epsilon loads a bytecode file during the execution of certain less commonly used commands.

*.h The installation program copies a number of “include files” to the subdirectory “include” within
Epsilon’s main directory. These header files are used if you decide to compile an Epsilon extension or
add-on written in its EEL extension language.

eel.h Epsilon’s standard header file, for use with the EEL compiler.

codes.h Another standard header file, with numeric codes. The eel.h file includes this one automatically.

filter.h A header file defining the contents of Epsilon’s Common File Open/Save dialogs under Windows.

*.e These files contain source code in EEL to all Epsilon’s commands. The installation program copies
them to the subdirectory “source” within Epsilon’s main directory.

epsilon.e This file loads all the other files and sets up Epsilon.

makefile You can use this file, along with a “make” utility program, to help recompile the above Epsilon
source files. It lists the source files and provides command lines to compile them.

The directory “changes” within Epsilon’s main directory contains files that list the differences between
this version of Epsilon and previous versions. See page 135 for information on updating to a new version of
Epsilon.

Chapter 3

General Concepts

23

This chapter describes the framework within which the commands operate. The chapter entitled
“Commands by Topic”, which starts on page 35, goes into detail about every Epsilon command.

If you have never used Epsilon before, you should run the tutorial now. This chapter discusses some
general facilities and concepts used throughout Epsilon by many of the commands. You will find the
discussion much clearer if you’ve used the tutorial, and have become accustomed to Epsilon’s general style.

To run the tutorial, start Epsilon and select Epsilon Tutorial from the Help menu. (You can also press
the F2 key in Epsilon and type the command nametutorial, or start Epsilon with the-teach flag.)

3.1 Buffers

In Epsilon’s terminology, abuffercontains text that you can edit. You can think of a buffer as Epsilon’s copy
of a file that you have open for editing. Actually, a buffer may contain a copy of a file, or it may contain a
new “file” that you’ve created but have not yet saved to disk.

To edit a file, you read the file into a buffer, modify the text of the buffer, and write the buffer to the file.
A buffer need not necessarily correspond to a file, however. Imagine you want to write a short program from
scratch. You fire up Epsilon, type the text of the program into a buffer, then save the buffer to a file.

Epsilon does not place any limitation on the number of active buffers during an editing session. You can
edit as many buffers at the same time as you want. This implies that you can edit as many files, or create as
many files, or both, as you desire. Each document or program or file appears in its own buffer.

3.2 Windows

Epsilon displays your buffers to you inwindows. You can have one window or many windows. You can
change the number and size of windows at any time. You may size a window to occupy the entire display, or
to occupy as little space as one character wide by one character high.

Each window can display any buffer. You decide what a window displays. You can always get rid of a
window without worrying about losing the information the window displays: deleting a window doesnot
delete the buffer it displays.

Each window displays some buffer, and several windows can each display the same buffer. This comes
in handy if you want to look at different parts of a buffer at the same time, say the beginning and end of a
large file.

A buffer exists whether or not it appears in some window. Suppose a window displays a buffer, and you
decide to refer to another file. You can read that file into the current window without disturbing the old
buffer. You peruse the new buffer, then return to the old buffer.

You may find this scheme quite convenient. You have flexibility to arrange your buffers however you
like on the screen. You can make many windows on the screen to show any of your buffer(s), and delete
windows as appropriate to facilitate your editing. You never have to worry about losing your buffers by
deleting or changing your windows.

Epsilon has many commands to deal with buffers and windows, such as creating, deleting, and changing
the size of windows, reading files into a buffer, writing buffers out to files, creating and deleting buffers, and
much more. We describe these in detail in the chapter “Commands by Topic”, which starts on page 35.

24 CHAPTER 3. GENERAL CONCEPTS

Figure 3.1: What Epsilon looks like with one window.

3.3 Epsilon’s Screen Layout

To see what buffers and windows look like, refer to figure 3.1. This shows what the screen looks like with
only one window. It shows what the screen looks like when you edit a file named screen.1.

The top section of the screen displays some of the text of the window’s buffer. Below that appears the
mode line. The mode line shows the buffer name in parentheses, the file associated with that buffer, if any,
the currentmodein square brackets (see below), and the percentage of the buffer before the cursor. If the file
and buffer have the same name (often the case), then the name appears only once in the mode line. A star (*)
at the end of the line means that you have changed the buffer since the last time you saved it to disk. (See the
mode-end variable for information on customizing the contents of the mode line.) The text area and the
mode line collectively constitute the window.

Below the mode line, on the last line of the screen, appears theecho area. Epsilon uses this area to
prompt you for information or to display messages (in the figure it’s empty). For example, the command to
read a file into a buffer uses the echo area to ask you for the file name. Regardless of how many windows
you have on the screen, the echo area always occupies the bottommost screen line.

When Epsilon displays a message in the echo area, it also records the message in the#messages#
buffer (except for certain transient messages). See themessage-history-size variable to set how
Epsilon keeps the buffer from excessive size by dropping old messages.

Epsilon has an important concept called the editing point, or simplypoint. While editing a buffer, the
editing point refers to the place that editing “happens”, as indicated by the cursor. Point refers not to a
character position, but rather to a characterboundary, a placebetweencharacters. You can think of point as,
roughly, the leftmost edge of the cursor. Defining the editing point as a position between characters rather
than at a particular character avoids certain ambiguities inherent in the latter definition.

Consider, for example, the command that goes to the end of a word,forward-word. Since point always
refers to a position between characters, point moves right after the last letter in the word. So the cursor itself
would appear underneath the first character after the word. The command that moves to the beginning of the
word,backward-word, positions point right before the first character in the word. In this case, the cursor
itself would appear under the first character in the word.

When you want to specify a region, this definition for point avoids whether characters near each end
belong to the region, since the ends do not represent characters themselves, but rather character boundaries.

Figure 3.2 shows Epsilon with 3 windows. The top window and bottom window each show the buffer
“main”. Notice that although these two windows display the same buffer, they show different parts of the

3.4. DIFFERENT KEYS FOR DIFFERENT USES: MODES 25

Figure 3.2: Epsilon with three windows.

buffer. The mode line of the top window says 0%, but the mode line of the bottom window says 58%. The
middle window displays a different buffer, named “other”. If the cursor appears in the middle window and
you type regular letters (the letters of your name, for example), they go into the buffer named “other” shown
in that window. As you type the letters, the point (and so the cursor) stays to the right of the letters.

In general, thecurrent windowrefers to the window with the cursor, or the window where the “editing
happens”. Thecurrent bufferrefers to the buffer displayed by the current window.

3.4 Different Keys for Different Uses: Modes

When you edit a C program, your editor should behave somewhat differently than when you write a letter, or
edit a Lisp program, or edit some other kind of file.

For example, you might want the third function key to search forward for a comment in the current
buffer. Naturally, what the editor should search for depends on the programming language in use. In fact,
you might have Pascal in the top window and C in the bottom window.

To get the same key (in our example, the third function key) to do the right thing in either window,
Epsilon allows each buffer to have its own interpretation of the keyboard.

We call such an interpretation amode. Epsilon comes with several useful modes built in, and you can
add your own using the Epsilon Extension Language (otherwise known as EEL, pronounced like the aquatic
animal).

Epsilon uses the mode facility to provide thedired command, which stands for “directory edit”. The
dired command displays a directory listing in a buffer, and puts that buffer in dired mode. Whenever the
current window displays that buffer, several special keys do things specific to dired mode. For example, the
‘e’ key displays the file listed on the current line of the directory listing, and the ‘n’ key moves down to the
next line of the listing. See page 108 for a full description of dired mode.

Epsilon also provides C mode, which knows about several C indenting styles (see page 72). We also
include Fundamental mode, a general-purpose editing mode.

The mode name that appears in a mode line suggests the keyboard interpretation active for the buffer
displayed by that window. When you start Epsilon with no particular file to edit, Epsilon uses Fundamental

26 CHAPTER 3. GENERAL CONCEPTS

Mode, so the word “Fundamental” appears in the mode line. Other words may appear after the mode name
to signal changes, often changes particular to that buffer. We call theseminor modes. For example, the
auto-fill-mode command sets up a minor mode that automatically types ahReturni for you when you type
near the end of a line. (See page 68.) It displays “Fill” in the mode line, after the name of the major mode. A
read-only buffer display “RO” to indicate that you won’t be able to modify it. There is always exactly one
major mode in effect for a buffer, but any number of minor modes may be active. Epsilon lists all active
minor modes after the major mode’s name.

3.5 Keystrokes and Commands: Bindings

Epsilon lets you redefine the function of nearly all the keys on the keyboard. We call the connection between
a key and the command that runs when you type it abinding.

For example, when you type thehDowni key, Epsilon runs thedown-line command. Thedown-line
command, as the name suggests, moves the point down by one line. So when you type thehDowni key,
point moves down by one line.

You can change a key’s binding using thebind-to-key command. The command asks for the name of a
command, and for a key. Thereafter, typing that key causes the indicated command to run. Using
bind-to-key, you could, for example, configure Epsilon so that typinghDowni would run the
forward-sentence command instead of thedown-line command.

This key-binding mechanism provides a great deal of flexibility. Epsilon uses it even to handle the
alphabetic and number keys that appear in the buffer when you type them. Most of the alphabetic and
number keys run the commandnormal-character, which simply inserts the character that invoked it into
the buffer.

Out of the box, Epsilon comes with a particular set of key bindings that make it resemble the EMACS
text editor that runs on many kinds of computers. Using the key-binding mechanism and thebind-to-key
command, you could rearrange the keyboard to make it resemble another editor’s keyboard layout. That is
exactly what thebrief-keyboard command does; it rearranges the keyboard commands to make Epsilon
work like the Brief text editor. See page 126.

Epsilon provides over 300 commands that you can bind to keys, and you can write brand new
commands to do almost anything you want, and assign them to whatever keys you choose. See page 125 for
more information on thebind-to-key command.

Some commands have no default binding. You can invoke any command, bound or not, by giving its
name. The commandnamed-command, normally bound to Alt-X, prompts for a command name and
executes that command. For example, if you type

Alt-X down-line

followed by pressing thehEnteri key, the cursor moves down one line. Of course, you would find it easier in
this example to simply type thehDowni key.

3.6 Repeating: Numeric Arguments

You can prefix anumeric argument, or simply anargument, to a command. This numeric argument
generally functions as a repeat count for that command. You may enter a numeric argument in several ways.
You may type Ctrl-U and then the number. You can also enter a numeric argument by holding down the Alt
key and typing the number using the number keys across thetopof the keyboard. Then you invoke a
command, and that command generally repeats that number of times.

3.7. VIEWING LISTS 27

For example, suppose you type the four characters Ctrl-U 2 6 Ctrl-N. The Ctrl-N key runs the command
nameddown-line, which moves point down one line. But given a numeric argument of 26, the command
moves point down 26 lines instead of 1 line. If you give a numeric argument of -26 by typing a minus key
while typing the 26, thedown-line command would move pointup26 lines. You can get the same effect by
holding down the Alt key and typing 26, then typing the down-arrow key. (Remember to release the Alt key
first; otherwise you’d get Alt-hDowni.) For more information on numeric arguments, see page 26.

You can give a numeric argument to any Epsilon command. Most commands will repeat, as our
example did above. But some commands use the numeric argument in some other way, which can vary from
command to command. Some commands ignore the numeric argument. We describe all the commands in
the chapter titled “Commands by Topic”, which starts on page 35.

3.7 Viewing Lists

Sometimes Epsilon needs to show you a list of information. For example, when it asks you for the name of a
file to edit, you might request a list of possible files to edit (see the next section). In such cases, Epsilon will
display the list of items in a pop-up window. While in a pop-up window, one line will stand out in a different
color (or in reverse video on a monochrome display). If you presshEnteri, you select that item. To select
another item, you can use normal Epsilon commands such ashUpi andhDowni to move to the next and
previous items, orhPageDowni andhPageUpi to go to the next or previous windowful of items. You can
even use Epsilon’s searching commands to find the item you want. If you don’t want any item on the list,
you can simply type another response instead.

If you want to select one of the items and then edit it, press Alt-E. Epsilon will copy the highlighted line
out of the list so can edit it.

3.8 Typing Less: Completion & Defaults

Whenever Epsilon asks you for some information (for instance, the name of a file you want to edit), you can
use normal Epsilon commands to edit your response. For example, Control-A moves to the beginning of the
response line. Most commands will work here, as long as the command itself doesn’t need to prompt you for
more information.

At many prompts, Epsilon will automatically type a default response for you, and highlight it. Editing
the response will remove the highlight, while typing a new response will replace the default response. You
can set the variableinsert-default-response to zero if you don’t want Epsilon to type in a
response at prompts.

If you type a Control-R or Control-S, Epsilon will type in the default text. This is especially useful if
you’ve told Epsilon not to automatically insert the default response, but it can also come in handy when
you’ve mistakenly deleted or edited the default response, and you want to get it back. It’s also convenient at
prompts where Epsilon doesn’t automatically type the default response, such as search prompts. Epsilon
keeps separate defaults for the regular expression and non-regular expression replace commands, and for the
regular expression and non-regular expression search commands. Epsilon will never overwrite what you
actually type with a default, and indeed will only supply a default if you haven’t yet specified any input for
the response.

Another way to retrieve a previous response is to type Alt-E. While Ctrl-R and Ctrl-S provide a
“suggested response” in many commands, Alt-E always types in exactly what you typed to that prompt last
time. (For example, at the prompt of thewrite-file command, Ctrl-S types in the name of the directory

28 CHAPTER 3. GENERAL CONCEPTS

Figure 3.3: Typing ‘?’ shows all of Epsilon’s commands.

associated with the file shown in the current window, while Alt-E types in the last file name you typed at a
write-file prompt.) See page 30.

Sometimes Epsilon shows you the default in square brackets[]. This means that if you just press
hEnteri without entering anything, Epsilon will use the value between the square brackets. You can also use
the Ctrl-S key here to pull in that default value, perhaps so that you can use regular Epsilon commands to
edit the response string.

Epsilon can also retrieve text from the buffer at any prompt. Press the Alt-hDowni key or Alt-Ctrl-N to
grab the next word from the buffer and insert it in your response. Press the key again to retrieve successive
words. This is handy if there’s a file name in the buffer that you now want to edit, for example. The keys
Alt- hPageDowni or Alt-Ctrl-V behave similarly, but retrieve from the current position to the end of the line.

Whenever Epsilon asks for the name of something (like the name of a command, file, buffer, or tag),
you can save keystrokes by performingcompletionon what you type. For example, suppose you type Alt-X
to invoke a command by name, then type the letter ‘v’. Only one command begins with the letter ‘v’, the
visit-file command. Epsilon determines that you mean thevisit-file command by examining its list of
commands, and fills in the rest of the name. We call this processcompletion.

To use completion, type ahSpacei and Epsilon will fill in as much of the name as possible. The letters
Epsilon adds will appear as if you had typed them yourself. You can enter them by typinghEnteri, edit them
with normal editing commands, or add more letters. If Epsilon cannot add any letters when you ask for
completion, it will pop up a list of items that match what you’ve typed so far. To disable automatic pop-ups
on completion, set thecompletion-pops-up variable to zero.

For example, four commands begin with the letters “go”,goto-beginning, goto-end, goto-line, and
goto-tag. If you type “go”, and then presshSpacei, Epsilon fills in “goto-” and waits for you to type more.
Type ‘b’ and anotherhSpacei, to see “goto-beginning”. Epsilon moves the cursor one space to the right of
the last letter, to indicate a match. PresshEnteri to execute thegoto-beginning command.

ThehEsci key works just like thehSpacei key, except that if a single match results from the completion,
Epsilon takes that as your response. This saves you a keystroke, but you don’t have the opportunity to check
the name before continuing. ThehTabi key does the same thing. However, inside a dialog under Windows,

3.8. TYPING LESS: COMPLETION & DEFAULTS 29

Figure 3.4: Typing “w?” shows all commands that start with ‘w’.

these two keys perform their usual Windows functions of canceling the dialog, and moving around in the
dialog, respectively. They aren’t used for completion.

Typing a question mark during completion causes Epsilon to display a list of choices in a pop-up
window. Recall that completion works with buffer and file names, as well as with command names. For
example, you can get a quick directory listing by giving any file command and typing a question mark when
asked for the file name. Press the Ctrl-G key to abort the command, when you’ve read the listing. (See the
dired command on page 108 for a more general facility.)

Figure 3.3 shows you what Epsilon looks like when you type Alt-X (thenamed-command command),
and then press ‘?’ to see a list of the possible commands. Epsilon shows you all its commands in a pop-up
window. Epsilon provides many more commands than could fit in the window, so Epsilon shows you the first
window-full. At this point, you could presshSpacei or hPgDni to see the next window-full of commands, or
use searching or other Epsilon commands to go to the item you desire. If you want the highlighted item,
simply presshEnteri to accept it. If you type Alt-E, Epsilon types in the current item and allows you to edit
it. Type any normal character to leave the pop-up window and begin entering a response by hand.

Figure 3.4 shows what the screen looks like if you type ‘w’ after the Alt-X, then type ‘?’ to see the list
of possible completions. Epsilon lists the commands that start with ‘w’.

You can set variables to alter Epsilon’s behavior. Themenu-width variable contains the width of the
pop-up window of matches that Epsilon creates when you press ‘?’. (DOS, OS/2 or Unix only. In Windows,
drag the dialog’s border to change its size.) Thesearch-in-menu variable controls what Epsilon does
when you press ‘?’ and then continue typing a response. If it has a value of zero, as it does by default,
Epsilon moves from the pop-up window back to the prompt at the bottom of the screen, and editing keys like
hLefti navigate in the response. Ifsearch-in-menu has a nonzero value, Epsilon moves in the pop-up
menu of names to the first name that matches what you’ve typed, and stays in the pop-up window. (If it can’t
find a match, Epsilon moves back to the prompt as before.)

During file name completion, Epsilon can ignore files with certain extensions. The
ignore-file-extensions variable contains a list of extensions to ignore. By default, this variable has
the value ‘|.obj|.exe|.o|.b|’, which makes file completion ignore files that end with .obj, .exe, .o,

30 CHAPTER 3. GENERAL CONCEPTS

and .b. Each extension must appear between ‘|’ characters. You can augment this list using theset-variable
command, described on page 126.

Similarly, theonly-file-extensions variable makes completion look only for files with certain
extensions. It uses the same format asignore-file-extensions, a list of extensions surrounded by|
characters. If the variable holds a null pointer, Epsilon usesignore-file-extensions as above.

3.9 Command History

Epsilon maintains a list of your previous responses to all prompts. To select a prompt from the list, press the
Alt- hUpi key or Alt-Ctrl-P. Then use the arrow keys or the mouse to choose a previous response, and press
hEnteri. If you want to edit the response first, press Alt-E.

For example, when you use thegrep command to search in files for a pattern, you can presshUpi to see
a list of file patterns you’ve used before. If the patternnwindowsnsystemn*.inf appeared on the list,
you could position the cursor on it and then press Alt-E. Epsilon would copy the pattern out of the list so
you can edit it, perhaps replacing*.inf with *.ini. Both patterns would then appear in the history list
next time. Or you could just presshEnteri in the list of previous responses to use the same pattern.

You can also use Alt-E at any prompt to retrieve the last response without showing a list of responses
first. For example, Ctrl-X Ctrl-F Alt-E will insert the full name of the last file you edited with thefind-file
command.

3.10 Mouse Support

Epsilon supports a mouse under Windows, X in Unix, DOS, and OS/2. You can use the left button to
position point, or drag to select text. Double-clicking selects full words. (When a pop-up list of choices
appears on the screen, double-clicking on a choice selects it.) Use shift-clicking to extend or contract the
current selection by repositioning the end of the selection. Holding down the Alt key while selecting
produces a rectangle selection.

Once you’ve selected a highlighted region, you can drag it to another part of the buffer. Move the mouse
inside the highlighted region, hold down a mouse button and move the mouse to another part of the buffer
while holding down the button. The mouse cursor changes to indicate that you’re dragging text. Release the
mouse button and the text will move to the new location. To make a copy of the text instead of moving it,
hold down the Control key while dropping the text.

Dragging text with the mouse also copies the text to a kill buffer, just as if you had used the
corresponding keyboard commands to kill the text and yank it somewhere else. When you drag a
highlighted rectangular region of text, Epsilon’s behavior depends upon the whether or not the buffer is in
overwrite mode. In overwrite mode, Epsilon removes the text from its original location, replacing it with
spaces. Then it puts the text in its new location, overwriting whatever text might be there before. In insert
mode, Epsilon removes the text from its original location and shifts text to its right leftwards to fill the space
it occupied. Then it shifts text to the right in the new location, making room for the text.

You can use the left button to resize windows by dragging window corners or borders. For pop-up
windows only, dragging the title bar moves the window.

A pop-up window usually has a scroll bar on its right border. Drag the box or diamond up and down to
scroll the window. Click on the arrows at the top or bottom to scroll by one line. Click elsewhere in the
scroll bar to scroll by a page. In some environments, ordinary tiled windows have a scroll bar that pops up
when you move the mouse over the window’s right-hand border, or (for windows that extend to the right

3.11. THE MENU BAR 31

edge of the screen), when you move the mouse past the right edge. Thetoggle-scroll-bar command toggles
whether tiled windows have pop-up scroll bars or permanent scroll bars.

Under DOS and OS/2, you can adjust the speed at which Epsilon scrolls due to mouse movements by
setting thescroll-rate variable. It contains the number of lines to scroll per second. The
scroll-init-delay variable contains the delay in hundredths of a second from the time the mouse
button goes down and Epsilon scrolls the first time, to the time Epsilon begins scrolling repeatedly.

In Epsilon for Windows, the right button displays a context menu (which you can modify by editing the
file gui.mnu). In other versions, the right mouse button acts much like the left button, but with a few
differences: On window borders, the right button always resizes windows, rather than scrolling or moving
them. When you double-click with the right mouse button on a subroutine name in a buffer in C mode,
Epsilon goes to the definition of that subroutine using thepluck-tag command (see page 47). To turn off this
behavior in a particular buffer, set the buffer-specific variablemouse-goes-to-tag to zero. To make the
right button jump to a subroutine’s definition when you double-click in any buffer, not just C mode buffers,
set the default value of this variable to one. If you don’t want C mode to automatically set this variable
nonzero, set the variablec-mode-mouse-to-tag to zero.

You can click (or hold) the middle mouse button and drag the mouse to pan or auto-scroll—the speed
and direction of scrolling varies as you move the mouse. This works on wheeled mice like the Microsoft
IntelliMouse or on any mouse with three buttons.

Epsilon for 32-bit Windows or Unix (under X) also recognizes wheel rolling on the Microsoft
IntelliMouse, and scrolls the current window when you roll the wheel. See thewheel-click-lines
variable for more details.

When you run Epsilon for DOS in a window under Microsoft Windows or in other windowed
environments, you must start Epsilon with the-kw flag for correct mouse behavior. See page 18.

In Epsilon for Unix, selecting text normally copies it to the clipboard, and the center mouse button
normally yanks text. See the variablesmouse-selection-copies andmouse-center-yanks.

3.11 The Menu Bar

The Windows version of Epsilon provides a customizable menu bar and tool bar. To modify the menu bar,
edit the file gui.mnu. Comments in the file describe its format. To modify the tool bar, you can redefine the
EEL commandstandard-toolbar in the file menu.e.

Most of the customization variables described below only apply to the DOS, OS/2 and Unix versions of
Epsilon, not the Windows version.

When you move the mouse to the very top of the screen, Epsilon displays a pop-up menu bar. Press and
hold down the left mouse button and highlight one of the listed commands. Release the mouse button and
Epsilon will execute the command. When you invoke some commands that read additional input via the
menu bar, Epsilon automatically brings up a list of options (as if you typed ‘?’) so that you can select one
without using the keyboard. If you don’t want the menu bar to appear when you move the mouse to the top
of the screen, set theauto-menu-bar variable to zero. (You can still bring up the menu bar from the
keyboard; see below.) You can change the contents of the menu bar by editing the file epsilon.mnu.
Comments in the file describe its format. (Epsilon stores the name of its menu file in the variable
menu-file. Set this variable to make Epsilon use a different menu file. During Brief emulation, Epsilon
uses the menu file brief.mnu. Epsilon for Windows uses the variablegui-menu-file instead.)

When you select an item on the menu bar, Epsilon flashes the selected item. The
menu-bar-flashes variable holds the number of flashes (default two). (DOS, OS/2, Unix only.) You
can make the menu bar permanent via thetoggle-menu-bar command. It toggles whether the menu bar
always occupies an extra screen line at the top.

32 CHAPTER 3. GENERAL CONCEPTS

Figure 3.5: Using Epsilon’s menu bar.

If you hold down the Shift or Ctrl keys while selecting a menu bar command, Epsilon will run the
command with a numeric argument of 1. This is handy for commands that behave differently when given a
numeric argument.

You can also access the menu from the keyboard. The commandshow-menu on Alt-F2 brings up a
menu. Use arrow keys to move around in it. Press a letter to move to the next item in the menu that begins
with that letter. PresshEnteri to execute the highlighted item, or click on it with the mouse. Press Ctrl-G or
hEsci to cancel.

By default, Epsilon displays key bindings for menu items. Set the variablemenu-bindings to zero
to disable this feature. Epsilon computes bindings dynamically the first time it displays a particular menu
column. (For several commands with multiple bindings, the epsilon.mnu file selects a particular binding to
display.) Therebuild-menu command makes Epsilon reconstruct its menus: use this command after setting
menu-bindings.

By default, when you click on the menu bar but release the mouse without selecting a command,
Epsilon leaves the menu displayed until you click again. Set themenu-stays-after-click variable to
zero if you want Epsilon to remove the menu when this happens.

3.11. THE MENU BAR 33

Chapter 4

Commands by Topic

35

This chapter lists all the Epsilon commands, grouped by topic. Each section ends with a summary of the
keys, and the names you would use to invoke the commands by name, or to rebind them to other keys.

4.1 Getting Help

You can get help on Epsilon by typing F1, thehelp key. The help key will provide help at any time. If you
type it during another command,help simply pops up a description of that command. Otherwise, thehelp
command asks you to type an additional key to indicate what sort of help you want. Many of these options
are also available directly from Epsilon’s Help menu item, in versions with a menu bar.

Thehelp command actually uses various commands which you can invoke individually. Here are the
keys you can use at the help prompt.

PressingA invokes theapropos command, which asks for a string, looks through the short descriptions
of all the commands and variables, then pops up a list of commands or variables (and their descriptions) that
contain the string, along with their key bindings. Highlighted words are links to the full documentation.

Help’s K option invokes thedescribe-key command. It prompts for a key and provides full
documentation on what that key does.

TheC option invokes the commanddescribe-command, which provides full documentation on the
command whose name you specify, and also tells which keys invoke that command.

TheB option invokes the commandshow-bindings, which asks for a command name and gives you the
keys that run that command.

TheI option invokes the commandinfo, which starts Info mode. Info mode lets you read the entire
Epsilon manual, as well as any other documentation you may have in Info format. See page 36.

TheF option is a shortcut into Epsilon’s manual inInfo mode. It prompts for some text, then looks up
that text in the index of Epsilon’s online manual. Just presshEnteri to go to the top of the manual. This
option invokes the commandepsilon-info-look-up; the commandepsilon-manual-info goes to the top of
Epsilon’s documentation without prompting.

TheCtrl-C option prompts for the name of an Epsilon command, then displays an Info page from
Epsilon’s online manual that describes the command.

TheCtrl-K option prompts for a key, then displays an Info page from Epsilon’s online manual that
describes the command it runs.

TheCtrl-V option prompts for an Epsilon variable’s name, then displays an Info page from Epsilon’s
online manual that describes that variable.

TheH option displays Epsilon’s manual in HTML format, by running a web browser. It prompts for a
topic, which can be a command or variable name, or any other text. (The browser will try to find an exact
match for what you type; if not, it will search for web pages containing that word.) When you’re looking at
Epsilon’s manual in Info mode, using one of the previous commands, this command will default to showing
the same topic in a browser.

TheW option, in Epsilon for Windows, displays Epsilon’s WinHelp help file. Like the Info-format
manual, it contains the complete text of the Epsilon manual.

TheQ option invokes the commandwhat-is, which asks for a key and tells you what command would
run if you typed that key.

TheR option invokes thedescribe-variable command, which asks for a variable name and displays the
help on that variable.

TheL option invokes theshow-last-keys command, which pops up a window that displays the last 60
keystrokes you typed.

36 CHAPTER 4. COMMANDS BY TOPIC

TheM option displays help on the major mode of the current buffer. For example, when you’re editing
a C file, this command displays help on C mode.

TheV command displays Epsilon’s version number and similar information.

The? option displays information on the help command itself, including its options, just as typing the
help key again would.

TheB andQ options tell you about bindings without showing you the associated documentation on the
command. In contrast to the first three options, these two display their information in the echo area, instead
of popping up a window.

Thewall-chart command creates a table showing the commands invoked by all the keys. It builds a
chart in a buffer named “wall”. The wall chart includes any changes you may have made to the normal key
bindings. You can print it and attach it to any convenient wall using theprint-buffer command.

Epsilon’s help system keeps track of any changes that you make to Epsilon. For example, if you
completely remap the keyboard, Epsilon’s help system will know about it and still give you correct key
binding information. And Epsilon’s help system will also keep track of any commands or keyboard macros
that you write and add to Epsilon.

Therelease-notes command reads and displays the release notes for this version of Epsilon.

Some of Epsilon’s help commands use the on-line documentation file, edoc. This file contains
descriptions for each of Epsilon’s commands and variables. See the description of the-fd flag on page 13.

Under Windows, help commands normally use the standard Windows help file edoc.hlp to provide help.
This file contains the complete Epsilon manual. You can set the variablewant-gui-help to zero if you
want Epsilon to use its built-in help system instead of Windows-style help whenever it can; you’ll still be
able to use theepsilon-manual command to get Windows-style help. The Win32 console version of Epsilon
uses a similar variablewant-gui-help-console.

Summary: F1, Alt-?, Ctrl-_ help
F1 A apropos
F1 K describe-key
F1 C describe-command
F1 R describe-variable
F1 L show-last-keys
F1 Q, F6 what-is
F1 B, F5 show-bindings
F1 Ctrl-C info-goto-epsilon-command
F1 Ctrl-K info-goto-epsilon-key
F1 Ctrl-V info-goto-epsilon-variable
F1 V about-epsilon
F1 F epsilon-info-look-up

wall-chart
release-notes
epsilon-manual
epsilon-manual-info

4.1.1 Info Mode

Epsilon’s Info mode lets you read documentation in Info format. You can press F1 i to start Info mode. One
example of documentation available in Info format is Epsilon’s manual.

4.1. GETTING HELP 37

An Info document is divided into nodes. Each node describes a specific topic. Nodes are normally
linked together into a tree structure.

Every node has a name, which appears on the very first line of the node. The first line might look like
this:

File: cp, Node: Files, Next: More Options, Prev: Flags, Up: Top

That line also indicates that the node named “More Options” comes next after this “Files” node. And it
says which node comes before it, and which node is its parent. (Some nodes don’t have a “Next” or a “Prev”
or an “Up” node.) In Info mode, the keys N, P, and U move to the current node’s Next node, its Prev node,
or its Up node (its parent node).

You can scroll through a node with the usual Epsilon commands, but Info mode also lets you use
hSpacei to page forward andhBackspacei to page back. When you’re at the end of a node, thehSpacei key
goes on to the next one, walking the tree structure so you can read through an entire Info file. The
hBackspacei key does the reverse; it goes to the previous node when you press it and you’re already at the
top of a node. (The keys] and[move ahead and back similarly, but don’t page; use them when you don’t
want to see any more of the current node.)

Some nodes have menus. They look like this:

* Menu:

* Buffers::
* Flags::
* Switches: Flags.

Press the M key to select an item from a menu, then type the name of the item (the part before the:
character). You can presshSpacei to complete the name, or type just part of the name. The first two menu
items let you type Buffers or Flags and go to a node with that same name; the last item lets you type
Switches but Epsilon will go to a node named Flags.

You can also press a digit like 1, 2, 3 to go to the corresponding node in the current node’s menu. Press
0 to go to the last node, whatever its number. So in the menu above, either 3 or 0 would go to the Flags node.
Typically when you select a node from a menu, that node’s Up will lead back to the node with the menu.

A node can also have cross-references. A cross-reference looks like this: *Note: Command History::.
Use the F key to follow a cross reference; it completes like M does.

Instead of typing M or F followed by a node name, you can usehTabi andhBacktabi to move around in
a node to the next or previous menu item or cross-reference, then presshEnteri to follow it. Or you can
double-click with the mouse to follow one.

Epsilon keeps a history of the Info nodes you’ve visited, so you can retrace your steps. Press L to go to
the last Info node you were at before this one. Press L repeatedly to revisit earlier nodes. When you’re done
looking at Info documentation, press Q to exit Info mode.

Info documentation is tree-structured. Normally each separate program has its own file of
documentation, and the nodes within form a tree. Each Info file normally has a node named “top” that’s the
top node in its tree. Then all the trees are linked together in a directory file named “dir”, which contains a
menu listing all the available files. The T key goes to the top node in the current file. The D key goes to the
top node in the directory file.

When a node name reference contains a word in parentheses, like (epsilon)Language Modes, it
indicates the node is in a file whose name is inside the parentheses. (Otherwise the node must be in the
current file.) If you omit the node name and just say (epsilon), the Top node is implied.

38 CHAPTER 4. COMMANDS BY TOPIC

When a complete path to an Info file isn’t specified (as is usually the case), Epsilon looks along an Info
path. First it looks in each directory of the colon-separated list in the variableinfo-path-unix (or, in
non-Unix versions of Epsilon, the semicolon-separated list ininfo-path-non-unix). These paths may
use%x to indicate the directory containing Epsilon’s executable. If the Info file still isn’t found, Epsilon tries
directories listed in any INFOPATH environment variable.

Press S to search in an Info file. You can use the same keys as in other Epsilon search commands to
perform a regular expression search, word search, or control case folding. But unlike the usual searching
commands (which search only within the current node), this command will jump from node to node if
necessary to find the next match.

Press I to use an Info file’s index. IhEnteri simply moves to the first index node in a file. Or you can
type some text, and Epsilon will display each of the nodes in the file that have an index entry containing that
text. UsehCommai to advance to the next such entry.

There are a few more Info commands. B goes to the beginning of the current node, like Alt-<. > goes to
the last node of the file, viewed as a hierarchy. G prompts for the name of a node, then goes there. (You can
use it to reach files that might not be linked into the Info hierarchy.) H displays this documentation. And?
displays a short list of Info commands.

You can navigate to Epsilon’s manual using Info commands, as explained above, but Epsilon also
provides some shortcut commands. Press F1 Ctrl-C to look up an Epsilon command’s full documentation by
command name. Press F1 Ctrl-K, then press any key and Epsilon will show the documentation for whatever
command it runs. Press F1 Ctrl-V to look up a variable. Press F1 fhEnteri to go to the top of Epsilon’s
documentation tree, or type a topic name before thehEnteri and Epsilon will look up that word in the index
to Epsilon’s online documentation.

If you write you own Info file, Epsilon provides some commands that help. Theinfo-validate command
checks an Info file for errors (such as using a nonexistent node name). Theinfo-tagify command builds or
updates an Info file’s tag table. (Info readers like Epsilon can find nodes more quickly when a file’s tag table
is up to date, so run this after you modify an Info file.)

Summary: Info mode only: N info-next
Info mode only: P info-previous
Info mode only: U info-up
Info mode only:hSpacei info-next-page
Info mode only:hBackspacei info-previous-page
Info mode only:[info-backward-node
Info mode only:] info-forward-node
Info mode only: M info-menu
Info mode only: 0, 1, 2, ... info-nth-menu-item
Info mode only: F info-follow-reference
Info mode only:hTabi info-next-reference
Info mode only: Shift-hTabi info-previous-reference
Info mode only:hEnteri info-follow-nearest-reference
Info mode only: L info-last
Info mode only: Q info-quit
Info mode only: T info-top
Info mode only: D info-directory-node
Info mode only: S info-search
Info mode only: I info-index
Info mode only:hCommai info-index-next

4.2. MOVING AROUND 39

Info mode only:> info-last-node
Info mode only: G info-goto

info
info-mode
info-validate
info-tagify

4.1.2 Web-based Epsilon Documentation

Epsilon’s online manual is available in three formats:

� You can read the manual in an Epsilon buffer using Info mode by pressing F1 f. See page 36.

� Users running Microsoft Windows can access the WinHelp version of the manual by pressing F1 w.
See page 35 for more information.

� You can view the HTML version of the manual using a web browser by pressing F1 h.

To display the HTML manual, Epsilon starts a documentation server program. This is named lhelp.exe
(or lhelpd in Unix). The documentation server runs in the background, hiding itself from view, and your web
browser communicates with it on a special “port”, as if it were a web server.

The documentation server must be running in order to serve documentation, so a bookmark to a page in
the documentation will only work if the documentation server is running. You can press F1 h in Epsilon to
ensure it’s running. To force an instance of the documentation server to exit, invoke it again with the-q flag.

If your browser is configured to use a proxy, you will typically need to tell it not to use proxy settings
for addresses starting with 127.0.0.1 so that it may connect to the local documentation server.

Epsilon for Unix uses a shell script namedgoto_url to run a browser. You can edit it if you prefer a
different browser. Epsilon will search for and invoke any customized copy ofgoto_url it finds on your
path; if there is none, it will use the copy installed in Epsilon’s bin directory. Epsilon for Windows uses the
system’s default browser.

4.2 Moving Around

4.2.1 Simple Movement Commands

The most basic commands involve moving point around. Recall from page 24 that point refers to the place
where editing happens.

The Ctrl-F command moves point forward one character, and Ctrl-B moves it back. Ctrl-A moves to the
beginning of the line, and Ctrl-E moves to its end.

Ctrl-N and Ctrl-P move point to the next and previous lines, respectively. They will try to stay in the
same column in the new line, but will never expand a line in order to maintain the column; instead they will
move to the end of the line (but see below). The key Alt-< moves point before the first character in the
buffer, and Alt-> moves point after the last character in the buffer.

You can use the arrow keys if you prefer: thehRighti key moves forward a character,hLefti moves back
a character,hDowni moves down a line, andhUpi moves up a line. Most commands bound to keys on the

40 CHAPTER 4. COMMANDS BY TOPIC

numeric keypad also have bindings on some control or alt key for those who prefer not to use the keypad.
Throughout the rest of this chapter, the explanatory text will only mention one of the bindings in such cases;
the other bindings will appear in the summary at the end of each section.

By default, pressinghRighti at the end of the line moves to the start of the next line. When you press
hDowni at the end of a 60-character line, and the next line only has 10 characters, Epsilon moves the cursor
back to column 10. You can change this by setting the buffer-specificvirtual-space variable (by
default zero). If you set it to one, thehUpi andhDowni keys will stay in the same column, even if no text
exists there. If you set it to two, in addition tohUpi andhDowni, thehRighti andhLefti keys will move into
places where no text exists. Settingvirtual-space to two only works correctly on lines longer than the
window when Epsilon has been set to scroll long lines (the default), rather than wrapping them (see page
84). Some commands behave unexpectedly on wrapped lines whenvirtual-space is two.

When you move past the bottom or top of the screen usinghUpi or hDowni, Epsilon scrolls the window
by one line, so that point remains at the edge of the window. If you set the variablescroll-at-end
(normally 1) to a positive number, Epsilon will scroll by that many lines whenhUpi or hDowni would leave
the window. Set the variable to 0 if you want Epsilon to instead center the current line in the window.

Summary: Ctrl-A, Alt-hLefti beginning-of-line
Ctrl-E, Alt-hRighti end-of-line
Ctrl-N, hDowni down-line
Ctrl-P, hUpi up-line
Ctrl-F, hRighti forward-character
Ctrl-B, hLefti backward-character
Alt-<, Ctrl-hHomei goto-beginning
Alt->, Ctrl-hEndi goto-end

4.2.2 Moving in Larger Units

Words

Epsilon has several commands that operate on words. A word usually consists of a sequence of letters,
numbers, and underscores. The Alt-F and Alt-B commands move forward and backward by words, and the
Alt-D and Alt-hBackspacei commands kill forward and backward by words, respectively. Like all killing
commands, they save away what they erase (see page 52 for a discussion on the killing commands).
Epsilon’s word commands work by moving in the appropriate direction until they encounter a word edge.

The word commands use a regular expression to define the current notion of a word. They use the
buffer-specific variableword-pattern. This allows different modes to have different notions of what
constitutes a word. Most built-in modes, however, makeword-pattern refer to the variable
default-word, which you can modify. (Epsilon for DOS and Epsilon for OS/2 use
default-oem-word instead ofdefault-word, since they use a font with a different set of accented
characters.) See page 59 for information on regular expressions, and page 126 for information on setting this
variable.

You can set theforward-word-to-start variable nonzero if you want Epsilon to stop at the start
of a word instead of at its end when moving forward.

Summary: Alt-F, Ctrl-hRighti forward-word
Alt-B, Ctrl-hLefti backward-word
Alt- hBackspacei backward-kill-word

4.2. MOVING AROUND 41

Alt-D kill-word

Sentences

For sentences, Epsilon has the Alt-E and Alt-A keys, which move forward and backward by sentences, and
the Alt-K key, which deletes forward to the end of the current sentence. A sentence ends with one of the
characters period, !, or ?, followed by any number of the characters", ’,),], followed by two spaces or a
newline. A sentence also ends at the end of a paragraph. The next section describes Epsilon’s notion of a
paragraph.

You can set thesentence-end-double-space variable to change Epsilon’s notion of a sentence.
The commands in this section will require only one space at the end of a sentence, and paragraph filling
commands will use one space as well. Note that Epsilon won’t be able to distinguish abbreviations from the
ends of sentences with this style.

Summary: Alt-E, Ctrl-hDowni forward-sentence
Alt-A, Ctrl- hUpi backward-sentence
Alt-K kill-sentence

Paragraphs

For paragraphs, the keys Alt-] and Alt-[move forward and back, and the key Alt-H puts point and mark
around the current paragraph. Blank lines (containing only spaces and tabs) always separate paragraphs, and
so does the form-feed characterˆL.

You can control what Epsilon considers a paragraph using two variables.

If the buffer-specific variableindents-separate-paragraphs has a nonzero value, then a
paragraph also begins with a nonblank line that starts with a tab or a space.

If the buffer-specific variabletex-paragraphs has a nonzero value, then Epsilon will not consider
as part of a paragraph any sequence of lines that each start with at sign or period, if that sequence appears
next to a blank line. And lines starting withnbegin ornend or % will also delimit paragraphs.

Summary: Alt-], Alt-hDowni forward-paragraph
Alt-[, Alt- hUpi backward-paragraph
Alt-H mark-paragraph

Parenthetic Expressions

Epsilon has commands to deal with matching parentheses, square brackets, and curly braces. We call a pair
of these characters with text between them alevel. You can use these level commands to manipulate
expressions in many programming languages, such as Lisp, C, and Epsilon’s own embedded programming
language, EEL.

A level can contain other levels, and Epsilon won’t get confused by the inner levels. For example, in the
text “one (two (three) four) five” the string “(two (three) four)” constitutes a level. Epsilon recognizes that
“(three)” also constitutes a level, and so avoids the mistake of perhaps calling “(two (three)” a level. In each

42 CHAPTER 4. COMMANDS BY TOPIC

level, the text inside the delimiters must contain matched pairs of that delimiter. In C mode, Epsilon knows
to ignore delimiters inside strings or comments, when appropriate.

Epsilon recognizes the following pairs of enclosures: ‘(’ and ‘)’, ‘[’ and ‘]’, ‘f’ and ‘g’. The command
Ctrl-Alt-F moves forward to the end of the next level, by looking forward until it sees the start of a level, and
moving to its end. The command Ctrl-Alt-B moves backward by looking back for the end of a level and
going to its beginning. The Ctrl-Alt-K command kills the next level by moving over text like Ctrl-Alt-F and
killing as it travels, and the Alt-hDeli command moves backward like Ctrl-Alt-B and kills as it travels.

The Alt-) key runs thefind-delimiter command. Use it to temporarily display a matching delimiter.
The command moves backward like Ctrl-Alt-B and pauses for a moment, showing the screen, then restores
the screen as before. The pause normally lasts one half of a second, or one second if the command must
temporarily reposition the window to show the matching delimiter. You can specify the number of
hundredths of a second to pause by setting the variablesnear-pause andfar-pause. Also, typing any
key will immediately restore the original window context, without further pause.

Theshow-matching-delimiter command inserts the key that invoked it by callingnormal-character
and then invokesfind-delimiter to show its match. Some people like to bind the ‘)’, ‘]’ and ‘g’ keys to
show-matching-delimiter.

In some modes, when the cursor is over a delimiter Epsilon will automatically seek out its matching
delimiter and highlight them both. See the descriptions of C, TeX, and HTML modes for more information.

Summary: Alt-) find-delimiter
Ctrl-Alt-F forward-level
Ctrl-Alt-B backward-level
Ctrl-Alt-K kill-level
Alt- hDeli backward-kill-level

show-matching-delimiter

4.2.3 Searching

Epsilon provides a set of flexible searching commands that incorporateincremental search. In the
incremental-search command, Epsilon searches as you type the search string. Ctrl-S begins an incremental
search forward, and Ctrl-R starts one in reverse. Any character that normally inserts itself into the buffer
becomes part of the search string. In an incremental search, Ctrl-S and Ctrl-R find the next occurrence of the
string in the forward and reverse directions, respectively. With an empty search string, Ctrl-S or Ctrl-R will
either reverse the direction of the search, or bring in the previously used search string. (To retrieve older
search strings, see page 30.)

You can usehBackspacei to remove characters from the search string, and enter control characters and
meta characters(characters with the eighth bit set) in the search string by quoting them with Ctrl-Q. (Type
Ctrl-Q Ctrl-J to search for ahNewlinei character.) Use the Ctrl-Gabort command to stop a long search in
progress.

Typing hEnteri or hEsci exits from an incremental search, makes Epsilon remember the search string,
and leaves point at the match in the buffer.

While typing characters into the search string forincremental-search, a Ctrl-G quits and moves point
back to the place the search started, without changing the default search string. During a failing search,
however, Ctrl-G simply removes the part of the string that did not match.

If you type an editing key not mentioned in this section, Epsilon exits the incremental search, then
executes the command bound to the key.

4.2. MOVING AROUND 43

You can make Epsilon copy search text from the current buffer by typing Alt-hDowni. Epsilon will
append the next word from the buffer to the current search string. This is especially convenient when you see
a long variable name, and you want to search for other references to it. (It’s similar to setting the mark and
moving forward one word with Alt-F, then copying the text to a kill buffer and yanking it into the current
search string.) Similarly, Alt-hPageDowni appends the next line from the current buffer to the search string.
These two keys are actually available at almost any Epsilon prompt, though they’re especially useful when
searching. Alt-Ctrl-N and Alt-Ctrl-V are synonyms for Alt-hDowni and Alt-hPageDowni, respectively.

You can change how Epsilon interprets the search string by pressing certain keys when you type in the
search string. Pressing the key a second time restores the original interpretation of the search string.

� Pressing Ctrl-C toggles the state ofcase folding. While case folding, Epsilon considers upper case and
lower case the same when searching, so a search string of “Word” would match “word” and “WORD”
as well.

Epsilon remembers the state of case folding for each buffer separately, using the buffer-specific
variablecase-fold. When you start to search, Epsilon sets its default for case folding based on that
variable’s value for the current buffer. Toggling case folding with Ctrl-C won’t affect the default. Use
theset-variable command described on page 126 to do this.

� Pressing Ctrl-W togglesword searching. During word searching, Epsilon only looks for matches
consisting of complete words. For instance, word searching for ‘a’ in this paragraph finds only one
match (the one in quotes), but eleven when not doing word searching. You can type multiple words
separated by spaces, and Epsilon will recognize them no matter what whitespace characters separate
them (for instance, if they’re on successive lines).

� Pressing Ctrl-T makes Epsilon interpret the search string as a regular expression search pattern, as
described on page 59. Another Ctrl-T turns off this interpretation. If the current search string denotes
an invalid regular expression, Epsilon displays “Bad R-E Search:<string>” instead of its usual
message “R-E Search:<string>” (where<string> refers to the search string).

� Pressing Ctrl-O toggles incremental searching. In an incremental search, most editing commands will
exit the search, as described above. But you may want to edit the search string itself. If you turn off
the “incremental” part of incremental search with the Ctrl-O key, Epsilon will let you use the normal
editing keys to modify the search string.

In non-incremental mode, Epsilon won’t automatically search after you type each character, but you
can tell it to find the next match by typing Ctrl-S or Ctrl-R (depending on the direction). This
performs the search but leaves you in search mode, so you can find the next occurrence of the search
string by typing Ctrl-S or Ctrl-R again. When you presshEnteri to exit from the search, Epsilon will
search for the string you’ve entered, unless you’ve just searched with Ctrl-S or Ctrl-R. (In general, the
hEnteri key causes a search if the cursor appears in the echo area. If, on the other hand, the cursor
appears in a window showing you a successful search, then typing thehEnteri key simply stops the
search.) A numeric argument ofn to a non-incremental search will force Epsilon to find thenth
occurrence of the indicated string.

Epsilon interprets the first character you type after starting a search with Ctrl-S or Ctrl-R a little
differently. Normally, Ctrl-S starts an incremental search, with regular expression searching and word
searching both disabled. If you type Ctrl-T or Ctrl-W to turn one of these modes on, Epsilon will also turn
off incremental searching. Epsilon also pulls in a default search string differently if you do it immediately. It
will always provide the search string from the last search, interpreting the string as it did for that search. If
you retrieve a default search string at any other time, Epsilon will provide the last one consistent with the
state of regular expression mode (in other words, the last regular expression pattern, if in regular expression
mode, or the last non-regular-expression string otherwise).

44 CHAPTER 4. COMMANDS BY TOPIC

The Ctrl-Alt-S and Ctrl-Alt-R commands function like Ctrl-S and Ctrl-R, but they start in
regular-expression, non-incremental mode. You can also start a plain string search in non-incremental mode
using thestring-search andreverse-string-search commands. Some people like to bind these commands to
Ctrl-S and Ctrl-R, respectively.

Keep in mind that you can get from any type of search to any other type of search by typing the
appropriate subcommands to a search. For example, if you meant to do aregex-search but instead typed
Ctrl-S to do an incremental search, you could enter regex mode by typing Ctrl-T. Figure 4.1 summarizes the
search subcommands.

Ctrl-S or Ctrl-R Switch to a new direction, or find the next occurrence in the same direction,
or pull in the previous search string.

normal key Add that character to the search string.

hBackspacei Remove the last character from the search string.

Ctrl-G Stop a running search, or (in incremental mode) delete characters until the search suc-
ceeds, or abort the search, returning to the starting point.

Ctrl-O Toggle incremental searching.

Ctrl-T Toggle regular expression searching.

Ctrl-W Toggle word searching. Matches must consist of complete words.

Ctrl-C Toggle case folding.

hEnteri Exit the search.

Ctrl-Q Quote the following key, entering it into the search string even if it would normally run
a command.

help key Show the list of search subcommands.

other keys If in incremental mode, exit the search, then execute the key normally. If not incre-
mental mode, edit the search string.

Figure 4.1: The search subcommands work in all search and replace commands.

When you’re at the last match of some text in a buffer, and tell incremental search to search again by
pressing Ctrl-S, Epsilon displays “Failing” to indicate no more matches. If you press Ctrl-S once more,
Epsilon will wrap to the beginning of the buffer and continue searching from there. It will display
“Wrapped” to indicate it’s done this. If you keep on search, eventually you’ll pass your starting point again;
then Epsilon will display “Overwrapped” to indicate that it’s showing you a match you’ve already seen. A
reverse search works similarly; Epsilon will wrap to the end of the buffer when you keep searching after a
search has failed. (You can set thesearch-wraps variable to zero to disable wrapping.)

Theforward-search-again andreverse-search-again commands search forward and backward
(respectively) for the last-searched-for search string, without prompting. Thesearch-again command
searches in the same direction as before for the same search string.

You can change the function of most keys in Epsilon by rebinding them (see page 125). But Epsilon
doesn’t implement the searching command keys listed above with the normal binding mechanism. The EEL
code for searching refers directly to the keys Ctrl-C, Ctrl-W, Ctrl-T, Ctrl-O, Ctrl-Q,hEnteri, andhEsci, so to
change the function of these keys within searching you must modify the EEL code in the file search.e.
Epsilon looks at your current bindings to determine which keys to use as the help key and backspace key. It
looks at theabort_key variable to determine what to use as your abort key, instead of Ctrl-G. (See page

4.2. MOVING AROUND 45

83.) Epsilon always recognizes Ctrl-S and Ctrl-R as direction keys, but you can set two variables
fwd-search-key andrev-search-key to key codes. These will then act as “synonyms” to Ctrl-S
and Ctrl-R, respectively.

When you select a searching command from the menu or tool bar (rather than via a command’s
keyboard binding), Epsilon for Windows runs thedialog-search or dialog-reverse-search command, to
display a search dialog. Most of the keys described above also work in dialog-based searching.

Summary: Ctrl-S incremental-search
Ctrl-R reverse-incremental-search
Ctrl-Alt-S regex-search
Ctrl-Alt-R reverse-regex-search

string-search
reverse-string-search
search-again
forward-search-again
reverse-search-again
dialog-search
dialog-reverse-search

Searching Multiple Files

Epsilon provides a convenientgrep command that lets you search a set of files. The command prompts you
for a search string (all of the search options described above apply) and for a file pattern. By default, the
grep interprets the search string as a regular expression (see page 59). To toggle regular expression mode,
press Ctrl-T at any time while typing the search string. The command then scans the indicated files, puts a
list of matching lines in the grep buffer, then displays the grep buffer in the current window. Each line
indicates the file it came from.

With a numeric argument, this command searches through buffers instead of files. Instead of prompting
for a file name pattern, Epsilon prompts for a buffer name pattern, and only operates on those buffers whose
names match that pattern. Buffer name patterns use a simplified file name pattern syntax:* matches zero or
more characters,? matches any single character, and character classes like[a-z] may be used too.

When grep prompts for a file pattern, it shows you the last file pattern you searched inside square
brackets. You can presshEnteri to conveniently search through the same files again. (See the
grep-default-directory variable to control how Epsilon interprets this default pattern when the current
directory has changed.)

By default file patterns you type are interpreted relative to the current buffer’s file; see
grep-prompt-with-buffer-directory to change this. To repeat a file pattern from before, press
Alt- hUpi or Ctrl-Alt-P. (See page 30 for details.) You can use extended file patterns to search in multiple
directories; see page 107. Epsilon skips over any file with an extension listed in
grep-ignore-file-extensions; by default some binary file types are excluded.

In a grep buffer, you can move around by using the normal movement commands. Most alphabetic keys
run special grep commands. The ‘N’ and ‘P’ keys move to the next and previous entries.

You can easily go from the grep buffer to the corresponding locations in the original files. To do this,
simply position point on the copy of the line, then presshSpacei, hEnteri, or ‘E’. The file appears in the
current window, with point positioned at the beginning of the matching line. Typing ‘1’ brings up the file in
a window that occupies the entire screen. Typing ‘2’ splits the window horizontally, then brings up the file in

46 CHAPTER 4. COMMANDS BY TOPIC

the lower window. Typing ‘5’ splits the window vertically, then brings up the file. Typing ‘Z’ runs the
zoom-window command, then brings up the file.

When Epsilon wants to search a particular file as a result of agrep command, it first scans the buffers to
see if one of them contains the given file. If so, it uses that buffer. If the file doesn’t appear in any buffer,
Epsilon reads the file into a temporary buffer, does the search, then discards the buffer.

If you want Epsilon to always keep the files around in such cases, set the variable
grep-keeps-files to a nonzero value. In that case,grep will simply use thefind-file command to get
any file it needs to search.

By default, each invocation ofgrep appends its results to the grep buffer. If you set the variable
grep-empties-buffer to a nonzero value,grep will clear the grep buffer at the start of each
invocation. Also see thegrep-show-absolute-path variable to control the format of file names in
the grep buffer.

You can move from match to match without returning to the grep buffer. The Ctrl-X Ctrl-N command
moves directly to the next match. It does the same thing as switching to the grep buffer, moving down one
line, then pressinghSpacei to select that match. Similarly, Ctrl-X Ctrl-P backs up to the previous match.

Actually, Ctrl-X Ctrl-N runs thenext-position command. After agrep command, this command simply
callsnext-match, which moves to the next match as described above. If you run a compiler in a subprocess,
however,next-position callsnext-error instead, to move to the next compiler error message. If you use the
grep command again, or presshSpacei in the grep buffer to select a match, or runnext-match explicitly,
thennext-position will again callnext-match to move to the next match.

Similarly, Ctrl-X Ctrl-P actually runsprevious-position, which calls eitherprevious-error or
previous-match, depending upon whether you last ran a compiler or searched across files.

Summary: Alt-F7 grep
Ctrl-X Ctrl-N next-position
Ctrl-X Ctrl-P previous-position

next-match
previous-match

4.2.4 Bookmarks

Epsilon’s bookmark commands let you store the current editing position, so that you can easily return to it
later. To drop a bookmark at point, use the Alt-/ key. For each bookmark, Epsilon remembers the buffer and
the place within that buffer. Later, when you want to jump to that place, press Alt-J. Epsilon remembers the
last 10 bookmarks that you set with Alt-/. To cycle through the last 10 bookmarks, you can press Alt-J and
keep pressing it until you arrive at the desired bookmark.

You can set a named bookmark with the Ctrl-X / key. The command prompts you for a letter, then
associates the current buffer and position with that letter. To jump to a named bookmark, use the Ctrl-X J
key. It prompts you for the letter, then jumps to that bookmark.

Instead of a letter, you can specify a digit (0 to 9). In that case, the number refers to one of the
temporary bookmarks that you set with the Alt-/ key. Zero refers to the last temporary bookmark, 1 to the
one before that, and so on.

Whenever one of these commands asks you to specify a character for a bookmark, you can get a list by
pressing ‘?’. Epsilon then pops up a list of the bookmarks you’ve defined, along with a copy of the line that
contains the bookmark. You can simply move to one of the lines and presshEnteri to select that bookmark.
In a list of bookmarks, press D to delete the highlighted bookmark.

4.2. MOVING AROUND 47

The commandlist-bookmarks works like the Ctrl-X J key, but automatically pops up the list of
bookmarks to choose from. If you like, you can bind it to Ctrl-X J to get that behavior.

Summary: Alt-/ set-bookmark
Alt-J jump-to-last-bookmark
Ctrl-X / set-named-bookmark
Ctrl-X J jump-to-named-bookmark

list-bookmarks

4.2.5 Tags

Epsilon provides a facility to remember which file defines a particular subroutine or procedure. This can
come in handy if your program consists of several source files. Epsilon can remember this kind of
information for you by using “tags”. A tag instructs Epsilon to look for a particular function at a certain
position in a certain file.

Thegoto-tag command on Ctrl-XhPeriodi prompts for the name of a function and jumps immediately
to the definition of the routine. You can use completion (see page 28) while typing the tag name, or press ‘?’
to select from a list of tags. (Epsilon also shows the defining file of each tag.)

If you don’t give a name,goto-tag goes to the next tag with the same name as the last tag you gave it. If
the same tag occurs several times (for example, if you tag several separate files that each define amain()
function), use this to get to the other tag references, or press ‘?’ after typing the tag name to select the
correct file from a list. If you givegoto-tag a numeric argument, it goes to the next tag without even asking
for a name. When there are several instances of a single tag, you can also use Ctrl-hNumPlusi and
Ctrl-hNumMinusi to move among them.

Thepluck-tag command on Ctrl-XhCommai first retrieves the routine name adjacent to or to the right
of point, then jumps to that routine’s definition.

If the file containing the definition appears in a window already, Epsilon will change to that window.
Otherwise, Epsilon uses thefind-file command to read the file into a buffer. Then Epsilon jumps to the
definition, positioning its first line near the top of the window. You can set the window line to receive the
first line of the definition via theshow-tag-line variable. It says how many lines down the definition
should go.

Before Epsilon moves to the tag, it sets a temporary bookmark at your old position, just like the
set-bookmark command on Alt-/. Aftergoto-tag or pluck-tag, press Alt-J or Ctrl-hNumStari to move back
to your previous position.

Normally, you have to tell Epsilon beforehand which files to look in. Thetag-files command on Ctrl-X
Alt- hPeriodi prompts for a file name or file pattern such as *.c and makes a tag for each routine in the file. It
knows how to recognize routines in C, C++, Java, Perl, Visual Basic, Python and EEL programs as well as
assembly programs. (Using EEL, you can teach Epsilon to tag other languages too. See page 413.) If you
tag a previously tagged file, the new tags replace all the old tags for that file. You can use extended file
patterns to tag files in multiple directories; see page 107. When Epsilon can’t find a tag, it tries retagging the
current file before giving up; that means if your program is confined to one file, you don’t have to tag it first.
Settag-ask-before-retagging nonzero if you want Epsilon to ask first.

In Perl, Visual Basic, and Python, Epsilon tags subroutine definitions. In C, C++, Java and EEL,
tag-files normally tags subroutine and variable definitions, typedef definitions, structure and union member
and tag definitions, enum constants, and#define constants. But it doesn’t tag declarations (variables that
useextern, function declarations without a body). With a numeric prefix argument, Epsilon includes these

48 CHAPTER 4. COMMANDS BY TOPIC

too. (Typically you’d do this for header files when you don’t have source code for the function
definitions—system files and library files, for instance.)

You can also set uptag-files to include declarations by default, by setting thetag-declarations
variable. If zero (the default),tag-files only tags definitions. If one, Epsilon tags function declarations as
well. If two, Epsilon tags variable declarations (which use theextern keyword). If three, Epsilon tags
both types of declarations. Using a prefix argument withtag-files temporarily setstag-declarations
to three, so it tags everything it can.

You can settag-case-sensitive nonzero if you want tagging to consider MAIN, Main and main
to be distinct tags. By default, typing main will find any of these.

Epsilon can maintain separate groups of tags, each in a separate file. Theselect-tag-file command on
Ctrl-X Alt- hCommai prompts for the name of a tag file, and uses that file for tag definitions.

When Epsilon needs to find a tag file, it searches for a file in the current directory, then in its parent
directory, then in that directory’s parent, and so forth, until it reaches the root directory or finds a file
“default.tag”. If Epsilon finds no file with that name, it creates a new tag file in the current directory. To
force Epsilon to create a new tag file in the current directory, even if a tag file exists in a parent directory, use
theselect-tag-file command.

You can set the variableinitial-tag-file to a relative pathname like “myfile.tag”, if you want
Epsilon to search for that file, or you can set it to an absolute pathname if you want Epsilon to use the same
tag file no matter which directory you use.

The tag system can also use .BSC files from Microsoft Visual C++ 4.1 and later. Epsilon requires a
Microsoft Browser Toolkit DLL to do this. We have not received permission to redistribute this DLL from
Microsoft, but you can download it from their web site by searching for Knowledge Base article Q153393 or
the older Q94375.

If you use Visual 4.1 or 4.2, download the archive BSCKIT41.EXE and extract the file bsc41.dll. If you
use Visual C 5.0, download the archive BSCKIT50.EXE and extract the file msbsc50.dll. If you use Visual
C 6.0, download the archive BSCKIT60.EXE and extract the file msbsc60.dll. With any of these DLL files,
rename it to bsc.dll and place it in the directory containing Epsilon’s executable (for example c:nProgram
FilesnEpsilonnBin). Then use theselect-tag-file command on Ctrl-X Alt-hCommai to select your .BSC file.

When Epsilon uses a .BSC file, the commandstag-files, retag-files, clear-tags, sort-tags, and the
variablestag-case-sensitive,tag-relative, want-sorted-tags, andtag-by-text do
not apply. See Microsoft compiler documentation for information on generating .BSC and .SBR files.

Theretag-files command makes Epsilon rescan all the files represented in the current tag file and
generate a new set of tags for each, replacing any prior tags. Theclear-tags command makes Epsilon forget
about all the tags in the current tag file. Theuntag-files command displays a list of all files mentioned in the
current tag file; you can edit the list by deleting any file names that shouldn’t be included, and when you
press Ctrl-X Ctrl-Z, Epsilon will forget all tags that refer to the file names you deleted.

When Epsilon records a tag, it stores the character position and the text of the line at the tag position. If
the tag doesn’t appear at the remembered character offset, Epsilon searches for the defining line. And if that
doesn’t work (perhaps because its defining line has changed) Epsilon retags the file and tries again. This
means that once you tag a file, it should rarely prove necessary to retag it, even if you edit the file. To save
space in the tag file, you can have Epsilon record only the character offset, by setting the variable
tag-by-text to zero. Because this makes Epsilon’s tagging mechanism faster, it’s a good idea to turn off
tag-by-text before tagging any very large set of files that rarely changes.

By default, Epsilon sorts the tag list whenever it needs to display a list of tag names for you to choose
from. Although Epsilon tries to minimize the time taken to sort this list, you may find it objectionable if you
have many tags. Instead, you can set thewant-sorted-tags variable to 0, and sort the tags manually,
whenever you want, using thesort-tags command.

4.2. MOVING AROUND 49

Epsilon normally stores file names in its tag file in relative format, when possible. This means if you
rename or copy a directory that contains some source files and a tag file for them, the tag file will still work
fine. If you set the variabletag-relative to 0, Epsilon will record each file name with an absolute
pathname instead.

Summary: Ctrl-XhPeriodi goto-tag
Ctrl-X hCommai pluck-tag
Ctrl-X Alt- hPeriodi tag-files
Ctrl-X Alt- hCommai select-tag-file
Ctrl-hNumPlusi next-tag
Ctrl-hNumMinusi previous-tag

retag-files
clear-tags
untag-files
sort-tags

4.2.6 Comparing

Thecompare-windows command on Ctrl-F2 finds differences between the contents of the current buffer
and that displayed in the next window on the screen. If called while in the last window, it compares that
window with the first window. The comparison begins at point in each window. Epsilon finds the first
difference between the buffers and moves the point to just before the differing characters, or to the ends of
the buffers if it finds no difference. It then displays a message in the echo area reporting whether or not it
found a difference.

If you invokecompare-windows again immediately after it has found a difference, the command will
try to resynchronize the windows by moving forward in each window until it finds a match of at least
resynch-match-chars characters. It doesn’t necessarily move each window by the same amount, but
instead finds a match that minimizes the movement in the window that it moves the most. It then reports the
number of characters in each window it skipped past.

Normallycompare-windows treats one run of space and tab characters the same as any other run, so it
skips over differences in horizontal whitespace. You can set thecompare-windows-ignores-space
variable to change this.

Thediff command works likecompare-windows, but it will compare and resynchronize over and over
from the beginning to the end of each buffer, producing a report that lists all differences between the two
buffers. It operates line-by-line rather than character-by-character.

When resynchronizing,diff believes it has found another match whendiff-match-lines lines in a
row match, and gives up if it cannot find a match withindiff-mismatch-lines lines. By default,diff
resynchronizes when it encounters three lines in a row that match. Under Windows and Unix, normally
Epsilon uses a smarter algorithm that’s better at finding a minimum set of differences. With this algorithm,
diff-mismatch-lines isn’t used. But because this algorithm becomes very slow when buffers are
large, it’s only used when at least one of the buffers contains fewer thandiff-precise-limit bytes
(by default 500 KB).

Thediff command reports each difference with a summary line and then the text of the differing lines.
The summary line consists of two line number ranges with a letter between them indicating the type of
change: ‘a’ indicates lines to add to the first buffer to match the second, ‘d’ indicates lines to delete, and ‘c’
indicates lines to change. For example, a summary line in the diff listing of “20,30c23,29” means to remove

50 CHAPTER 4. COMMANDS BY TOPIC

lines 20 through 30 from the first buffer and replace them with a copy of lines 23 through 29 from the
second buffer. “11a12” means that adding line 12 from the second buffer right after line 11 in the first buffer
would make them identical. “11,13d10” means that deleting lines 11, 12 and 13 from the first buffer (which
would appear just after line 10 in the second) would make them identical.

After each summary line,diff puts the lines to which the summary refers. Thediff command prefixes
lines to delete from the first buffer by “<” and lines to add by “>”.

Thevisual-diff command is likediff but uses colors to show differences. It constructs a new buffer that
contains all the lines of the two buffers. Lines from the first buffer that don’t appear in the second are
displayed with a red background. Lines in the second buffer that don’t appear in the first have a yellow
background. Lines that are the same in both buffers are colored normally.

This command also does character-by-character highlighting for each group of changed lines. Instead
of simply indicating that one group of lines was replaced by another, it shows which portions of the lines
changed and which did not, by omitting the red or yellow background from those characters. You can set the
variablesdiff-match-characters anddiff-match-characters-limit to alter or turn off
this behavior. (This character-by-character highlighting isn’t available in the DOS, OS/2 or 16-bit Windows
3.1 versions of Epsilon.)

In a visual-diff buffer, the keys Alt-hDowni and Alt-] move to the start of the next changed or common
section. The keys Alt-hUpi and Alt-[move to the previous change or common section.

Themerge-diff command is another variation ondiff that’s useful with buffers in C mode. It marks
differences by surrounding them with #ifdef preprocessor lines, first prompting for the #ifdef variable name
to use. The resulting buffer receives the mode and settings of the first of the original buffers. The marking is
mechanical, and doesn’t parse the text being marked off, so it may produce invalid code. For example, if an
#if statement differs between the two buffers, the result will contain improperly nested #if statements like
this:

#ifndef DIFFVAR
#if DOSVERSION

#else // DIFFVAR
#if MSDOSVERSION

#endif // DIFFVAR

Therefore, you should examine the output ofmerge-diff before trying to compile it.

Like compare-windows anddiff, thecompare-sorted-windows command compares the contents of
the current buffer with that displayed in the next window on the screen. Use it when you have (for example)
two lists of variable names, and you want to find out which variables appear on only one or the other list,
and which appear on both. This command assumes that you sorted both the buffers. It copies all lines
appearing in both buffers to a buffer named “inboth”. It copies all lines that appear only in the first buffer to
a buffer named “only1”, and lines that appear only in the second to a buffer named “only2”.

Theuniq command goes through the current buffer and looks for adjacent identical lines, deleting the
duplicate copies of each repeated line and leaving just one. It doesn’t modify any lines that only occur once.
This command behaves the same as the Unix command of the same name.

Thekeep-unique-lines command deletes all copies of any duplicated lines. This command acts like the
Unix command “uniq -u”.

Thekeep-duplicate-lines command deletes all lines that only occur once, and leaves one copy of each
duplicated line. This command acts like the Unix command “uniq -d”.

The following table shows how sample text would be modified by each of the above commands.

4.3. CHANGING TEXT 51

Sample text Uniq Keep-duplicate-lines Keep-unique-lines
dog dog dog cat
dog cat horse rabbit
cat horse dog
horse rabbit
horse dog
horse
rabbit
dog

Summary: Ctrl-F2, Ctrl-X C compare-windows
compare-sorted-windows
diff
visual-diff
visual-diff-mode
merge-diff
uniq
keep-unique-lines
keep-duplicate-lines

Visual Diff only: Alt-], Alt- hDowni next-difference
Visual Diff only: Alt-[, Alt- hUpi previous-difference

4.3 Changing Text

4.3.1 Inserting and Deleting

When you type most alphabetic or numeric keys, they appear in the buffer before point. Typing one of these
keys runs the commandnormal-character, which simply inserts the character that invoked it into the buffer.

When you type a character bound to thenormal-character command, Epsilon inserts the character
before point, so that the cursor moves forward as you type characters. Epsilon can also overwrite as you
type. Theoverwrite-mode command, bound to thehInsi key, toggles overwriting for the current buffer. If
you give it a nonzero numeric argument (for example, by typing Ctrl-U before invoking the command, see
page 26), it doesn’t toggle overwriting, but turns it on. Similarly, a numeric argument of zero always turns
off overwriting. Overwriting will occur for all characters except newline, and overwriting never occurs at the
end of a line. In these cases the usual insertion will happen. The buffer-specific variableover-mode
controls overwriting.

The Ctrl-Q key inserts special characters, such as control characters, into the current buffer. It waits for
you to type a character, then inserts it. This command ignores non-ASCII keys. If you “quote” an Alt key in
this way, Epsilon inserts the corresponding character with its high bit on. You can use this command for
inserting characters like Ctrl-Z that would normally execute a command when typed.

Sometimes you may want to insert a character whose ASCII value you know, but you may not know
which keystroke that character corresponds to. Epsilon provides aninsert-ascii command on Alt-# for this
purpose. It prompts you for a numeric value, then inserts the ASCII character with that value into the buffer.
By default, the command interprets the value in base 10. You can specify a hexadecimal value by prefixing
the characters “0x” to the number, or an octal value by prefixing the character “0o” to the number, or a

52 CHAPTER 4. COMMANDS BY TOPIC

binary value by prefixing “0b”. For example, the numbers “87”, “0x57”, “0o127”, and “0b1010111” all
refer to the same number (four score and seven), and they all would insert a “W” character if given to the
insert-ascii command.

In most environments you can type graphics characters by holding down the Alt key and typing the
character’s value on the numeric keypad, unless you’ve disabled these keys with theprogram-keys
command, described on page 141. Under DOS and OS/2, Epsilon will automatically quote the character so
that it’s inserted in the buffer and not interpreted as a command. (You may need to type a Ctrl-Q first to
quote the character in other environments.)

The Ctrl-O command inserts a newline after point (or, to put it another way, inserts a newline before
point as usual, then backs up over it). Use this command to break a line when you want to insert new text in
the middle, or to “open” up some space after point.

ThehBackspacei key deletes the character before point, and thehDeli key deletes the character after
point. In other words,hBackspacei deletes backwards, andhDeli deletes forwards. These commands usually
do not save deleted characters in the kill ring (see the next section).

If you prefix these commands with a numeric argument ofn, they will deleten characters instead of
one. In that case, you can retrieve the deleted text from the kill ring with the Ctrl-Y key (see the next
section).

If hBackspacei or hDeli follows one of the kill commands, the deleted character becomes part of the
text removed by the kill command. See the following section for information on the kill commands.

The buffer-specific variabledelete-hacking-tabsmakeshBackspacei operate differently when
deleting tabs. If nonzero,hBackspacei first turns the tab into the number of spaces necessary to keep the
cursor in the same column, then deletes one of the spaces.

The key Alt-n deletes spaces and tabs surrounding point.

The Ctrl-X Ctrl-O command deletes empty lines adjacent to point, or lines that contain only spaces and
tabs, turning two or more such blank lines into a single blank line. Ctrl-X Ctrl-O deletes a lone blank line. If
you prefix a numeric argument ofn, exactlyn blank lines appear regardless of the number of blank lines
present originally.

Summary: Ctrl-Q quoted-insert
Alt-# insert-ascii
Ctrl-O open-line
Ctrl-H, hBackspacei backward-delete-character
Ctrl-D, hDeli delete-character
Alt-n delete-horizontal-space
Ctrl-X Ctrl-O delete-blank-lines
“normal keys” normal-character
hInsi overwrite-mode

4.3.2 The Region, the Mark, and Killing

Epsilon has many commands to erase characters from a buffer. Some of these commands save the erased
characters away in a special group of buffers calledkill buffers, and some do not.

In Epsilon’s terminology, tokill means to delete text and save it away in a kill buffer, and todelete
means simply to remove the text and not save it away. Any consecutive sequence of killing commands will
produce a single block of saved text. The Ctrl-Y command then yanks back the entire block of text, inserting

4.3. CHANGING TEXT 53

it before point. (Even when Epsilon deletes text and doesn’t save it, you can usually use theundo command
to recover the text. See page 82.)

The Ctrl-K command kills to the end of the line, but does not remove the line separator. At the end of a
line, though, it kills just the line separator. Thus, use two Ctrl-K’s to completely remove a nonempty line.
Give this command a numeric argument ofn to kill exactlyn lines, including the line separators. If you give
the Ctrl-K command a negative numeric argument,�n, the command kills from the beginning of the
previousnth line to point.

Thekill-current-line command is an alternative to Ctrl-K. It kills the entire line in one step, including
the line separator. Thekill-to-end-of-line command kills the rest of the line. If point is at the end of the line,
it does nothing. In Brief mode Epsilon uses these two commands in place of thekill-line command that’s
normally bound to Ctrl-K.

The commands to delete single characters will also save the characters if you give them a numeric
argument (to delete that number of characters) or if they follow a command which itself kills text.

Several Epsilon commands operate on aregionof text. To specify a region, move to either end of the
region and press the Ctrl-@ key or the Ctrl-hSpacei key. This sets themark to the current value of point.
Then move point to the other end of the region. The text between the mark and point specifies the region.

When you set the mark with Ctrl-@, Epsilon turns on highlighting for the region. As you move point
away from the mark, the region appears in a highlighted color. This allows you to see exactly what text a
region-sensitive command would operate upon. To turn the highlighting off, type Ctrl-X Ctrl-H. The Ctrl-X
Ctrl-H command toggles highlighting for the region. If you prefix a nonzero numeric argument, it turns
highlighting on; a numeric argument of zero turns highlighting off.

You can also check the ends of the region with the Ctrl-X Ctrl-X command. This switches point and
mark, to let you see the other end of the region. Most commands do not care whether point (or mark) refers
to the beginning or the end of the region.

Themark-whole-buffer command on Ctrl-X H provides a quick way to set point and mark around the
entire buffer.

Another way to select text is to hold down the Shift key and move around using the arrow keys, or the
keyshHomei, hEndi, hPageUpi, or hPageDowni. Epsilon will select the text you move through. The
shift-selects variable controls this feature.

The Ctrl-W command kills the region, saving it in a kill buffer. The Ctrl-Y command then yanks back
the text you’ve just killed, whether by the Ctrl-W command or any other command that kills text. It sets the
region around the yanked text, so you can kill it again with a Ctrl-W, perhaps after adjusting the region at
either end. The Alt-W command works like Ctrl-W, except that it does not remove any text from the buffer;
it simply copies the text between point and mark to a kill buffer.

Each time you issue a sequence of killing commands, Epsilon saves the entire block of deleted text as a
unit in one of its kill buffers. The Ctrl-Y command yanks back the last of these blocks. To access the other
blocks of killed text, use the Alt-Y command. It follows a Ctrl-Y or Alt-Y command, and replaces the
retrieved text with an earlier block of killed text. Each time you press Alt-Y, Epsilon substitutes a block
from another kill buffer, cycling from most recent back through the oldest, and then around to the most
recent again.

In normal use, you go to the place you want to insert the text and issue the Ctrl-Y command. If this
doesn’t provide the right text, give the Alt-Y command repeatedly until you see the text you want. If the text
you want does not appear in any of the killed blocks, you can get rid of the block with Ctrl-W, since both
Ctrl-Y and Alt-Y always place point and mark around the retrieved block.

By default, Epsilon provides ten kill buffers. You can set the variablekill-buffers if you want a
different number of kill buffers. Setting this variable to a new value makes Epsilon throw away the contents
of all the kill buffers the next time you execute a command that uses kill buffers.

54 CHAPTER 4. COMMANDS BY TOPIC

The Alt-Y command doesn’t do anything if the region changed since the last Ctrl-Y or Alt-Y, so you
can’t lose text with a misplaced Alt-Y. Neither of these commands changes the kill buffers themselves. The
Alt-Y command uses the undo facility, so if you’ve disabled undo, it won’t work.

Epsilon can automatically reindent yanked text. By default it does this in C mode buffers. See page 69
for details. If you invoke Ctrl-Y or Alt-Y with a negative numeric prefix argument, by typing Alt-hMinusi
Ctrl-Y for example, the command won’t reindent the yanked text, and will insert one copy. (Providing a
positive numeric prefix argument makes Epsilon yank that many copies of the text. See page 123.)

Each time you issue a sequence of killing commands, all the killed text goes into one kill buffer. When
a killing command follows a non-killing command, the text goes into a new kill buffer (assuming you
haven’t set up Epsilon to have only one kill buffer). You may sometimes want to append a new kill to the
current kill buffer, rather than using the next kill buffer. That would let you yank all the text back at once.
The Ctrl-Alt-W command makes an immediately following kill command append to a kill buffer instead of
moving to a new one.

The Ctrl-Y command can come in handy when entering text for another command. For example,
suppose the current buffer contains a line with “report.txt” on it, and you now want to read in the file with
that name. Simply kill the line with Ctrl-K and yank it back (so as not to change the buffer) then give the
Ctrl-X Ctrl-F command (see page 96) to read in a file. When prompted for the file name, press Ctrl-Y and
the text “report.txt” appears as if you typed it yourself.

Pressing a self-inserting key like ‘j’ while text is highlighted normally deletes the highlighted selection,
replacing it with the key. PressinghBackspacei simply deletes the text. You can disable this behavior by
setting the variabletyping-deletes-highlight to zero. If you turn off this feature, you may also
wish to set the variableinsert-default-response to zero. At many prompts Epsilon will insert a
highlighted default response before you start typing, if this variable is nonzero.

In addition to the above commands which put the text into temporary kill buffers, Epsilon provides
commands to make more permanent copies of text. The Ctrl-X X key copies the text in the region between
point and mark to a permanent buffer. The command prompts you for a letter (or number), then associates
the text with that letter. Thereafter, you can retrieve the text using the Ctrl-X Y key. That command asks you
for the letter, then inserts the corresponding text before point.

Summary: Ctrl-@, Alt-@ set-mark
Ctrl-X Ctrl-H highlight-region
Ctrl-X Ctrl-X exchange-point-and-mark
Ctrl-K kill-line
Ctrl-W kill-region
Alt-W copy-region
Ctrl-Y yank
Alt-Y yank-pop
Ctrl-Alt-W append-next-kill
Ctrl-X X copy-to-scratch
Ctrl-X Y insert-scratch
Ctrl-X H mark-whole-buffer

kill-current-line
kill-to-end-of-line

4.3. CHANGING TEXT 55

4.3.3 Clipboard Access

In Windows and DOS, Epsilon’s killing commands interact with the Windows clipboard. Similarly, Epsilon
for Unix interacts with the X clipboard when running as an X program. You can kill text in Epsilon and
paste it into another application, or copy text from an application and bring it into Epsilon with theyank
command.

All commands that put text on the kill ring will also try to copy the text to the clipboard, if the variable
clipboard-access is non-zero. You can copy the current region to the clipboard without putting it on
the kill ring using the commandcopy-to-clipboard.

Theyank command copies new text from the clipboard to the top of the kill ring. It does this only when
the clipboard’s contents have changed since the last time Epsilon accessed it, the clipboard contains text, and
clipboard-access is non-zero. Epsilon looks at the size of the clipboard to determine if the text on it is
new, so it may not always notice new text. You can force Epsilon to retrieve text from the clipboard by using
theinsert-clipboard command, which inserts the text on the clipboard at point in the current buffer.

If you prefer to have Epsilon ignore the clipboard except when you explicitly tell it otherwise, set
clipboard-access to zero. You can still use the commandscopy-to-clipboard andinsert-clipboard
to work with the clipboard. Unlike the transparent clipboard support provided byclipboard-access,
these commands will report any errors that occur while trying to access the clipboard. If transparent
clipboard support cannot access the clipboard for any reason, it won’t report an error, but will simply ignore
the clipboard. Epsilon also disables transparent clipboard support when running a keyboard macro, unless
clipboard-access is 2.

By default, when Epsilon for DOS puts characters on the clipboard, it lets Windows translate the
characters from the OEM character set to Windows ANSI, so that national characters display correctly.
Epsilon for Windows uses Windows ANSI like other Windows programs, so no translation is needed. See
the description of theclipboard-format variable to change this.

Epsilon for DOS has some limitations on its clipboard access. For one thing, its clipboard support only
functions when running under Windows 3.1 or later or Windows 95/98/ME, not under Windows NT or
derivatives. Epsilon for DOS cannot read a clipboard with more than 65,500 characters, and will ignore the
clipboard’s contents in this case. Similarly, if you kill a block of text larger than 65,500 characters, Epsilon
won’t put it on the clipboard.

Summary: copy-to-clipboard
insert-clipboard

4.3.4 Rectangle Commands

Epsilon regions actually come in four distinct types. Each type has a corresponding Epsilon command that
begins defining a region of that type.

Region Type Command
Normal mark-normal-region
Line mark-line-region
Inclusive mark-inclusive-region
Rectangular mark-rectangle

The commands are otherwise very similar. Each command starts defining a region of the specified type,
setting the mark equal to point and turning on highlighting. If Epsilon is already highlighting a region of a

56 CHAPTER 4. COMMANDS BY TOPIC

different type, these commands change the type. If Epsilon is already highlighting a region of the same type,
these commands start defining a new region by setting mark to point again. (You can set the variable
mark-unhighlights to make the commands turn off the highlighting and leave the mark alone in this
case.)

Themark-normal-region command defines the same kind of region as theset-mark command
described in section 4.3.2. (The commands differ in thatset-mark always begins defining a new region,
even if another type of region is highlighted on the screen. Themark-normal-region command converts the
old region, as described above.)

A line region always contains entire lines of text. It consists of the line containing point, the line
containing mark, and all lines between the two.

An inclusive region is very similar to a normal region, but an inclusive region contains one additional
character at the end of the region. A normal region contains all characters between point and mark, if you
think of point and mark as being positioned between characters. But if you think of point and mark as
character positions, then an inclusive region contains the character at point, the character at the mark, and all
characters between the two. An inclusive region always contains at least one character (unless point and
mark are both at the end of the buffer).

A rectangular region consists of all columns between those of point and mark, on all lines in the buffer
between those of point and mark. Themark-rectangle command on Ctrl-X # begins defining a rectangular
region. In a rectangular region, point can specify any of the four corners of this rectangle.

Some commands operate differently when the current region is rectangular. Killing a rectangular region
by pressing the Ctrl-W key runs the commandkill-rectangle. It saves the current rectangle in a kill buffer,
and replaces the rectangle with spaces, so as not to shift any text that appears to the right of the rectangle.
(But see thekill-rectangle-removes variable.)

The Alt-W key runs the commandcopy-rectangle. It also saves the current rectangle, but doesn’t
modify the buffer. (Actually, it may insert spaces at the ends of lines, or convert tabs to spaces, if that’s
necessary to reach the starting or ending column on one of the lines in the region. But the buffer won’t look
any different as a result of these changes. Most rectangle commands do this.)

The Ctrl-Alt-W key runs the commanddelete-rectangle. It removes the current rectangle, shifting any
text after it to the left. It doesn’t save the rectangle.

When you use the Ctrl-Y key to yank a kill buffer that contains a rectangle, Epsilon inserts the last
killed rectangle into the buffer at the current column, on the current and successive lines. It shifts existing
text to the right. If you’ve enabled overwrite mode, however, the rectangle replaces any existing text in those
columns. See theyank-rectangle-to-corner variable to set how Epsilon positions point and mark
around the yanked rectangle. You can use the Alt-Y key to cycle through previous kills as usual.

The width of a tab character depends upon the column it occurs in. For this reason, if you use the
rectangle commands to kill or copy text containing tabs, and you move the tabs to a different column, text
after the tabs may shift columns. (For example, a tab at column 0 occupies 8 columns, but a tab at column 6
occupies only 2 columns.) You can avoid this problem by using spaces instead of tabs with the rectangle
commands.

The buffer-specific variableindent-with-tabs controls whether Epsilon does indenting with tabs
or only with spaces. Set it to 0 to make Epsilon always use spaces. This variable affects only future indenting
you may do; it doesn’t change your file. To replace the tabs in your file, use theuntabify-buffer command.

Summary: Ctrl-X # mark-rectangle
Ctrl-W kill-rectangle
Alt-W copy-rectangle
Ctrl-Alt-W delete-rectangle

4.3. CHANGING TEXT 57

mark-line-region
mark-inclusive-region

4.3.5 Capitalization

Epsilon has commands that allow you to change the case of words. Each travels forward, looking for the end
of a word, and changes the case of the letters it travels past. Thus, if you give these commands while inside a
word, only the rest of the word potentially changes case.

The Alt-L key, lowercase-word, turns all the characters it passes to lower case. The Alt-U key,
uppercase-word, turns them all to upper case. The Alt-C key,capitalize-word, capitalizes a word by
making the first letter it travels past upper case, and all the rest lower case. All these commands position
point after the word operated upon.

For example, the Alt-L command would turn “wOrd” into “word”. The Alt-U command would turn it
into “WORD”, and the Alt-C command would turn it into “Word”.

These commands operate on the highlighted region, if there is one. If there is no highlighted region, the
commands operate on the next word and move past it, as described above. The commands work on both
conventional and rectangular regions.

Summary: Alt-C capitalize-word
Alt-L lowercase-word
Alt-U uppercase-word

4.3.6 Replacing

The key Alt-& runs the commandreplace-string, and allows you to change all occurrences of a string in the
rest of your document to another string. Epsilon prompts for the string to replace, and what to replace it with.
Terminate the strings withhEnteri. After you enter both strings, Epsilon replaces all occurrences of the first
string after point with instances of the second string (but respecting any narrowing restriction; see page 143).

When entering the string to search for, you can use any of the searching subcommands described on
page 43: Ctrl-C toggles case-folding, Ctrl-W toggles word searching, and Ctrl-T toggles interpreting the
string as a regular expression.

To enter special characters in either the search or replace strings, use Ctrl-Q before each. Type Ctrl-Q
Ctrl-C to include a Ctrl-C character. Type Ctrl-Q Ctrl-J to include ahNewlinei character in a search string or
replacement text.

The key Alt-R runs the commandquery-replace, which works likereplace-string. Instead of replacing
everything automatically, however, the command positions point after each occurrence of the old string and
waits for you to press a key. You may choose whether to replace this occurrence or not:

y or Y or hSpacei Replace it, go on to next occurrence.

n or N or hBackspacei Don’t replace it, go on to next occurrence.

! Replace all remaining occurrences. Thereplace-string command works like thequery-replace command
followed by pressing ‘!’ when it shows you the first match.

hEsci Exit and leave point at the match in the buffer.

58 CHAPTER 4. COMMANDS BY TOPIC

ˆ Back up to the previous match.

hPeriodi Replace this occurrence and then exit.

hCommai Replace and wait for another command option without going on to the next match.

Ctrl-R Enter a recursive edit. Point and mark go around the match. You may edit arbitrarily. When you exit
the recursive edit with Ctrl-X Ctrl-Z, Epsilon restores the old mark, and the query-replace continues
from the current location.

Ctrl-G Exit and restore point to its original location.

Ctrl-T Toggle regular expression searching. See the next section for an explanation of regular expressions.

Ctrl-W Toggle word searching.

Ctrl-C Toggle case folding.

? or help key Provide help, including a list of these options.

anything else Exit the replacement, staying at the current location, and execute this key as a command.

The commandregex-replace operates likequery-replace, but starts up in regular expression mode.
See page 66.

The commandreverse-replace operates likequery-replace, but moves backwards. You can also trigger
a reverse replacement by pressing Ctrl-R while entering the search text for any of the replacing commands.

If you invoke any of the replacing commands above with a numeric argument, Epsilon will use word
searching.

Replace commands preserve case. Epsilon examines the case of each match. If a match is entirely upper
case, or all words are capitalized, Epsilon makes the replacement text entirely upper case or capitalized, as
appropriate. Epsilon only does this when searching is case-insensitive, and neither the search string nor the
replace string contain upper case letters. For example, if you search for the regular expression
welcome|hello and replace it withgreetings, Epsilon replaces HELLO with GREETINGS and
Welcome with Greetings.

Thefile-query-replace command on Shift-F7 replaces text in multiple files. It prompts for the search
text, replacement text, and a file name which may contain wildcards. You can use extended file patterns to
replace in files from multiple directories; see page 107. Epsilon skips over any file with an extension listed
in grep-ignore-file-extensions; by default some binary file types are excluded. To search
without replacing, see thegrep command on page 45.

With a numeric argument, this command searches through buffers instead of files. Instead of prompting
for a file name pattern, Epsilon prompts for a buffer name pattern, and only operates on those buffers whose
names match that pattern. Buffer name patterns use a simplified file name pattern syntax:* matches zero or
more characters,? matches any single character, and character classes like[a-z] may be used too.

The commanddelete-matching-lines prompts for a regular expression pattern. It then deletes all lines
after point in the current buffer that contain the pattern. The similar commandkeep-matching-lines deletes
all linesexceptthose that contain the pattern. As with any searching command, you can press Ctrl-T, Ctrl-W,
or Ctrl-C while typing the pattern to toggle regular expression mode, word mode, or case folding
(respectively).

When you select a replacing command from the menu or tool bar (rather than via a command’s
keyboard binding), Epsilon for Windows runs thedialog-replace or dialog-regex-replace command, to
display a replace dialog. Controls on the dialog replace many of the keys described above.

4.3. CHANGING TEXT 59

Summary: Alt-& replace-string
Alt-R, Alt-% query-replace
Shift-F7 file-query-replace
Alt-* regex-replace

reverse-replace
delete-matching-lines
keep-matching-lines

4.3.7 Regular Expressions

Most of Epsilon’s searching commands, described on page 42, take a simple string to search for. Epsilon
provides a more powerful regular expression search facility, and a regular expression replace facility.

Instead of a simple search string, you provide a pattern, which describes a set of strings. Epsilon
searches the buffer for an occurrence of one of the strings contained in the set. You can think of the pattern
as generating a (possibly infinite) set of strings, and the regex search commands as looking in the buffer for
the first occurrence of one of those strings.

The following characters have special meaning in a regex search: vertical bar, parentheses, plus, star,
question mark, square brackets, period, dollar, percent sign, left angle bracket (‘<’), and caret (‘̂ ’).

abc|def Finds eitherabc or def.
(abc) Findsabc.
abc+ Findsabc orabcc or abccc or
abc* Findsab or abc or abcc or abccc or
abc? Findsab or abc.
[abcx-z] Finds any single character ofa, b, c, x, y, orz.
[ˆabcx-z] Finds any single character excepta, b, c, x, y, orz.
. Finds any single character excepthNewlinei.
abc$ Findsabc that occurs at the end of a line.
ˆabc Findsabc that occurs at the beginning of a line.
%ˆabc Finds a literal̂ abc.
<Tab> Finds ahTabi character.
<#123> Finds the character with ASCII code 123.

Figure 4.2: Summary of regular expression characters.

PLAIN PATTERNS.

In a regular expression, a string that does not contain any of the above characters denotes the set that
contains precisely that one string. For example, the regular expressionabc denotes the set that contains, as
its only member, the string ‘abc’. If you search for this regular expression, Epsilon will search for the string
‘abc’, just as in a normal search.

ALTERNATION.

To include more than one string in the set, you can use the vertical bar character. For example, the
regular expressionabc|xyz denotes the set that contains the strings ‘abc’ and ‘xyz’. If you search for that
pattern, Epsilon will find the first occurrence of either ‘abc’ or ‘xyz’. The alternation operator (|) always
applies as widely as possible, limited only by grouping parentheses.

60 CHAPTER 4. COMMANDS BY TOPIC

GROUPING.

You can enclose any regular expression in parentheses, and the resulting expression refers to the same
set. So searching for(abc|xyz) has the same effect as searching forabc|xyz, which works as in the
previous paragraph. You would use parentheses for grouping purposes in conjunction with some of the
operators described below.

CONCATENATION.

You can concatenate two regular expressions to form a new regular expression. Suppose the regular
expressions p and q denote sets P and Q, respectively. Then the regular expression pq denotes the set of
strings that you can make by concatenating, to members of P, strings from the set Q. For example, suppose
you concatenate the regular expressions(abc|xyz) and(def|ghi) to yield
(abc|xyz)(def|ghi). From the previous paragraph, we know that(abc|xyz) denotes the set that
contains ‘abc’ and ‘xyz’; the expression(def|ghi) denotes the set that contains ‘def’ and ‘ghi’.
Applying the rule, we see that(abc|xyz)(def|ghi) denotes the set that contains the following four
strings: ‘abcdef’, ‘abcghi’, ‘xyzdef’, ‘xyzghi’.

CLOSURE.

Clearly, any regular expression must have finite length; otherwise you couldn’t type it in. But because
of the closure operators, the set to which the regular expression refers may contain an infinite number of
strings. If you append plus to a parenthesized regular expression, the resulting expression denotes the set of
one or more repetitions of that string. For example, the regular expression(ab)+ refers to the set that
contains ‘ab’, ‘abab’, ‘ababab’, ‘abababab’, and so on. Star works similarly, except it denotes the set of zero
or more repetitions of the indicated string.

OPTIONALITY.

You can specify the question operator in the same place you might put a star or a plus. If you append a
question mark to a parenthesized regular expression, the resulting expression denotes the set that contains
that string, and the empty string. You would typically use the question operator to specify an optional
subpart of the search string.

You can also use the plus, star, and question-mark operators with subexpressions, and with
non-parenthesized things. These operators always apply to the smallest possible substring to their left. For
example, the regular expressionabc+ refers to the set that contains ‘abc’, ‘abcc’, ‘abccc’, ‘abcccc’, and so
on. The expressiona(bc)*d refers to the set that contains ‘ad’, ‘abcd’, ‘abcbcd’, ‘abcbcbcd’, and so on.
The expressiona(b?c)*d denotes the set that contains all strings that start with ‘a’ and end with ‘d’, with
the inside consisting of any number of the letter ‘c’, each optionally preceded by ‘b’. The set includes such
strings as ‘ad’, ‘acd’, ‘abcd’, ‘abccccbcd’.

ENTERING SPECIAL CHARACTERS.

In a regular expression, the percent (‘%’) character quotes the next character, removing any special
meaning that character may have. For example, the expressionx%+ refers to the string ‘x+’, whereas the
patternx+ refers to the set that contains ‘x’, ‘xx’, ‘xxx’, and so on.

You can also quote characters by enclosing them in angle brackets. The expressionx<+> refers to the
string ‘x+’, the same asx%+. In place of the character itself, you can provide the name of the character
inside the angle brackets. Figure 4.3 lists all the character names Epsilon recognizes.

To search for the NUL character (the character with ASCII code 0), you must use the expression
<Nul>, because an actual NUL character may not appear in a regular expression.

Instead of the character’s name, you can provide its numeric ASCII value using the notation
<#number>. The sequence<#number> denotes the character with ASCII codenumber. For example, the
pattern<#0> provides another way to specify the NUL character, and the patternabc<#10>+ specifies the

4.3. CHANGING TEXT 61

<Comma> , <Nul> ˆ@ <Period> .
<Space> <Star> * <Plus> +

<Enter> ˆM <Percent> % <Vbar> |
<Return> ˆM <Lparen> (<Question> ?

<Newline> ˆJ <Rparen>) <Query> ?

<Linefeed> ˆJ <Langle> < <Caret> ˆ
<Tab> ˆI <Rangle> > <Dollar> $

<Bell> ˆG <LSquare> [<Bang> !
<Backspace> ˆH <RSquare>] <Exclamation> !

<FormFeed> ˆL <Lbracket> [<Quote> ’

<Esc> ˆ[<Rbracket>] <SQuote> ’
<Escape> ˆ[<Dot> . <DQuote> "

<Null> ˆ@

Figure 4.3: Character mnemonics in regular expressions.

set of strings that begin with ‘abc’ and end with one or more newline characters (newline has ASCII value
10). You can enter the ASCII value in hexadecimal, octal, or binary by prefixing the number with ‘0x’, ‘0o’,
or ‘0b’, respectively. For example,<#32>, <#0x20>, <#0o40>, and<#0b100000> all yield ahSpacei
character (ASCII code 32).

CHARACTER CLASSES.

In place of any letter, you can specify acharacter class. A character class consists of a sequence of
characters between square brackets. For example, the character class[adef] stands for any of the
following characters: ‘a’, ‘d’, ‘e’, or ‘f’.

In place of a letter in a character class, you can specify a range of characters using a hyphen: the
character class[a-m] stands for the characters ‘a’ through ‘m’, inclusively. The class[ae-gr] stands for
the characters ‘a’, ‘e’, ‘f’, ‘g’, or ‘r’. The class[a-zA-Z0-9] stands for any alphanumeric character.

To specify the complement of a character class, put a caret as the first character in the class. Using the
above examples, the class[ˆa-m] stands for any character other than ‘a’ through ‘m’, and the class
[ˆa-zA-Z0-9] stands for any non-alphanumeric character. Inside a character class, onlyˆ and- have
special meaning. All other characters stand for themselves, including plus, star, question mark, etc.

If you need to put a right square bracket character in a character class, put it immediately after the
opening left square bracket, or in the case of an inverted character class, immediately after the caret. For
example, the class[]x] stands for the characters ‘]’ or ‘x’, and the class[ˆ]x] stands for any character
other than ‘]’ or ‘x’.

To include the hyphen character- in a character class, it must be the first character in the class, except
for ˆ and]. For example, the pattern[ˆ]-q] matches any character except], -, orq.

Any regular expression you can write with character classes you can also write without character
classes. But character classes sometimes let you write much shorter regular expressions.

The period character (outside a character class) represents any character except ahNewlinei. For
example, the patterna.c matches any three-character sequence on a single line where the first character is
‘a’ and the last is ‘c’.

You can also specify a character class using a variant of the angle bracket syntax described above. The
expression<Comma|Period|Question> represents any one of those three punctuation characters. The
expression<a-z|A-Z|?> represents either a letter or a question mark, the same as[a-zA-Z]|<?>, for

62 CHAPTER 4. COMMANDS BY TOPIC

example. The expression<ˆNewline> represents any character except newline, just as the period
character by itself does.

You can also use a few character class names that match some common sets of characters. Some use
Epsilon’s current syntax table, which an EEL program may modify, by way of theisalpha() primitive.
Typically these include accented characters like ˆe orå.

Class Meaning
<digit> A digit, 0 to 9.
<alpha> A letter, according toisalpha().
<alphanum> Either of the above.
<word> All of the above, plus the_ character.
<hspace> The same as<Space|Tab>.
<wspace> The same as<Space|Tab|Newline>.
<any> Any character including<Newline>.

Figure 4.4: Character Class Names

More precisely, inside the angle brackets you can put one or more character names, character ranges, or
character class names, separated by vertical bars. (A range means two character names with a hyphen
between them.) In place of a character name, you can put# and the ASCII number of a character, or you can
put the character itself (for any character except>, |, -, or hNuli). Finally, just after the opening<, you can
put aˆ to specify the complement of the character class.

EXAMPLES.

� The patternif|else|for|do|while|switch specifies the set of statement keywords in C and
EEL.

� The patternc[ad]+r specifies strings like ‘car’, ‘cdr’, ‘caadr’, ‘caaadar’. These correspond to
compositions of the car and cdr Lisp operations.

� The patternc[ad][ad]?[ad]?[ad]?r specifies the strings that represent up to four compositions
of car and cdr in Lisp.

� The pattern[a-zA-Z]+ specifies the set of all sequences of 1 or more letters. The character class
part denotes any upper- or lower-case letter, and the plus operator specifies one or more of those.

Epsilon’s commands to move by words accomplish their task by performing a regular expression
search. They use a pattern similar to[a-zA-Z0-9_]+, which specifies one or more letters, digits,
or underscore characters. (The actual pattern includes national characters as well.)

� The pattern(<Newline>|<Return>|<Tab>|<Space>)+ specifies nonempty sequences of the
whitespace characters newline, return, tab, and space. You could also write this pattern as
<Newline|Return|Tab|Space>+ or as<Wspace|Return>+, using a character class name.

� The pattern/%*.*%*/ specifies a set that includes all 1-line C-language comments. The percent
character quotes the first and third stars, so they refer to the star character itself. The middle star
applies to the period, denoting zero or more occurrences of any character other than newline. Taken
together then, the pattern denotes the set of strings that begin with “slash star”, followed by any
number of non-newline characters, followed by “star slash”. You can also write this pattern as
/<Star>.*<Star>/.

4.3. CHANGING TEXT 63

� The pattern/%*(.|<Newline>)*%*/ looks like the previous pattern, except that instead of ‘.’, we
have(.|<Newline>). So instead of “any character except newline”, we have “any character
except newline, or newline”, or more simply, “any character at all”. This set includes all C comments,
with or without newlines in them. You could also write this as/%*<Any>*%*/ instead.

� The pattern<ˆdigit|a-f>matches any character except of one these: 0123456789abcdef.

AN ADVANCED EXAMPLE.

Let’s build a regular expression that includes precisely the set of legal strings in the C programming
language. All C strings begin and end with double quote characters. The inside of the string denotes a
sequence of characters. Most characters stand for themselves, but newline, double quote, and backslash
must appear after a “quoting” backslash. Any other character may appear after a backslash as well.

We want to construct a pattern that generates the set of all possible C strings. To capture the idea that
the pattern must begin and end with a double quote, we begin by writing

"something"

We still have to write thesomethingpart, to generate the inside of the C strings. We said that the inside of a
C string consists of a sequence of characters. The star operator means “zero or more of something”. That
looks promising, so we write

"(something)*"

Now we need to come up with asomethingpart that stands for an individual character in a C string. Recall
that characters other than newline, double quote, and backslash stand for themselves. The pattern
<ˆNewline|"|n> captures precisely those characters. In a C string, a “quoting” backslash must precede
the special characters (newline, double quote, and backslash). In fact, a backslash may precede any
character in a C string. The patternn(.|<Newline>) means, precisely “backslash followed by any
character”. Putting those together with the alternation operator (|), we get the pattern
<ˆNewline|"|n>|n(.|<Newline>) which generates either a single “normal” character or any
character preceded by a backslash. Substituting this pattern for thesomethingyields

"(<ˆNewline|"|n>|n(.|<Newline>))*"

which represents precisely the set of legal C strings. In fact, if you type this pattern into a regex-search
command (described below), Epsilon will find the next C string in the buffer.

SEARCHING RULES.

Thus far, we have described regular expressions in terms of the abstract set of strings they generate. In
this section, we discuss how Epsilon uses this abstract set when it does a regular expression search.

When you tell Epsilon to perform a forward regex search, it looks forward through the buffer for the
first occurrence in the buffer of a string contained in the generated set. If no such string exists in the buffer,
the search fails.

There may exist several strings in the buffer that match a string in the generated set. Which one
qualifies as the first one? By default, Epsilon picks the string in the buffer that begins before any of the
others. If there exist two or more matches in the buffer that begin at the same place, Epsilon by default picks
the longest one. We call this a first-beginning, longest match. For example, suppose you position point at the
beginning of the following line,

When to the sessions of sweet silent thought

64 CHAPTER 4. COMMANDS BY TOPIC

then do a regex search for the patterns[a-z]*. That pattern describes the set of strings that start with ‘s’,
followed by zero or more letters. We can find quite a few strings on this line that match that description.
Among them:

When to the sessions of sweet silent thought
When to the sessions of sweet silent thought

When to the sessions of sweet silent thought
When to the sessions of sweet silent thought

When to the sessions of sweet silent thought
When to the sessions of sweet silent thought

Here, the underlined sections indicate portions of the buffer that match the description “s followed by a
sequence of letters”. We could identify 31 different occurrences of such strings on this line. Epsilon picks a
match that begins first, and among those, a match that has maximum length. In our example, then, Epsilon
would pick the following match:

When to the sessions of sweet silent thought

since it begins as soon as possible, and goes on for as long as possible. The search would position point after
the final ‘s’ in ‘sessions’.

In addition to the default first-beginning, longest match searching, Epsilon provides three other regex
search modes. You can specify first-beginning or first-ending searches. For each of these, you can specify
shortest or longest match matches. Suppose, with point positioned at the beginning of the following line

I summon up remembrance of things past,

you did a regex search with the patternm.*c|I.*t. Depending on which regex mode you chose, you
would get one of the four following matches:

I summon up remembrance of things past, (first-ending shortest)
I summon up remembrance of things past, (first-ending longest)
I summon up remembrance of things past, (first-beginning shortest)
I summon up remembrance of things past, (first-beginning longest)

By default, Epsilon uses first-beginning, longest matching. You can include directives in the pattern
itself to tell Epsilon to use one of the other techniques. If you include the directive<Min> anywhere in the
pattern, Epsilon will use shortest-matching instead of longest-matching. Putting<FirstEnd> selects
first-ending instead of first-beginning. You can also put<Max> for longest-matching, and<FirstBegin>
for first-beginning. These last two might come in handy if you’ve changed Epsilon’s default regex mode.
The sequences<FE> and<FB> provide shorthand equivalents for<FirstEnd> and<FirstBegin>,
respectively. As an example, you could use the following patterns to select each of the matches listed in the
previous example:

<FE><Min>m.*c|I.*t (first-ending shortest)
<FE><Max>m.*c|I.*t or <FE>m.*c|I.*t (first-ending longest)
<FB><Min>m.*c|I.*t or <Min>m.*c|I.*t (first-beginning shortest)
<FB><Max>m.*c|I.*t or m.*c|I.*t (first-beginning longest)

4.3. CHANGING TEXT 65

You can change Epsilon’s default regex searching mode. To make Epsilon use, by default, first-ending
searches, set the variableregex-shortest to a nonzero value. To specify first-ending searches, set the
variableregex-first-end to a nonzero value. (Examples of regular expression searching in this
documentation assume the default settings.)

When Epsilon finds a regex match, it sets point to the end of the match. It also sets the variables
matchstart andmatchend to the beginning and end, respectively, of the match. You can change what
Epsilon considers the end of the match using the ‘!’ directive. For example, if you searched for ‘I
s!ought’ in the following line, Epsilon would match the underlined section:

I sigh the lack of many a thing I sought,

Without the ‘!’ directive, the match would consist of the letters “I sought”, but because of the ‘!’ directive,
the match consists of only the indicated section of the line. Notice that the first three characters of the line
also consist of ‘I s’, but Epsilon does not count that as a match. There must first exist a complete match in
the buffer. If so, Epsilon will then set point andmatchend according to any ‘!’ directive.

You can force Epsilon to reject any potential match that does not line up appropriately with a line
boundary, by using the ‘̂’ and ‘$’ assertions. A ‘̂ ’ assertion specifies a beginning-of-line match, and a ‘$’
assertion specifies an end-of-line match. For example, if you search forˆnew|waste in the following line,
it would match the indicated section:

And with old woes new wail my dear times’s waste;

Even though the word ‘new’ occurs before ‘waste’, it does not appear at the beginning of the line, so Epsilon
rejects it.

Other assertions use Epsilon’s angle-bracket syntax. Like the assertionsˆ and$, these don’t match any
specific characters, but a potential match will be rejected if the assertion isn’t true at that point in the pattern.

Assertion Meaning
ˆ At the start of a line.
$ At the end of a line.
<bob> or <bof> At the start of the buffer.
<eob> or <eof> At the end of the buffer.

For example, searching for<bob>sometext<eob> won’t succeed unless the buffer contains only
the eight character stringsometext.

You can create new assertions from character classes specified with the angle bracket syntax by adding
[,] or / at the start of the pattern.

Assertion Meaning
<[class> The next character matchesclass, the previous one does not.
<]class> The previous character matchesclass, the next one does not.
</class> Either of the above.

Theclassin the above syntax is a|-separated list of one or more single characters, character names like
Space or Tab, character numbers like#32 or #9, ranges of any of these, or character class names like Word
or Digit.

For example,</word> matches at a word boundary, and<]word> matches at the end of a word. The
pattern<]0-9|a-f> matches at the end of a run of hexadecimal digits. And the pattern
(cat|[0-9])</digit>(dog|[0-9]) matchescat3 or 4dog, but notcatdog or 42.

66 CHAPTER 4. COMMANDS BY TOPIC

OVERGENERATING REGEX SETS.

You can use Epsilon’s regex search modes to simplify patterns that you write. You can sometimes write
a pattern that includes more strings than you really want, and rely on a regex search mode to cut out strings
that you don’t want.

For example, recall the earlier example of/%*(.|<Newline>)*%*/. This pattern generates the set
of all strings that begin with/* and end with*/. This set includes all the C-language comments, but it
includes some additional strings as well. It includes, for example, the following illegal C comment:

/* inside /* still inside */ outside */

In C, a comment begins with/* and ends with thevery nextoccurrence of*/. You can effectively get
that by modifying the above pattern to specify a first-ending, longest match, with
<FE><Max>/%*(.|<Newline>)*%*/. It would match:

/* inside /* still inside */ outside */

In this example, you could have written a more complicated regular expression that generated precisely
the set of legal C comments, but this pattern proves easier to write.

THE REGEX COMMANDS.

You can invoke a forward regex search with the Ctrl-Alt-S key, which runs the commandregex-search.
The Ctrl-Alt-R key invokes a reverse incremental search. You can also enter regular expression mode from
any search prompt by typing Ctrl-T to that prompt. For example, if you press Ctrl-S to invoke
incremental-search, pressing Ctrl-T causes it to enter regular expression mode. See page 42 for a
description of the searching commands.

The key Alt-* runs the commandregex-replace. This command works like the command
query-replace, but interprets its search string as a regular expression.

In the replacement text of a regex replace, the # character followed by a digitn has a special meaning in
the replacement text. Epsilon finds thenth parenthesized expression in the pattern, counting left parentheses
from 1. It then substitutes the match of this subpattern for the #n in the replacement text. For example,
replacing

([a-zA-Z0-9_]+) = ([a-zA-Z0-9_]+)

with

#2 := #1

changes

variable = value;

to

value := variable;

If #0 appears in the replacement text, Epsilon substitutes the entire match for the search string. To
include the actual character # in a replacement text, use ##.

Other characters in the replacement text have no special meaning. To enter special characters, type a
Ctrl-Q before each. Type Ctrl-Q Ctrl-C to include a Ctrl-C character. Type Ctrl-Q Ctrl-J to include a
hNewlinei character in the replacement text.

4.3. CHANGING TEXT 67

Summary: Ctrl-Alt-S regex-search
Ctrl-Alt-R reverse-regex-search
Alt-* regex-replace

4.3.8 Rearranging

Sorting

Epsilon provides several commands to sort buffers, or parts of buffers.

Thesort-buffer command lets you sort the lines of the current buffer. The command asks for the name
of a buffer in which to place the sorted output. Thesort-region command sorts the part of the current buffer
between point and mark, in place. The commandsreverse-sort-buffer andreverse-sort-region operate like
the above commands, but reverse the sorting order.

By default, all the sorting commands sort the lines by considering all the characters in the line. If you
prefix a numeric argument ofn to any of these commands, they will compare lines starting at columnn.

When comparing lines of text during sorting, Epsilon normally folds lower case letters to upper case
before comparison, if thecase-fold variable has a nonzero value. If thecase-fold variable has a
value of 0, Epsilon compares characters as-is. However, setting the buffer-specificsort-case-fold
variable to 0 or 1 overrides thecase-fold variable, for sorting purposes. By default,sort-case-fold
has a value of 2, which means to defer tocase-fold.

Summary: sort-buffer
sort-region
reverse-sort-buffer
reverse-sort-region

Transposing

Epsilon has commands to transpose characters, words, and lines. To transpose the words before and after
point, use the Alt-T command. This command leaves undisturbed any non-word characters between the
words. Point moves between the words. The Ctrl-X Ctrl-T command transposes the current and previous
lines and moves point between them.

The Ctrl-T command normally transposes the characters before and after point. However, at the start of
a line it transposes the first two characters on the line, and at the end of a line it transposes the last two. On a
line with one or no characters, it does nothing.

Summary: Ctrl-T transpose-characters
Alt-T transpose-words
Ctrl-X Ctrl-T transpose-lines

68 CHAPTER 4. COMMANDS BY TOPIC

Formatting Text

Epsilon has some commands that make typing manuscript text easier.

You can change the right margin, orfill column, using the Ctrl-X F command. By default, it has a value
of 70. With a numeric argument, the command sets the fill column to that column number. Otherwise, this
command tells you the current value of the fill column and asks you for a new value. If you don’t provide a
new value but instead press thehEnteri key, Epsilon will use the value of point’s current column. For
example, you can set the fill column to column 55 by typing Ctrl-U 55 Ctrl-X F. Alternatively, you can set
the fill column to point’s column by typing Ctrl-X FhEnteri. The buffer-specific variablemargin-right
stores the value of the fill column. To set the default value for new buffers you create, use theset-variable
command on F8 to set the default value of themargin-right variable. (See thec-fill-column
variable for the C mode equivalent.)

In auto fill mode, you don’t have to worry about typinghEnteri’s to go to the next line. Whenever a line
gets too long, Epsilon breaks the line at the appropriate place if needed. Theauto-fill-mode command
enables or disables auto filling (word wrap) for the current buffer. With a numeric argument of zero, it turns
auto filling off; with a nonzero numeric argument, it turns auto filling on. With no numeric argument, it
toggles auto filling. During auto fill mode, Epsilon shows the word “Fill” in the mode line. The
buffer-specific variablefill-mode controls filling. If it has a nonzero value, filling occurs. To make
Epsilon always use auto fill mode, you can use theset-variable command to set the default value of
fill-mode.

In C mode, Epsilon uses a special version of auto-fill mode that normally only fills text in certain types
of comments. See the variablec-auto-fill-mode for details.

Epsilon normally indents new lines it inserts via auto fill mode so they match the previous line. The
buffer-specific variableauto-fill-indents controls whether or not Epsilon does this. Epsilon indents
these new lines only ifauto-fill-indents has a nonzero value. Set the variable to 0 if you don’t want
this behavior.

During auto filling, thenormal-character command first checks to see if the line extends past the fill
column. If so, the extra words automatically move down to the next line.

ThehEnteri key runs the commandenter-key, which behaves likenormal-character, but inserts a
newline instead of the character that invoked it. Epsilon binds this command to thehEnteri key, because
Epsilon uses the convention that Ctrl-J’s separate lines, but the keyboard has thehEnteri key yield a Ctrl-M.
In overwrite mode, thehEnteri key simply moves to the beginning of the next line.

The Alt-Q command fills the current paragraph. The command fills each line by moving words between
lines as necessary, so the lines but the last become as long as possible without extending past the fill column.
If the screen shows a highlighted region, the command fills all paragraphs in the region. Thefill-region
command fills all paragraphs in the region between point and mark, whether or not the region is highlighted.

If you give a numeric prefix argument of five or less to the above filling commands, they unwrap lines in
a paragraph, removing all line breaks. Alt-2 Alt-Q is one quick way to unwrap the current paragraph. With a
numeric argument greater than 5, the paragraph is filled using that value as a temporary right margin. (Note
that C mode places a different fill command on Alt-Q, and it interprets an argument to mean “fill using the
current column as a right margin”.)

Alt-Shift-Q runs thefill-indented-paragraph command, which fills the current paragraph as above but
also tries to preserve any indentation before each line of the paragraph. With a numeric argument, it fills the
paragraph using the current column as the right margin, instead of themargin-right variable.

Summary: Ctrl-X F set-fill-column
Alt-q fill-paragraph
Alt-Shift-Q fill-indented-paragraph

4.3. CHANGING TEXT 69

fill-region
auto-fill-mode

hEnteri enter-key

4.3.9 Indenting Commands

Epsilon can help with indenting your program or other text. ThehTabi key runs theindent-previous
command, which makes the current line start at the same column as the previous non-blank line.
Specifically, if you invoke this command with point in or adjacent to a line’s indentation,indent-previous
replaces that indentation with the indentation of the previous non-blank line. If point’s indentation exceeds
that of the previous non-blank line, or if you invoke this command with point outside of the line’s
indentation, this command simply inserts ahTabi. See page 87 for information on changing the width of a
tab.

Epsilon can automatically indent for you when you presshEnteri. Setting the buffer-specific variable
auto-indent nonzero makes Epsilon do this. The way Epsilon indents depends on the current mode. For
example, C mode knows how to indent for C programs. In Epsilon’s default mode, fundamental mode,
Epsilon indents likeindent-previous if you setauto-indent nonzero.

When Epsilon automatically inserts new lines for you in auto fill mode, it looks at a different variable to
determine whether to indent these new lines. Epsilon indents in this case only if the buffer-specific variable
auto-fill-indents has a nonzero value.

The Alt-M key moves point to the beginning of the text on the current line, just past the indentation.

Theindent-under command functions likeindent-previous, but each time you invoke it, it indents
more, to align with the next word in the line above. In detail, it goes to the same column in the previous
non-blank line, and looks to the right for the end of the next region of spaces and tabs. It indents the current
line to that column after removing spaces and tabs from around point.

Theindent-rigidly command, bound to Ctrl-X Ctrl-I (or Ctrl-XhTabi), changes the indentation of each
line between point and mark by a fixed amount provided as a numeric argument. For instance, Ctrl-U 8
Ctrl-X Ctrl-I moves all the lines to the right by eight spaces. With no numeric argument, lines move to the
right by the buffer’s tab size (default 8; see page 87), and with a negative numeric argument, lines move to
the left. So, for example, Ctrl-U -1000 Ctrl-X Ctrl-I should remove all the indentation from the lines
between point and mark.

If you highlight a region before pressinghTabi (or any key that runs one of the commands
indent-previous, indent-under, or do-c-indent), Epsilon indents all lines in the region by one tab stop, by
calling theindent-rigidly command. You can provide a numeric argument to specify how much indentation
you want.

The Shift-hTabi key moves the cursor back to the previous tab stop. But if you highlight a region before
pressing it, it will remove one tab stop’s worth of indentation.

Theindent-region command, bound to Ctrl-Alt-n, works similarly. It goes to the start of each line
between point and mark and invokes the command bound tohTabi. If the resulting line then contains only
spaces and tabs, Epsilon removes them.

You can set up Epsilon to automatically reindent text when you yank it. Epsilon will indent like
indent-region. By default, Epsilon does this only for C mode (see thereindent-after-c-yank
variable).

To determine whether to reindent yanked text, theyank command first looks for a variable whose name
is derived from the buffer’s mode as it appears in the mode line:reindent-after-c-yank for C mode

70 CHAPTER 4. COMMANDS BY TOPIC

buffers,reindent-after-html-yank for HTML mode buffers, and so forth. If there’s no variable by
that name, Epsilon uses thereindent-after-yank variable instead. Instead of a variable, you can
write an EEL function with the same name; Epsilon will call it and use its return value. See the description
of reindent-after-yank for details on what different values do.

The Alt-S command horizontally centers the current line between the first column and the fill column
by padding the left with spaces and tabs as necessary. Before centering the line, the command removes
spaces and tabs from the beginning and end of the line.

With any of these commands, Epsilon indents by inserting as many tabs as possible without going past
the desired column, and then inserting spaces as necessary to reach the column. You can set the size of a tab
by setting thetab-size variable. Set thesoft-tab-size variable if you want Epsilon to use one
setting for displaying existing tab characters, and a different one for indenting.

If you prefer, you can make Epsilon indent using only spaces. The buffer-specific variable
indent-with-tabs controls this behavior. Set it to 0 usingset-variable to make Epsilon use only
spaces when inserting indentation.

Theuntabify-region command on Ctrl-X Alt-I changes all tab characters between point and mark to
the number of spaces necessary to make the buffer look the same. Thetabify-region command on Ctrl-X
Alt- hTabi does the reverse. It looks at all runs of spaces and tabs, and replaces each with tabs and spaces to
occupy the same number of columns. The commandstabify-buffer anduntabify-buffer are similar, but
operate on the entire buffer, instead of just the region.

Summary: Alt-M to-indentation
hTabi indent-previous
Shift-hTabi back-to-tab-stop
Ctrl-Alt-I indent-under
Ctrl-X hTabi indent-rigidly
Ctrl-Alt-n indent-region
Alt-S center-line
Ctrl-X Alt- hTabi tabify-region
Ctrl-X Alt-I untabify-region

tabify-buffer
untabify-buffer

4.3.10 Hex Mode

Thehex-mode command creates a second buffer that shows a hex listing of the original buffer. You can edit
this buffer, as explained below. Press q when you’re done, and Epsilon will return to the original buffer,
offering to apply your changes.

A hex digit (0-9, a-f) in the left-hand column area moves in the hex listing to the new location.

A hex digit (0-9, a-f) elsewhere in the hex listing modifies the listing.

q quits hex mode, removing the hex mode buffer and returning to the original buffer. Epsilon will first offer
to apply your editing changes to the original buffer.

hTabi moves between the columns of the hex listing.

s or r searches by hex bytes. Type a series of hex bytes, like 0a 0d 65, and Epsilon will search for them. S
searches forward, R in reverse.

4.4. LANGUAGE MODES 71

t toggles between the original buffer and the hex mode buffer, going to the corresponding position. This
provides a convenient way to search for literal text: press t to return to the original buffer, use Ctrl-S to
search as usual, then exit the search and press t to go back to the hex buffer.

prompts for a new character value and overwrites the current character with it. You can use any of these
formats:’A’, 65, 0x41 (hex), 0b1100101 (binary), 0o145 (octal).

n or p move to the next or previous line.

o toggles the hex overwrite submode, which changes how Epsilon interprets keys you type in the rightmost
column of the hex listing. In overwrite mode, printable characters you type in the rightmost column
overwrite the text there, instead of acting as hex digits or commands.

For instance, typing “3as” in the last column while in overwrite mode replaces the next three
characters with the characters 3, a, and s. Outside overwrite mode, they replace the current character
with one whose hex code is 3a, and then begin a search.

To use hex mode commands from overwrite mode, prefix them with a Ctrl-C character, such as Ctrl-C
o to exit overwrite mode. Or move out of the rightmost column withhTabi or other movement keys.

? shows help on hex mode.

Summary: hex-mode

4.4 Language Modes

When you use thefind-file command to read in a file, Epsilon looks at the file’s extension to see if it has a
mode appropriate for editing that type of file. For example, when you read a .h file, Epsilon goes into C
mode. Specifically, whenever you usefind-file and give it a file name “foo.ext”, after find-file reads in the
file, it executes a command named “suffix_ext”, if such a command exists. Thefind-file command
constructs a subroutine name from the file extension to allow you to customize what happens when you
begin editing a file with that extension. For example, if you want to enter C mode automatically whenever
you usefind-file on a “.x” file, you simply create a command (a keyboard macro would do) called
“suffix_x”, and have that command callc-mode. For another example, you can easily stop Epsilon from
automatically entering C mode on a “.h” file by using thedelete-name command to delete the subroutine
“suffix-h”. (You can interchange the- and_ characters in Epsilon command names.)

In addition to the language-specific modes described in the following sections, Epsilon includes modes
that support various Epsilon features. For example, the buffer listing generated by thebufed command on
Ctrl-X Ctrl-B is actually in an Epsilon buffer, and that buffer is in Bufed mode.

Many language modes will call a hook function if you’ve defined one. For example, C mode tries to call
a function namedc_mode_hook(). A hook function is a good place to customize a mode by setting
buffer-specific variables. It can be a keyboard macro or a function written in EEL, and it will be called
whenever Epsilon loads a file that should be in the specified mode.

Thefundamental-mode command removes changes to key bindings made by modes such as C mode,
Dired mode, or Bufed mode. You can configure Epsilon to highlight matching parentheses and other
delimiters in fundamental mode; see thefundamental-auto-show-delim-chars variable.

Summary: fundamental-mode

72 CHAPTER 4. COMMANDS BY TOPIC

4.4.1 Asm Mode

Epsilon automatically enters Asm mode when you read a file with an extension of .asm, .inc, .al, .mac, or
.asi. In Asm mode, Epsilon does appropriate syntax highlighting, tagging, and commenting. The
compile-buffer command uses thecompile-asm-cmd variable in this mode.

Summary: asm-mode

4.4.2 C Mode

Thec-mode command puts the current buffer in C mode. In C mode, thehEnteri key indents the next line
appropriately for a program written in C, C++, Java, Epsilon’s extension language EEL, or other C-like
languages. It examines previous lines to find the correct indentation. It doesn’t do a perfect job, but usually
guesses correctly. Epsilon supports several common styles of indentation, controlled by some extension
language variables.

TheCloseback variable controls the position of the closing brace:

Closeback = 0;

if (foo){
bar();
baz();
}

Closeback = 1;

if (foo){
bar();
baz();

}

By placing the opening brace on the following line, you may also use these styles:

Closeback = 0;

if (foo)
{
bar();
baz();
}

Closeback = 1;

if (foo)
{

bar();
baz();

}

Closeback by default has a value of 1.

Use theTopindent variable to control the indentation of top-level statements in a function:

Topindent = 0;

foo()
{
if (bar)

baz();
}

Topindent = 1;

foo()
{

if (bar)
baz();

}

Topindent by default has a value of 1.

TheMatchdelim variable controls whether typing),], org displays the corresponding (, [, orf using
theshow-matching-delimiter command. TheMatchdelim variable normally has a value of 1, which
means that Epsilon shows matching delimiters. You can change these variables as described on page 126.

4.4. LANGUAGE MODES 73

In C mode, thehTabi key reindents the current line if pressed with point in the current line’s
indentation.hTabi just inserts a tab if pressed with point somewhere else, or if pressed two or more times
successively. If you set the variablec-tab-always-indents to 1, then thehTabi key will reindent the
current line, regardless of your position on the line. If you press it again, it will insert another tab.

When you yank text into a buffer in C mode, Epsilon automatically reindents it. This is similar to the
“smart paste” feature in some other editors. You can set the variablereindent-after-c-yank to zero
to disable this behavior. Epsilon doesn’t normally reindent comments when yanking; set the
reindent-c-comments andreindent-one-line-c-comments variables to change that.

By default, Epsilon uses the value of the buffer-specifictab-size variable to determine how far to
indent. For example, if the tab size has a value of 5, Epsilon will indent the line following anif statement
five additional columns.

If you want the width of a tab character in C mode buffers to be different than in other buffers, set the
variablec-tab-override to the desired value. C mode will change the buffer’s tab size to the specified
number of columns. Theeel-tab-override variable does the same in EEL buffers (which use a
variation of C mode). Also see the description of file variables on page 103 for a way in which individual
files can indicate they should use a particular tab size.

If you want to use one value for the tab size and a different one for C indentation, set the buffer-specific
c-indent variable to the desired indentation using theset-variable command. Whenc-indent has a
value of zero, as it has by default, Epsilon uses thetab-size variable for its indentation. (Actually, the
hTabi key in C mode doesn’t necessarily insert a tab when you press it two or more times in succession.
Instead, it indents according toc-indent. If the tab size differs from the C indent, it may have to insert
spaces to reach the proper column.)

Thec-case-offset variable controls the indentation ofcase statements. Normally, Epsilon
indents them one level more than their controllingswitch statements. Epsilon adds the value of this
variable to its normal indentation, though. If you normally indent by8 spaces, for example, and wantcase
statements to line up with their surroundingswitch statements, setc-case-offset to�8.

Similarly, thec-access-spec-offset variable controls the indentation ofpublic:,
private:, andprotected: access specifiers.

Thec-label-indent variable provides the indentation of lines starting with labels. Normally,
Epsilon moves labels to the left margin.

Epsilon offsets the indentation of a left brace on its own line by the value of the variable
c-brace-offset. For example, with a tab size of eight and default settings for other variables, a
c-brace-offset of 2 produces:

if (a)
{

b();
}

The variablec-top-braces controls how much Epsilon indents the braces of the top-level block of a
function. By default, Epsilon puts these braces at the left margin. Epsilon indents pre-ANSI K&R-style
parameter declarations according to the variablec-param-decl. Epsilon indents parts of a top-level
structure or union according toc-top-struct, and indents continuation lines outside of any function
body according toc-top-contin. Additional C mode indentation variables that may be customized
includec-indent-after-extern-c andc-indent-after-namespace.

By default, the C indenter tries to align continuation lines under parentheses and other syntactic items
on prior lines. If Epsilon can’t find anything on prior lines to align under, it indents continuation lines two
levels more than the original line. (With default settings, Epsilon indents unalignable continuation lines 8

74 CHAPTER 4. COMMANDS BY TOPIC

positions to the right of the original line.) Epsilon adds the value of the variablec-contin-offset to
this indentation, though. If you want Epsilon to indent unalignable continuation lines ten columns less, set
c-contin-offset to�10 (it’s 0 by default).

If aligning the continuation line would make it start in a column greater than the value of the variable
c-align-contin-lines (default48), Epsilon won’t align the continuation line. It will indent by two
levels plus the value ofc-contin-offset, as described above. Also see thec-align-extra-space
variable for an adjustment Epsilon can make for continuation lines that would be indented exactly one level.

As a special case, setting thec-align-contin-lines to zero makes Epsilon never try to align
continuation lines under syntactic features on prior lines. Epsilon will then indent all continuation lines by
one level more than the original line (one extra tab, normally), plus the value of the variable
c-contin-offset.

If the continuation line contains only a left parenthesis character (ignoring comments), Epsilon can
align it with the start of the current statement if you setc-align-open-paren nonzero. If the variable
is zero, it’s aligned like other continuation lines.

Summary: c-mode
C Mode only:hTabi do-c-indent
C Mode only:f c-open
C Mode only:g c-close
C Mode only:: c-colon
C Mode only:# c-hash-mark
C Mode only:),] show-matching-delimiter

Other C mode Features

In C mode, the Alt-hDowni and Alt-hUpi keys move to the next or previous #if/#else/#endif preprocessor
line. When starting from such a line, Epsilon finds the next/previous matching one, skipping over inner
nested preprocessor lines. Alt-] and Alt-[do the same. Press Alt-i to display a list of the preprocessor
conditionals that are in effect for the current line.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,
bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variableauto-show-c-delimiters to zero to disable this feature.

Press Alt-’ to display a list of all functions and global variables defined in the current file. You can
move to a definition in the list and presshEnteri and Epsilon will go to that definition, or press Ctrl-G to
remain at the starting point. By default, this command skips over external declarations. With a prefix
numeric argument, it includes those too.

Epsilon normally auto-fills text in block comments as you type, breaking overly long lines. See the
c-auto-fill-mode variable. As with normal auto-fill mode (see page 68), use Ctrl-X F to set the right
margin for filling. Set thec-fill-column variable to change the default right margin in C mode buffers.
Setfill-c-comment-plain nonzero if you want block comments to use only spaces instead of a* on
successive lines.

You can manually refill the current paragraph in a block comment (or in a comment that follows a line
of code) by pressing Alt-q. If you provide a numeric prefix argument to Alt-q, say by typing Alt-2 Alt-q, it
will fill using the current column as the right margin.

Epsilon’s tagging facility isn’t specific to C mode, so it’s described elsewhere (see page 47). But it’s one
of Epsilon’s most useful software development features, so we mention it here too.

4.4. LANGUAGE MODES 75

Whenever you use thefind-file command to read in a file with one of the extensions .c, .h, .e, .y, .cpp,
.cxx, .java, .inl, .hpp, .idl, .cs, or .hxx, Epsilon automatically enters C mode. See page 71 for information on
adding new extensions to this list, or preventing Epsilon from automatically entering C mode. For file names
without a suffix, Epsilon examines their contents and guesses whether the file is C++, Perl, some other
known type, or unrecognizable.

Summary: C Mode only: Alt-], Alt-hDowni forward-ifdef
C Mode only: Alt-[, Alt-hUpi backward-ifdef
C Mode only: Alt-q fill-comment
Alt-’ list-definitions
Alt-i list-preprocessor-conditionals

4.4.3 Configuration File Mode

Epsilon automatically enters Conf mode when you read a file with an extension of .conf, or (under Unix
only) when you read a non-binary file in the /etc directory. In Conf mode, Epsilon does some generic syntax
highlighting, recognizing# and; as commenting characters, and highlighting name=value assignments.

Summary: conf-mode

4.4.4 GAMS Mode

Epsilon automatically enters GAMS mode when you read a file with an extension of .gms or .set. In
addition, if you set thegams-files variable nonzero, it recognizes .inc, .map, and .dat extensions.
Epsilon also uses GAMS mode for files with an unrecognized extension that start with a GAMS$title
directive. The GAMS language is used for mathematical programming.

In GAMS mode, Epsilon does syntax highlighting, recognizing GAMS strings and comments. The
GAMS language permits a file to define its own additional comment character sequences, besides the
standard* and$ontext and$offtext, but Epsilon doesn’t try to interpret these; instead it follows the
convention that! starts a single-line comment anywhere on a line.

When the cursor is on a bracket or parenthesis, Epsilon will try to locate its matching bracket or
parenthesis, and highlight them both. If the current character has no match, Epsilon will not highlight it. Set
the variableauto-show-gams-delimiters to zero to disable this feature.

Summary: gams-mode

4.4.5 HTML Mode

Epsilon automatically enters HTML mode when you read a file with an extension of .htm, .html, .shtml,
.cfml, .cfm, .htx, .asp, .asa, .xml, .cdf, .osd, .htt, .wml, .xsl, .jsp, .xsd, .xst, .prx, .asx, .svg, .sgml, or .sgm.

In HTML mode, Epsilon does appropriate syntax highlighting (including embedded JavaScript or
VBScript) and brace-matching. The commenting commands work too.

You can customize how Epsilon colors embedded scripting. Each variable of the following variables
may be set to 1 for Javascript-style coloring, 2 for VBScript-style coloring, or 0 for plain coloring. The

76 CHAPTER 4. COMMANDS BY TOPIC

html-asp-coloring variable controls scripting embedded in<% %> delimiters. The
html-php-coloring variable controls scripting embedded in<? ?> delimiters. The
html-vbscript-coloring variable controls scripting that uses a<script
language=vbscript> or similar tag. Thehtml-javascript-coloring variable controls
scripting that uses a<script language=javascript> or similar tag (including jscript or
ecmascript), and thehtml-other-coloring variable controls scripting when the specified language is
unrecognized.

When the cursor is on a< or > character, Epsilon will try to locate its matching> or < and highlight
them both. If the current character has no match, Epsilon will not highlight it. Set the variable
auto-show-html-delimiters to zero to disable this feature.

Also see page 104 for information on viewing http:// URL’s with Epsilon.

Summary: html-mode

4.4.6 Ini File Mode

Epsilon automatically enters Ini mode when you read a file with an extension of .ini or .sys. In Ini mode,
Epsilon does appropriate syntax highlighting.

Summary: ini-mode

4.4.7 Makefile Mode

Epsilon automatically enters Makefile mode when you read a file named makefile (or Makefile, etc.) or with
an extension of .mak. In Makefile mode, Epsilon does appropriate syntax highlighting. Thecompile-buffer
command uses thecompile-makefile-cmd variable in this mode. Press Alt-i to display a list of the
preprocessor conditionals that are in effect for the current line. (For this command, Epsilon assumes that a
makefile uses Gnu Make syntax under Unix, and Microsoft makefile syntax elsewhere.)

Summary: makefile-mode
Makefile mode only: Alt-i list-make-preprocessor-conditionals

4.4.8 Perl Mode

Epsilon automatically enters Perl mode when you read a file with an extension of .perl, .pm, .al, .ph, or .pl
(or when you read a file with no extension that starts with a#! line mentioning Perl). Thecompile-buffer
command uses thecompile-perl-cmd variable in this mode.

Epsilon’s syntax highlighting uses theperl-comment color for comments and POD documentation,
theperl-function color for function names, and theperl-variable color for variable names.

Epsilon uses theperl-constant color for numbers, labels, the simple argument of an angle
operator such as<INPUT>, names of imported packages, buffer text after__END__ or __DATA__, here
documents, format specifications (apart from any variables and comments within), and the operatorsmy and
local.

4.4. LANGUAGE MODES 77

A here document can indicate that its contents should be syntax highlighted in a different language, by
specifying a terminating string with an extension. At the moment the extensions .tex and .html are
recognized. So for example a here document that begins with<<"end.html" will be colored as HTML.

Epsilon uses theperl-string color for string literals of all types (including regular expression
arguments tos///, for instance). Interpolated variables and comments are colored appropriately whenever
the string’s context permits interpolation.

Epsilon uses theperl-keyword color for selected Perl operators (mostly those involved in flow
control, like foreach or goto, or with special syntax rules, like tr or format), and modifiers like/x after
regular expressions.

Perl mode’s automatic indentation features use a modified version of C mode. See page 72 for
information on customizing indentation. Perl uses a different set of customization variables whose names all
start withperl- instead ofc- but work the same as their C mode cousins. These include
perl-align-contin-lines,perl-brace-offset, perl-closeback,
perl-contin-offset,perl-label-indent, perl-top-braces,perl-top-contin,
perl-top-struct, andperl-topindent. Setperl-tab-override if you want Epsilon to
assume that tab characters in Perl files aren’t always 8 characters wide. Setperl-indent if you want to
use an indentation in Perl files that’s not equal to one tab stop.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,
bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variableauto-show-perl-delimiters to zero to disable this feature.

When you yank blocks of text into a buffer in Perl mode, Epsilon can automatically reindent it. Set the
variablereindent-after-perl-yank nonzero to enable this behavior. Some Perl syntax is sensitive
to indentation, and Epsilon’s indenter may change the indentation, so you should examine yanked text to
make sure it hasn’t changed.

Press Alt-’ to display a list of all subroutines defined in the current file. You can move to a definition in
the list and presshEnteri and Epsilon will go to that definition, or press Ctrl-G to remain at the starting point.

Summary: perl-mode
Alt-’ list-definitions

4.4.9 PostScript Mode

Epsilon automatically enters PostScript mode when you read a file with an extension of .ps or .eps, or if it
contains a PostScript marker on its first line. In PostScript mode, Epsilon does appropriate syntax
highlighting, recognizing text strings, comments, and literals like/Name.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,
bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variableauto-show-postscript-delimiters to zero to disable this feature.

Summary: postscript-mode

4.4.10 Python Mode

Epsilon automatically enters Python mode when you read a file with an extension of .py. In Python mode,
Epsilon does appropriate syntax highlighting. Tagging, comment filling, and other commenting commands

78 CHAPTER 4. COMMANDS BY TOPIC

are also available. Auto-indenting adds an extra level of indentation after a line ending with “:”, and repeats
the previous indentation otherwise.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,
bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variableauto-show-python-delimiters to zero to disable this feature.

Set thepython-indent variable to alter the level of indentation Epsilon uses. (Tab widths in Python
files are always set to 8, according to Python standards.) Setcompile-python-cmd to modify the
command line used by thecompile-buffer command for Python buffer.

Press Alt-’ to display a list of all subroutines defined in the current file. You can move to a definition in
the list and presshEnteri and Epsilon will go to that definition, or press Ctrl-G to remain at the starting point.

Summary: python-mode

4.4.11 Shell Mode

Epsilon automatically enters shell mode when you read a file with an extension of .sh, .csh, or .ksh, or when
you read a file with no extension that starts with a#! line mentioning a shell like sh, csh, or bash. In Shell
mode, Epsilon does appropriate syntax highlighting, recognizing comments, variables and strings.

In Shell mode, Epsilon uses a tab size setting specified by theshell-tab-override variable.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,
bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variableauto-show-shell-delimiters to zero to disable this feature.

Summary: shell-mode

4.4.12 TeX Mode

Epsilon automatically enters TeX mode when you read a file with an extension of .tex, .ltx, or .sty.

Keys in TeX mode include Alt-i for italic text, Alt-Shift-I for slanted text, Alt-Shift-T for typewriter,
Alt-Shift-B for boldface, Alt-Shift-C for small caps, Alt-Shift-F for a footnote, and Alt-s for a centered line.

Alt-Shift-E prompts for the name of a LaTeX environment, then insertsnbeginfenvg andnendfenvg
lines for the one you select. You can press ? to select an environment from a list. (The list of environments
comes from the filelatex.env, which you can edit.) Alt-Shift-Z searches backwards for the last
nbeginfenvg directive without a matchingnendfenvg directive. Then it inserts the correctnendfenvg
directive at point.

For most of these commands, you can highlight a block of text first and Epsilon will make the text italic,
slanted, etc. or you can use the command and then type the text to be italic, slanted, etc.

By default, Epsilon inserts the appropriate LaTeX 2e/3 command (such asntextit for italic text). Set the
variablelatex-2e-or-3 to 0 if you want Epsilon to use the LaTeX 2.09 equivalent. (In the case of italic
text, this would benit.)

The keys ‘f’ and ‘$’ insert matched pairs of characters (eitherfg or $$). When you typen(or n[, TeX
mode will insert a matchingn) or n], respectively. But if you type ‘f’ just before a non-whitespace character,
it inserts only a ‘f’. This makes it easier to surround existing text with braces.

4.4. LANGUAGE MODES 79

The keyshCommai andhPeriodi remove a preceding italic correctionn/, the" key inserts the
appropriate kind of doublequote sequence like‘‘ or ’’, and Alt-" inserts an actual" character.

Some TeX mode commands are slightly different in LaTeX than in pure TeX. Set
tex-force-latex to 1 if all your documents are LaTeX,0 if all your documents are TeX, or2 if
Epsilon should determine this on a document-by-document basis. In that case, Epsilon will assume a
document is LaTeX if it contains anbeginfdocumentg statement or if it’s in a file with an .ltx extension. By
default, Epsilon assumes all documents use LaTeX.

When the cursor is on a curly brace or square bracket character likef, g, [, or], Epsilon will try to
locate its matching character and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variableauto-show-tex-delimiters to zero to disable this feature.

Set the variabletex-look-back to a bigger number if you want TeX mode to more accurately
syntax highlight very large paragraphs but be slower, or a smaller number if you want recoloring to be faster
but perhaps miscolor large paragraphs.

Thecompile-buffer command uses thecompile-tex-cmd variable in this mode.

If your TeX system uses a compatible DVI previewer, then you can use Epsilon’sjump-to-dvi
command to see the DVI output resulting from the current line of TeX. This requires some setup so that the
DVI file contains TeX source file line number data. See the description ofjump-to-dvi for details.

Summary: Alt-i tex-italic
Alt-Shift-I tex-slant
Alt-Shift-T tex-typewriter
Alt-Shift-B tex-boldface
Alt-Shift-C tex-small-caps
Alt-Shift-F tex-footnote
Alt-s tex-center-line
Alt-Shift-E tex-environment
Alt-Shift-Z tex-close-environment
f tex-left-brace
$ tex-math-escape
hCommai, hPeriodi tex-rm-correction
" tex-quote
Alt-" tex-force-quote
n(tex-inline-math
n[tex-display-math

tex-mode
latex-mode
jump-to-dvi

4.4.13 Visual Basic Mode

Epsilon automatically enters Visual Basic mode when you read a file with an extension of .vb, .bas, .frm,
.vbs, .cls, .aspx, .ctl, or .dsr. In Visual Basic mode, Epsilon does appropriate syntax highlighting, smart
indenting, tagging, and comment filling.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,
bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not
highlight it. Set the variableauto-show-vbasic-delimiters to zero to disable this feature.

80 CHAPTER 4. COMMANDS BY TOPIC

Set thevbasic-indent variable to alter the level of indentation Epsilon uses. Set the
vbasic-indent-with-tabs variable nonzero if you want Epsilon to indent using a mix of tab
characters and spaces, instead of just spaces.

Press Alt-’ to display a list of all subroutines defined in the current file. You can move to a definition in
the list and presshEnteri and Epsilon will go to that definition, or press Ctrl-G to remain at the starting point.

Summary: vbasic-mode

4.5 More Programming Features

Epsilon has a number of features that are useful when programming, but work similarly regardless of the
programming language. These are described in the following sections. Also see the language-specific
commands described in previous sections.

4.5.1 Pulling Words

Thepull-word command bound to the Ctrl-hUpi key (as well as the F3 key) scans the buffer before point,
and copies the previous word to the location at point. If you type the key again, it pulls in the word before
that, etc. Whenever Epsilon pulls in a word, it replaces any previously pulled-in word. If you like the word
that has been pulled in, you do not need to do anything special to accept it–Epsilon resumes normal editing
when you type any key except for the few special keys reserved by this command. You can type
Ctrl-hDowni (thepull-word-fwd command) to go in the other direction. Type Ctrl-G to erase the pulled-in
word and abort this command.

If a portion of a word immediately precedes point, that subword becomes a filter for pulled-in words.
For example, suppose you start to type a word that beginsWM, then you notice that the word
WM_QUERYENDSESSION appears a few lines above. Just type Ctrl-hUpi and Epsilon fills in the rest of this
word.

The command provides various visual clues that tell you exactly from which point in the buffer Epsilon
is pulling in the word. If the source is close enough to be visible in the window, it is simply highlighted. If
the pulled-in word comes from farther away, Epsilon shows the context in the echo area, or in a context
window that it pops up (out of the way of your typing).

The commands do nothing if point appears in the interior of a word, or at the beginning of a word. They
work only if point is at the end of a word, or not adjacent to a word.

Summary: Ctrl-hUpi, hF-3i pull-word
Ctrl-hDowni pull-word-fwd

4.5.2 Accessing Help

This section describes how Epsilon can help you access compiler help files and similar external
documentation. See page 35 for directions on obtaining help on Epsilon itself.

Epsilon for Unix provides aman command for reading man pages. At its prompt, type anything you
would normally type to the man command, such as-k open to get a list of man pages related to the
keyword “open”. If you don’t use any flags or section names, Epsilon will provide completion on available

4.5. MORE PROGRAMMING FEATURES 81

topics. For example, type “?” to see all man page topics available. Within man page output, you can
double-click on a reference to another man page, such asecho(1), or presshEnteri to follow it, or press m
to be prompted for another man page topic.

You can set up Epsilon for Windows to search for help on a programming language construct (like an
API function or a C++ keyword) in a series of help files. Epsilon can link to both .hlp and .chm (HtmlHelp)
files. Run the Select Help Files... command on the help menu to select the help files you want to use. This
command adds help files to the Help menu, to the context menu that the secondary mouse button displays,
and to the list of files searched by the Search All Help Files... command on the help menu. The last
command is only available under 32-bit versions of Windows. Edit the file gui.mnu to further modify the
contents of Epsilon’s menus. Edit the file epswhlp.cnt to modify the list of files searched by Search All Help
Files.

If you highlight a word in the buffer before running a help command, Epsilon will search for help on
that keyword. Otherwise Epsilon will display either a list of available keywords or the table of contents for
the help file you selected.

Summary: select-help-files
search-all-help-files

4.5.3 Commenting Commands

The Alt-; command creates a comment on the current line, using the commenting style of the current
language mode. The comment begins at the column specified by thecomment-column variable (by
default 40). (However, if the comment is the first thing on the line andindent-comment-as-code is
nonzero, it indents to the column specified by the buffer’s language-specific indentation function.) If the line
already has a comment, this command moves the comment to the comment column.

With a numeric argument, Alt-; searches for the next comment in the buffer and goes to its start. With a
negative argument, Alt-; searches backwards for a comment. Press Alt-; again to reindent the comment.

By default (and in modes that don’t specify a commenting style), comments begin with the ; character
and continue to the end of the line. C mode recognizes both old-style /* */ comments, and the newer
C++-style comments //, and by default creates the latter. Set the variablenew-c-comments to 0 if you
want Alt-; to create old-style comments.

The Ctrl-X ; command sets future comments to begin at the current column. With a positive argument,
it sets the comment column based on the indentation of the previous comment in the buffer. If the current
line has a comment, this command reindents it.

With a negative argument (as in Alt-hMinusi Ctrl-X ;), the Ctrl-X ; command doesn’t change the
comment column at all. Instead, it kills any comment on the current line. The command saves the comment
in a kill buffer.

The comment commands look for comments using regular expression patterns (see page 59) contained
in the buffer-specific variablescomment-pattern (which should match the whole comment) and
comment-start (which should match the sequence that begins a comment, like ‘/*’). When creating a
comment, it inserts the contents of the buffer-specific variablescomment-begin andcomment-end
around the new comment. When Epsilon puts a buffer in C mode, it decides how to set these variables based
on thenew-c-comments variable.

In C and Perl modes, Epsilon normally auto-fills text in block comments as you type, breaking overly
long lines. See thec-auto-fill-mode variable. As with normal auto-fill mode (see page 68), use

82 CHAPTER 4. COMMANDS BY TOPIC

Ctrl-X F to set the right margin for filling. Set thec-fill-column variable to change the default right
margin in C and Perl mode buffers.

You can manually refill the current paragraph in a block comment by pressing Alt-q. If you provide a
numeric prefix argument to Alt-q, say by typing Alt-2 Alt-q, it will fill using the current column as the right
margin. By default, Epsilon doesn’t apply auto-filling to a comment line that also contains non-comment
text (such as a C statement with a comment after it on the same line). Use Alt-q to break such lines.

Summary: Alt-; indent-for-comment
Ctrl-X ; set-comment-column
Alt- hMinusi Ctrl-X ; kill-comment

4.6 Fixing Mistakes

4.6.1 Undoing

Theundo command on F9 undoes the last command, restoring the previous contents of the buffer, or
moving point to its position, as if you hadn’t done the last command. If you press F9 again, Epsilon will
undo the command before that, and so forth.

For convenience, when typing text Epsilon treats each word you type as a single command, rather than
treating each character as its own command. For example, if you typed the previous paragraph and pressed
undo, Epsilon would remove the text “forth.”. If you pressedundo again, Epsilon would remove “so ”.

Epsilon’s undo mechanism considers each subcommand of a complicated command such as
query-replace a separate command. For example, suppose you do aquery-replace, and one-by-one replace
ten occurrences of a string. Theundo command would then reverse the replacements one at a time.

Epsilon remembers changes to each buffer separately. Say you changed buffer 1, then changed buffer 2,
then returned to buffer 1. Undoing now would undo the last change you made to buffer 1, leaving buffer 2
alone. If you switched to buffer 2 and invoked undo, Epsilon would then undo changes to that buffer.

Theredo command on F10 puts your changes back in (it undoes the last undo). If you press undo five
times, then press redo four times, the buffer would appear the same as if you pressed undo only once.

You can move back and forth undoing and redoing in this way. However, if you invoke a command
(other thanundo or redo) that either changes the buffer or moves point, you can not redo any commands
undone immediately before that command. For example, if you type “one two three”, undo the “three”, and
type “four” instead, Epsilon will behave as if you had typed “one two four” all along, and will let you undo
only that.

The commandsundo-changes andredo-changes work like undo andredo, except they will
automatically undo or redo all changes to the buffer that involve only movements of point, and stop just
before a change of actual buffer contents.

For example, when you invokeundo-changes, it performs anundo, then continues to undo changes
that involve only movements of point. Theundo-changes command will either undo a single buffer
modification (as opposed to movement of point), as a plainundo command would, or a whole series of
movement commands at once. It doesn’t undo any movement commands after undoing a buffer
modification, only after undoing other movement commands. Theredo-changes command works similarly.

The Ctrl-F9 key runsundo-changes, and the Ctrl-F10 key runsredo-changes.

The buffer-specific variableundo-size determines, in part, how many commands Epsilon can
remember. For example, ifundo-size has the value 500,000 (the default), Epsilon will save at most

4.7. THE SCREEN 83

500,000 characters of deleted or changed text for each buffer. Each buffer may have its own value for this
variable. Epsilon also places an internal limit on the number of commands, related to command complexity.
The 32-bit versions of Epsilon for Windows and Unix can typically remember about 10,000 simple
commands (ignoring any limit imposed byundo-size) but more complicated commands make the
number smaller. For other versions the per-buffer limit is around 500 – 1500 commands.

Summary: F9, Ctrl-X U undo
F10, Ctrl-X R redo
Ctrl-F9, Ctrl-X Ctrl-U undo-changes
Ctrl-F10, Ctrl-X Ctrl-R redo-changes

4.6.2 Interrupting a Command

You can interrupt a command by pressing Ctrl-G, the defaultabort key. For example, you can use Ctrl-G to
stop an incremental search on a very long file if you don’t feel like waiting. You can set the abort key with
theset-abort-key command. If you interrupt Epsilon while reading a file from disk or writing a file to disk,
it will ask you whether you want to abort or continue. Typing the abort key also cancels any currently
executing keyboard macros.

In the DOS version, thehScroll Locki key also acts like the abort key.

Aborting normally only works when a command checks for it. When writing a new command in EEL,
you may wish to stop it even though it contains no checks for aborting. In the DOS version, you may use the
Control-hScroll Locki key to start the EEL debugger. You can then presshScroll Locki to abort from the
command. As withhScroll Locki, you cannot bind a command to the Control-hScroll Locki key.

In the OS/2 version of Epsilon, pressing Control-hScroll Locki makes a list of options appear at the
bottom. You can choose to start the EEL debugger, abort the current command, exit the editor immediately
(without warning if your buffers contain unsaved changes), or do nothing.

Summary: Ctrl-G,hScroll Locki abort
set-abort-key

4.7 The Screen

4.7.1 Display Commands

The Ctrl-L command causes Epsilon to center point in the window. If you give a numeric argument to
Ctrl-L, Epsilon makes the current line appear on that line of the window. For instance, give a numeric
argument of zero to make the current line appear on the topmost line of the window. (Theline-to-top
command is another way to do this.) If you give a numeric argument greater than the number of lines the
window occupies, Epsilon will position the current line at the bottom of the window. (Theline-to-bottom
command is another way to do this.) When repeated, the Ctrl-L command also completely refreshes the
screen. If some other program has written text on the screen, or something has happened to garble the
screen, use this command to refresh it.

The Alt-hCommai and Alt-hPeriodi commands move point to the first and last positions displayed on
the window, respectively.

84 CHAPTER 4. COMMANDS BY TOPIC

The Ctrl-Z and Alt-Z commands scroll the text in the window up or down, respectively, by one line.
These scrolling commands will move point as necessary so that point remains visible in the window.

The Ctrl-V and Alt-V commands scroll the text of the window up or down, respectively, by several lines
fewer than the size of the window. These commands move point to the center line of the window.

You can control the exact amount of overlap between the original window of text and the new window
with thewindow-overlap variable. A positive value for this variable means to use that number of screen
lines of overlap between one window of text and the next (or previous). A negative value for
window-overlap represents a percentage of overlap, instead of the number of screen lines. For example,
the default value forwindow-overlap of 2 means to use 2 lines of overlap. A value of�25 for
window-overlapmeans to overlap by 25%.

You can change how Epsilon pages through a file by setting the variable
paging-centers-window. Epsilon normally positions the cursor on the center line of the window as
you move from page to page. Set this variable to zero if you want Epsilon to try to keep the cursor on the
same screen line as it pages.

Thegoto-line command on Ctrl-X G prompts for a line number and then goes to the beginning of that
line in the current buffer. If you prefix a numeric argument, Epsilon will use that as the line number. Use the
format10:20 to include a column specification; that one goes to line 10, column number 20. Or use a
percent character to indicate a buffer percentage:25% goes to a line 25% of the way through the buffer.

The Ctrl-X L command shows the number of lines in the buffer and the number of the line containing
point. It also shows the number of bytes the file would occupy if written to disk. This can differ from the
size of the buffer, because the latter counts each line separator as a single character. Such characters require
two bytes when written to disk in the format used in Windows, DOS, and OS/2, however. See page 100 for
information on how Epsilon translates line separator characters.

The Ctrl-X = command displays in the echo area information pertaining to point. It shows the size of
the buffer, the character position in the buffer corresponding to point, that character’s column, and the value
of that character in decimal, hex, and “normal” character representation.

Summary: Ctrl-L center-window
Ctrl-V, hPgDni next-page
Alt-V, hPgUpi previous-page
Ctrl-Z scroll-up
Alt-Z scroll-down
hHomei, Alt-hCommai beginning-of-window
hEndi, Alt-hPeriodi end-of-window

line-to-top
line-to-bottom

Ctrl-X = show-point
Ctrl-X L count-lines
Ctrl-X G goto-line

4.7.2 Horizontal Scrolling

The Alt-f and Alt-g commands scroll the text in the window to the left or right, respectively, by one column.

The Alt-f and Alt-g commands also control how Epsilon displays long lines to you. Epsilon can, for
display purposes, wrap long lines to the next line. Epsilon indicates a wrapped line by displaying a special
continuation character where it broke the line for display purposes. But by default Epsilon displays long

4.7. THE SCREEN 85

lines by simply scrolling them off the display. To switch from scrolling long lines to wrapping long lines,
use the Alt-g command to scroll to the right, past the end. Epsilon will then wrap long lines.

Similarly, to switch from wrapping long lines to scrolling long lines, press the Alt-f key. Subsequent
use of the Alt-f command will then scroll the text in the window to the left, as explained above. Whenever
Epsilon changes from one display scheme to the other, it indicates the change in the echo area. If, due to
scrolling, some of a buffer’s contents would appear past the left edge of the screen, the mode line displays
“<number” to indicate the number of columns hidden to the left.

You can also use thechange-line-wrapping command to set whether Epsilon wraps long lines in the
current window, or horizontally scrolls across them.

If you want Epsilon to always wrap long lines, set the default value of the window-specific variable
display-column to -1 using theset-variable command on F8, then save the state using thewrite-state
command on Ctrl-F3.

In a dialog, another way to handle lines that are too long to fit in a window is to resize the dialog by
moving its borders. Most dialogs in Epsilon for Windows are resizable, and Epsilon will remember the new
size from session to session.

The Alt-PageUp and Alt-PageDown keys scroll horizontally, like Ctrl-V and Alt-V. More precisely, they
move the point left or right on the current line by about half the width of the current window, then reposition
the window so the point is visible. The commandjump-to-column on Alt-g prompts for a column number,
then goes to the specified column.

Summary: Alt-f scroll-left
Alt-g scroll-right

change-line-wrapping
Alt- hPageUpi page-left
Alt- hPageDowni page-right
Alt-g jump-to-column

4.7.3 Windows

Epsilon has quite a few commands to deal with creating, changing, and moving windows. Changing the size
or number of the windows never affects the buffers they display.

Normally, each buffer has a single point, but this can prove inconvenient when a buffer appears in more
than one window. For this reason, Epsilon associates a point with each window in that case. Consequently,
you can look at different parts of the same buffer by having the same buffer displayed in different windows
and moving around independently in each of them.

Creating Windows

The Ctrl-X 2 command splits the current window into two windows, one on top of the other, each about half
as large. Each window displays the same buffer that the original did. This command will only split the
window if each new window would occupy at least 1 screen line, not counting the mode line. To edit another
file in a new window, first use Ctrl-X 2, then use one of the file commands described on page 96.

The Ctrl-X 5 command works similarly, but splits the current window so that the two child windows
appear side by side, instead of stacked. This command will only split the window if each new window
would occupy at least 1 column. Since this typically results in narrow windows, the Ctrl-X 5 command also
sets up the windows to scroll long lines, as described on page 84.

86 CHAPTER 4. COMMANDS BY TOPIC

Summary: Ctrl-X 2 split-window
Ctrl-X 5 split-window-vertically

Removing Windows

To get rid of the current window, use the Ctrl-X 0 command. If the previous window can move into the
deleted window’s space, it does. Otherwise, the next window expands into the deleted window’s space.

The Ctrl-X 1 command makes the current window occupy the entire screen, deleting all the other
windows. The Ctrl-X Z command operates like Ctrl-X 1, except that it also remembers the current window
configuration. Later, if you type Ctrl-X Z again, the command restores the saved window configuration.

Summary: Ctrl-X 0, Ctrl-X Ctrl-D kill-window
Ctrl-X 1 one-window
Ctrl-X Z zoom-window

Selecting Windows

The Ctrl-X N key moves to the next window, wrapping around to the first window if invoked from the last
window. The Ctrl-X P key does the reverse: it moves to the previous window, wrapping around to the last
window if invoked from the first window.

You can think of the window order as the position of a window in a list of windows. Initially only one
window appears in the list. When you split a window, the two child windows replace it in the list. The top or
left window comes before the bottom or right window. When you delete a window, that window leaves the
list.

You can also change windows with themove-to-window command. It takes a cue from the last key in
the sequence used to invoke it, and moves to a window in the direction indicated by the key. If you invoke
the command with Ctrl-XhRighti, for example, the window to the right of the cursor becomes the new
current window. The Ctrl-XhLefti key moves left, Ctrl-XhUpi moves up, and Ctrl-XhDowni moves down.
If key doesn’t correspond to a direction, the command asks for a direction key.

Summary: Alt-hEndi, Ctrl-X N next-window
Alt- hHomei, Ctrl-X P previous-window
Ctrl-hTabi, Shift-Ctrl-hTabi switch-windows
Ctrl-X hUpi, Ctrl-X hDowni move-to-window
Ctrl-X hLefti, Ctrl-X hRighti move-to-window

Resizing Windows

The easiest way to resize Epsilon windows is to use the mouse. But Epsilon also provides various ways to
do this via the keyboard.

The Ctrl-X + key runs the commandenlarge-window-interactively. After you invoke the command,
point to a window border using the arrow keys. The indicated window border moves so as to make the
current window larger. You can keep pressing arrow keys to enlarge the window. To switch from enlarging

4.7. THE SCREEN 87

to shrinking, press the minus key. The command Ctrl-X – works like Ctrl-X +, but starts out shrinking
instead of enlarging. Whenever the window looks the right size, presshEnteri to leave the command.

You can use several other Epsilon commands to resize windows. The Ctrl-hPgUpi key enlarges the
current window vertically, and the Ctrl-hPgDni key shrinks the current window vertically. They do this by
moving the mode line of the window above them up or down, if possible. Otherwise, the current window’s
mode line moves up or down, as appropriate.

You can also enlarge and shrink windows horizontally. Theenlarge-window-horizontally command
on Ctrl-X @ enlarges the current window by one column horizontally and theshrink-window-horizontally
command shrinks it. They do this by moving the left boundary of the current window left or right, if
possible. Otherwise, the current window’s right boundary moves, as appropriate. You can use a numeric
prefix with these commands to adjust by more than one line or column, or in the opposite direction.

Summary: Ctrl-X + enlarge-window-interactively
Ctrl-X – shrink-window-interactively
Ctrl-hPgUpi, Ctrl-X ˆ enlarge-window
Ctrl-hPgDni shrink-window
Ctrl-X @ enlarge-window-horizontally

shrink-window-horizontally

4.7.4 Customizing the Screen

Epsilon displays tabs in a file by moving over to the next tab stop column. Epsilon normally spaces tabs
every four or eight columns, depending on the mode. You can change the tab stop spacing by setting the
variabletab-size. Another method is to use theset-tab-size command, but this can only set the tab size
in the current buffer. To change the default value for new buffers, set the variable using theset-variable
command.

Many indenting commands take the tab size into account when they indent using spaces and tabs. See
page 70 for information on the indenting commands.

Epsilon can display special characters in four ways. Epsilon normally displays control characters with a
ˆ prefix indicating a control character (except for the few control characters likeˆI that have a special
meaning—̂ I, for example, meanshTabi). It displays other characters, including national characters, with
their graphic symbol.

In mode 0, Epsilon displays Meta characters (characters with the 8th bit on) by prefixing to them a
“M-”, e.g., Meta C appears as “M-C”. Epsilon display Control-meta characters by prefixing to them “M-ˆ”,
e.g., “M-̂ C”. Epsilon displays most control characters by prefixing to them a caret, e.g., Control C appears
as “̂ C”.

In mode 1, Epsilon displays graphic symbols for all control characters and meta characters, instead of
using a prefix as in̂ A (except for the few that have a special meaning, likehTabi or hNewlinei).

In mode 2, Epsilon displays control and meta characters by their hexadecimal ASCII values, with an
“x” before them to indicate hex.

In mode 3, which is the default, Epsilon displays control characters as “ˆC”, and uses the graphic
symbol for other characters, as described above.

Theset-show-graphic command on Ctrl-F6 cycles among these four modes of representation.
Providing a numeric argument of 0, 1, 2, or 3 selects the corresponding mode.

88 CHAPTER 4. COMMANDS BY TOPIC

The commandchange-show-spaces on Shift-F6 makes spaces, tabs, and newline characters in the
buffer visible, by using special graphic characters for each. Pressing it again makes these characters
invisible. The command sets the buffer-specific variableshow-spaces.

Epsilon will usually display a message in the echo area for at least one second before replacing it with a
new message. You can set this time with thesee-delay variable. It contains the number of hundredths of
a second that a message must remain visible, before a subsequent message can overwrite it. Whenever you
press a key with messages pending, Epsilon skips right to the last message and puts that up. (Epsilon doesn’t
stop working just because it can’t put up a message; it just remembers to put the message up later.)

Under DOS and OS/2, you can set variables to modify the text cursor shape Epsilon displays in
different situations. Epsilon gets the cursor shape from one of four variables, depending upon whether or not
Epsilon is in overwrite mode, and whether or not the cursor is positioned in virtual space. (See the
description of thevirtual-space variable on page 40.)

Variable In overwrite mode? In virtual space?
normal-cursor No No
overwrite-cursor Yes No
virtual-insert-cursor No Yes
virtual-overwrite-cursor Yes Yes

Each of these variables contains a code that specifies the top and bottom edges of the cursor, such as
3006, which specifies a cursor that begins on scan line 3 and extends to scan line 6 on a character box. The
topmost scan line is scan line 0.

Scan lines above 50 in a cursor shape code are interpreted differently. A scan line number of 99
indicates the highest-numbered valid scan line (just below the character), 98 indicates the line above that,
and so forth. For example, a cursor shape like 1098 produces a cursor that extends from scan line 1 to the
next-to-last scan line, one scan line smaller at top and bottom than a full block cursor.

The Windows and X versions of Epsilon use a similar set of variables to control the shape of the cursor
(or caret, in Windows terminology).

Variable In overwrite mode? In virtual space?
normal-gui-cursor No No
overwrite-gui-cursor Yes No
virtual-insert-gui-cursor No Yes
virtual-overwrite-gui-cursor Yes Yes

Each variable contains a code that specifies the height and width of the caret, as well as a vertical offset,
each expressed as a percentage of the character dimensions. Values close to0 or 100 are absolute pixel
counts, so a width of98 is two pixels smaller than a character. A width of exactly zero means use the
default width.

All measurements are from the top left corner of the character. A nonzero vertical offset moves the caret
down from its usual starting point at the top left corner.

In EEL programs, you can use theGUI_CURSOR_SHAPE()macro to combine the three values into
the appropriate code; it simply multiplies the height by 1000 and the offset by 1,000,000, and adds both to
the width. So the default Windows caret shape ofGUI_CURSOR_SHAPE(100, 2, 0), which specifies a
height of 100% of the character size and a width of 2 pixels, is encoded as the value 100,002. The value
100100 provides a block cursor, while 99,002,100 makes a good underline cursor. (It specifies a width of
100%, a height of 2 pixels, and an offset of 99 putting the caret down near the bottom of the character cell.)
TheCURSOR_SHAPE()macro serves a similar purpose for DOS and OS/2 versions of Epsilon.

4.7. THE SCREEN 89

Epsilon for Windows can draw a rectangle around the current line to increase its visibility and make it
easier to find the cursor. Set thedraw-focus-rectangle variable nonzero to enable this. Set the
draw-column-markers variable if you want Epsilon for Windows to draw a vertical line at a particular
column (specified by this variable), to make it easier to edit text that may not go past a certain column. (Also
see auto-fill mode described on page 68.)

Theset-display-characters command lets you alter the various characters that Epsilon uses to
construct its display. These include the line-drawing characters that form window borders, the characters
Epsilon uses in some of the display modes set byset-show-graphic, the characters it uses to construct the
scroll bar, and the characters Epsilon replaces for the graphical mouse cursor it normally uses in DOS. The
command displays a matrix of possible characters, and guides you through the selection process.

Summary: Ctrl-F6 set-show-graphic
Shift-F6 change-show-spaces

set-tab-size
set-display-characters

4.7.5 Fonts

Theset-font command changes the font Epsilon for Windows uses, by displaying a font dialog box and
letting you pick a new font. Modifying thefont-fixed variable is another way to set the font. (The
above applies to Epsilon for Unix as well, when it runs as an X program. To set the font permanently under
X, see page 7.)

You can specify a specific font for use in printing with theset-printer-font command. Similarly, the
set-dialog-font command lets you specify what font to use for Epsilon’s dialog windows (like the onebufed
displays). There are also corresponding variablesfont-printer andfont-dialog.

The commandchange-font-size supplementsset-font by providing additional font choices. Some
Windows fonts include a variety of character cell widths for a given character cell height. (For example,
many of the font selections available in windowed DOS sessions use multiple widths.) Commands like
set-font utilize the standard Windows font dialog, which doesn’t provide any way to select these alternate
widths. Thechange-font-size command lets you choose these fonts.

Thechange-font-size command doesn’t change the font name, or toggle bold or italic. You’ll need to
use theset-font command to do that.

Instead,change-font-size lets you adjust the height and width of the current font using the arrow keys.
You can abort to restore the old font settings, or presshEnteri or hSpacei to keep them. This is a handy way
to shrink or expand the font size. A width or height of 0 means use a suitable default.

Summary: set-font
set-printer-font
set-dialog-font
change-font-size

4.7.6 Setting Colors

This section describes how to set colors in Epsilon. Epsilon comes with many built-in color schemes. Each
color schemetells Epsilon what color to use for eachcolor class. Color classes correspond to the different

90 CHAPTER 4. COMMANDS BY TOPIC

parts of the screen. There are separate color classes for normal text, highlighted text, text in the echo area,
syntax-highlighted comments, and so forth. (See below for a partial list.)

You can select a different color scheme using theset-color command. In Epsilon for Unix under X,
simply pick a new color scheme from the list. In other versions of Epsilon, use the F and B keys to move
forward and backward in the list of color schemes, or select a new one with the mouse.

Epsilon remembers the name of one color scheme for use on color displays, and a separate scheme for
monochrome displays. Epsilon for Windows remembers its selected scheme separately, so you can select
one color scheme to use in Epsilon for Windows, and a different scheme in Epsilon for DOS. When you’ve
turned off window borders with thetoggle-borders command, Epsilon uses color schemes with particular,
fixed names. See page 93.

When Epsilon for Unix runs as an X program, it uses the same scheme settings as Epsilon for Windows.
When it runs as a terminal program, it uses the same color or monochrome scheme as the DOS and OS/2
versions. One exception: When Epsilon runs as a terminal program and notices that the TERM environment
variable is set to xterm, it uses a special color scheme that’s designed to inherit the background and
foreground colors of the underlying xterm.

Use theset-color command to select a color scheme from the list of available color schemes. You can
also customize a color scheme by selecting one, selecting a color class within it, and using the buttons to
select a different foreground or background color.

The Unix, DOS, and OS/2 versions ofset-color use a slightly different user interface than the Windows
version. In those versions, you can select the color scheme in the Color Scheme window with the F and B
keys. Then select the particular color class you want to modify by pressing the N and P keys. Finally, use
the arrow keys to move about in the matrix of color combinations that Epsilon displays. You can also select
a color scheme, color class, or color combination with the mouse.

Another method of customizing a color scheme is to create an EEL file like stdcolor.e. The file
stdcolor.e defines all Epsilon’s built-in color schemes. You can use one of these as a model for your own
color scheme. See page 326 for the syntax of color scheme definitions.

After you have defined a color scheme usingset-color, you may wish to save it to a file in a
human-readable format. (You’ll need to do this to transfer the modified color scheme to a different version
of Epsilon.) Theexport-colors command builds an EEL file named mycolors.e that contains all Epsilon’s
current color definitions for the current color scheme. (With a numeric argument, it lists all schemes.)

The DOS, OS/2, and Unix terminal versions of Epsilon are limited to the sixteen standard colors for
foreground and background, for a total of 256 possible color combinations, while Epsilon for Windows (and
Epsilon for Unix, as an X program) have no such limitation. Internally, all versions of Epsilon store 32 bits
of color information for the foreground and background of each color class. The DOS, OS/2 and Unix
terminal versions convert back to 4 bits of foreground and background when displaying text.

On EGA and VGA systems, Epsilon for DOS or OS/2 provides eight high intensity background colors
in addition to the standard eight background colors, for a total of 256 possible foreground/background
combinations. The variableselectable-colors controls the number of colors theset-color command
lets you select from. Epsilon sets it to 256 instead of 128 on appropriate systems. The command still only
displays 128 combinations at a time. ThehUpi andhDowni keys flip to the other 128 possibilities, or use the
mouse to scroll the color window.

Theset-color command displays a short description of each color class as you select it. Here we
describe a few of the color classes in more detail:

text Epsilon puts the text of an ordinary buffer in this color. But if Epsilon is doing code coloring in a
buffer, it uses the color classes defined for code coloring instead. For C, C++, Java, and EEL files,
these all start with “c-” and appear farther down in the list of color classes.

4.7. THE SCREEN 91

mode-line Epsilon uses this color for the text in the mode line of a tiled window.

horiz-border Epsilon uses this color for the line part of the mode line of a tiled window.

vert-border Epsilon uses this color for the vertical border it draws between tiled windows.

after-exiting Epsilon for DOS or OS/2 tries to leave the screen in this color when you exit. Under
DOS, Epsilon sets this color when it starts up, based on the screen’s colors before you started Epsilon.
Set therestore-color-on-exit variable to zero to disable this behavior, so you can set the
color explicitly and preserve the change in your state file.

debug-text The EEL debugger uses this color when it displays EEL source code.

default Epsilon initializes any newly-defined color classes (see page 89) with this color.

screen-border Epsilon sets the border area around the screen or window to match this color’s
background. Epsilon only uses the background part of this color; the foreground part doesn’t matter.

screen-decoration Epsilon for Windows can draw a focus rectangle or column markers. The
foreground color specified here determines their color. See thedraw-focus-rectangle and
draw-column-markers variables.

pull-highlight Thepull-word command uses this color for its highlighting.

Summary: set-color
export-colors

4.7.7 Code Coloring

Epsilon does syntax-based highlighting of C, C++, Java, and EEL files. Set the buffer-specific variable
want-code-coloring to 0 to disable this feature or run thechange-code-coloring command. To
change the colors Epsilon uses, see the previous section.

If you use a slower computer, you may need to tell Epsilon to do less code coloring, in order to get
acceptable response time. Set the variableminimal-coloring to 1 to tell Epsilon to look only for
comments, preprocessor lines, strings, and character constants when coloring. Epsilon will color all
identifiers, functions, keywords, numbers and punctuation the same, using thec-ident color class for all.
This makes code coloring much faster.

When Epsilon begins coloring in the middle of a buffer, it has to determine whether it’s inside a
comment by searching back for comment characters. If you edit extremely large C files with few block
comments, you can speed up Epsilon by telling it not to search so far. Set the variablecolor-look-back
to the number of characters Epsilon should search through before giving up. Any block comments larger
than this value may not be colored correctly. A value of zero (the default) lets Epsilon search as far as it
needs to, and correctly colors comments of any size.

When Epsilon isn’t busy acting on your keystrokes, it looks through the current buffer and assigns
colors to the individual regions of text, so that Epsilon responds faster as you scroll through the buffer. For
smoother performance, Epsilon doesn’t begin to do this until it’s been idle for a certain period of time,
contained in theidle-coloring-delay variable. This holds the number of hundredths of a second to
wait before computing more coloring information. By default, it’s100, so Epsilon waits one second. Set it
to -1 to disable background code coloring.

Normally Epsilon colors buffers as needed. You can set Epsilon to instead color the entire buffer the
first time it’s displayed. Set the variablecolor-whole-buffer to the size of the largest buffer you want
Epsilon to entirely color at once.

92 CHAPTER 4. COMMANDS BY TOPIC

Summary: change-code-coloring

4.7.8 Video Display Modes

Under DOS and OS/2, Epsilon supports the special video display modes available with EGA and VGA
boards. These allow you to display more characters on the screen than the standard 80 columns and 25 lines.
Thenext-video command on Ctrl-F5 switches to a different video mode, if it can. It will eventually cycle
through all the video modes. Theset-video command on Alt-F5 asks for the name of a particular video
mode, providing completion. Video modes have names like 80x25.

On EGA boards, Epsilon for DOS provides 80x25, 80x35, and 80x43 modes. On VGA boards, Epsilon
provides 80x25, 80x28, 80x35, 80x40, and 80x50 modes. Most VGA boards can switch to 80x43 mode as
well, but some can’t. Under DOS, Epsilon will assume that your VGA board can’t do 80x43 mode, unless
you set the variablevga43 to a nonzero value.

Under OS/2, complications caused by incompatible boards don’t occur. Epsilon provides 80x25 and
80x43 to EGA users, and 80x25, 80x30, 80x43, 80x50, and 80x60 to VGA users.

Epsilon can also support any additional video modes provided by a VESA Super VGA TSR or BIOS.
Super VGA display boards often come with VESA support built in, or supplied as a TSR program you can
load in your config.sys or autoexec.bat file. You can set the variableextra-video-modes to 3 to let
Epsilon look for any video modes the Super VGA program provides, and add them to the list of available
modes. Typically these include 132 column modes. (You can see the full list by pressing Alt-F5, then
pressing “?”.) Epsilon only checks for video modes when it starts, so you must set this variable, save it using
thewrite-state command on Alt-F3, exit Epsilon and restart to begin using these modes.

Epsilon also detects and supports the Ultravision TSR by Personics Corporation. The video modes it
provides replace those built into Epsilon. If an Ultravision TSR and a VESA Super VGA TSR are both
present, the Ultravision TSR takes precedence. For Epsilon to use the Ultravision TSR, it must be version
1.20 or later, and you must setextra-video-modes as above.

If you need to disable Epsilon’s support of VESA SVGA or Ultravision TSR’s for any reason, you can
set the variableextra-video-modes back to 0. Epsilon needs to load the file vidextra.b to support these
additional modes. If it cannot find this file in the current directory or along the EPSPATH, it will not be able
to switch to any of the additional modes.

You can use the commandlist-svga-modes to see a list of modes that were added. For VESA modes,
the command displays additional information about each mode provided by the VESA driver.

For OS/2, run the commandlist-svga-modes just once to add modes; it will prompt for the location of
the fileSVGADATA.PMI, which is normally in your mainnOS2 directory. This is a text file which describes
all the available modes for your video board. If the file doesn’t exist or is out of date, you can rebuild it by
running the OS/2 commandSVGA ON in a full-screen DOS session. See your OS/2 documentation for more
information on this program.

Thelist-svga-modes command scans the fileSVGADATA.PMI to determine which video modes are
supported by the display board, and creates an Epsilon definition for each one. It also displays a list of all
the modes it adds. You can delete modes you don’t want using thedelete-name command: type
“video-mode-os2” at its prompt and then press “?”, and you’ll see the list of video modes. When you’re
satisfied with the list of video modes, you should save them using thewrite-state command on Ctrl-F3.

Unlike the DOS version of thelist-svga-modes command, the OS/2 version not only lists the new
modes, but also defines them for Epsilon. You must run the OS/2 version of this command before Epsilon
can use the extra modes. Under DOS, on the other hand, Epsilon loads the new modes automatically each
time it starts, so you don’t have to run thelist-svga-modes command unless you want to see the new modes.

4.7. THE SCREEN 93

If your video board offers additional video modes beyond the standard ones described above, but there
is no VESA SVGA driver available for it, you can add support for the new modes yourself. The rest of this
section describes how to make Epsilon support these additional modes.

First, Epsilon for DOS can support only text modes, not graphics modes. The ROM BIOS must support
cursor positioning in that mode, as well. Epsilon for OS/2 doesn’t have these restrictions: if the operating
system supports the mode, you can make Epsilon use it.

The simplest way to use a new mode assumes that the board’s manufacturer provides a program that
puts the board in the new mode. Run that program before you start Epsilon. Epsilon should automatically
notice and use the screen’s new dimensions. If not, you can tell Epsilon with the-vl and-vc switches (see
page 15). (When you start Epsilon, put the name of a file on its command line. If you don’t include a file
name, Epsilon will try to restore a previous session, including video mode, and won’t use the new screen
dimensions.)

Now suppose you want to use the commands described above to switch in and out of the new mode
from within Epsilon.

Under DOS, you can define a new mode without using EEL. If a numeric variable with a name like
“video-mode-132x60” exists, Epsilon assumes that it contains the value of a BIOS mode number, and that
asking the ROM BIOS to switch to that mode number will make the screen have those dimensions. For
example, one EGA-compatible video board will go into 132 by 60 mode when you switch to mode 99. If
you define a variable with the above name and give it the value 99, Epsilon will switch in and out of that
mode just as it does with the standard 80 by 43 mode that all EGA boards support.

If this variable technique doesn’t work (for example, under OS/2, or if the BIOS doesn’t support the
mode), you must write the screen-switching function in EEL. Generally, you can do this by defining an EEL
subroutine with a name like “video-mode-132x60”. (In an EEL program, you would write the name
“video_mode_132x60()”. This tells Epsilon that it can use a mode with 132 columns and 60 lines, and
Epsilon will call the subroutine when it wants to use that mode. You should examine the screen-switching
functions provided in the file video.e to see how to do that. For OS/2, screen-switching functions have
names like “video-mode-os2-132x60”.

A screen-switching function takes a numeric parameter that says what to do. A value of 1 indicates that
the function should switch the board into the appropriate mode, then return 1. A value of 0 indicates that the
function should prepare to switch the board out of that mode, prior to switching to another mode, then return
1. In either case, the function should return zero if it cannot do the mode change. A parameter value of 2
indicates the function should return 1 (available) or 0 (unavailable) to indicate the current availability of the
mode. It shouldn’t actually change the mode.

Summary: Ctrl-F5 next-video
Alt-F5 set-video

list-svga-modes

4.7.9 Window Borders

Use the commandset-display-look to make Epsilon’s window decoration and screen appearance resemble
that of other editors. It displays a menu of choices. You can select Epsilon’s original look, Brief’s look, the
look of the DOS Edit program (the same as the QBasic program), or the look of the Borland IDE.

The commandtoggle-borders removes the lines separating Epsilon’s windows from one another, or
restores them.

When there are no window borders, Epsilon provides each window with its own separate color scheme,
in place of the single one selected byset-color. (You can still useset-color to set the individual colors in a

94 CHAPTER 4. COMMANDS BY TOPIC

color scheme, but Epsilon doesn’t care which particular color scheme you select when it displays the
contents of individual windows. It does use your selected color scheme for other parts of the screen like the
echo area or screen border.)

The color schemes Epsilon uses for borderless windows have names like “window-black”,
“window-blue” and so forth. Epsilon assigns them to windows in order. You can remove one from
consideration using thedelete-name command, or create a new one using EEL (see page 326).

The rest of this section describes some of the variables set by the above commands. The
set-display-look command in particular does its work entirely by setting variables. You can make Epsilon
use a custom display look by setting these variables yourself. The variables also allow some customizations
not available through the above commands.

Theecho-line variable contains the number of the screen line on which to display the echo area.
Theavoid-top-lines andavoid-bottom-lines variables tell Epsilon how many screen lines at
the top and bottom of the screen are reserved, and may not contain tiled windows. By default,echo_line
contains the number of the last screen line,avoid-top-lines is zero, andavoid-bottom-lines is
one, to make room for the echo area.

To Epsilon display text in the echo area whenever it’s idle, set the variablesshow-when-idle and
show-when-idle-column. See their online documentation for details.

To position the echo area at the top of the screen, setecho-line andavoid-bottom-lines to
zero andavoid-top-lines to one. (If you’re using a permanent mouse menu, setecho-line and
avoid-top-lines one higher.)

To completely fill the screen with text, toggle borders off and setavoid-bottom-lines and
avoid-top-lines to zero. Whenever Epsilon needs to display text in the echo area, it will temporarily
overwrite the last screen line for a moment, and then return to showing buffer text on every line.

You can customize the position and contents of the mode line Epsilon displays for ordinary tiled
windows by setting variables. These variables all start with “mode-”. See the online help formode-end for
details. Also see thefull-path-on-mode-line variable.

You can set several variables to put borders around the screen. If you want Epsilon to always display a
window border at the right edge of the screen, set the variableborder-right nonzero. (The
toggle-scroll-bar command, which turns on permanent scroll bars for all windows, sets this variable.)
Epsilon displays a border at the left screen edge ifborder-left has a nonzero value. Similarly,
border-top andborder-bottom variables control borders at the top and bottom edges of the screen,
but only if a tiled window reaches all the way to that edge of the screen. (A menu bar might be in the way.)
All these variables are zero by default. (Toggling all window borders off with thetoggle-borders command
overrides these variables.) If theborder-inside variable is nonzero (as it is by default), Epsilon
displays a border between side-by-side windows. Set it to zero to eliminate these borders. (The
toggle-borders command sets this variable, among other things.)

Summary: set-display-look

4.7.10 The Bell

Sometimes Epsilon will ring the computer’s bell to alert you to certain conditions. (Well, actually it sounds
more like a beep, but we call it a bell anyway.) You can enable or disable the bell completely by setting the
want-bell variable. Epsilon will never try to beep ifwant-bell has a value of zero.

For finer control of just when Epsilon rings the bell, you can set the variables listed in figure 4.5 using
theset-variable command, described on page 126. A nonzero value means Epsilon will ring the bell when

4.8. BUFFERS AND FILES 95

the indicated condition occurs. By default, all these variables butbell-on-abort have the value 1, so
Epsilon rings the bell on almost all of these occasions.

Variable When Epsilon Beeps, if Nonzero

bell-on-abort You abort with Ctrl-G, or press an unbound key.
bell-on-autosave-error Autosaving can’t write files.
bell-on-bad-key You press an illegal option at a prompt.
bell-on-completion Completion finds no matches.
bell-on-date-warning Epsilon notices that a file has changed on disk.
bell-on-read-error Epsilon cannot read a file.
bell-on-search Search finds no more matches.
bell-on-write-error Epsilon cannot write a file.

Figure 4.5: Variables that control when Epsilon rings the bell

Thebeep-duration variable specifies the duration of the beep, in hundredths of a second. The
beep-frequency variable specifies the frequency of the bell in hertz.

A value of zero forbeep-duration has special meaning. Under DOS, it causes Epsilon to print a
Control-G character via the BIOS; under OS/2 it causes Epsilon to make a warbling sound. Instead of
making a sound for the bell, you can have Epsilon invert the mode line of each window for a time according
to the value ofbeep-duration by settingbeep-frequency to zero, andbeep-duration to any
nonzero value.

Under Windows, Epsilon doesn’t use thebeep-duration or beep-frequency variables. It uses
a standard system sound instead. Under Unix, Epsilon recognizes abeep-frequency of zero and flashes
the screen in some fashion, but otherwise ignores these variables.

4.8 Buffers and Files

4.8.1 Buffers

The Ctrl-X B command prompts you for a buffer name. The command creates a buffer if one with that name
doesn’t already exist, and connects the buffer to the current window.

Thenew-file command creates a new buffer and marks it so that Epsilon will prompt for its file name
when you try to save it. It doesn’t prompt for a buffer name, unlike Ctrl-X B, but chooses an unused name.
Another difference is that Epsilon will warn about saving changes to a buffer created bynew-file, while a
buffer created by Ctrl-X B is treated as a scratch buffer.

You can customize the behavior of thenew-file command by setting the variablesnew-file-mode
andnew-file-ext. Thenew-file-mode variable contains the name of the mode-setting command
Epsilon should use to initialize new buffers; the default is thec-mode command. Thenew-file-ext
variable contains the extension of the file name Epsilon constructs for the new buffer; its default is “.c”.

To get a list of the buffers, type Ctrl-X Ctrl-B. This runs thebufed (for buffer edit) command, described
fully on page 110. Basically,bufed lists your buffers, along with their sizes and the files (if any) contained
in those buffers. You can then easily switch to any buffer by positioning point on the line describing the
buffer and pressing thehSpacei key. Thebufed command initially positions point on the buffer from which
you invokedbufed. Press Ctrl-G if you decide not to switch buffers after all.

96 CHAPTER 4. COMMANDS BY TOPIC

Thebufed command usually does not list special buffers such as the kill buffers. If you prefix a
numeric argument, however,bufed shows all the buffers.

The Ctrl-X K command eliminates a buffer. It asks you for a buffer name and gets rid of it. If the buffer
has unsaved changes, the command warns you first.

The Ctrl-X Ctrl-K command eliminates the current buffer, just like Ctrl-X K, but without asking which
buffer you want to get rid of. Thekill-all-buffers command discards all user buffers.

Whenever Epsilon asks you for a buffer name, it can do completion on buffer names, and will list
matches in a pop-up window if you press ‘?’.

Another way to switch buffers is to press Ctrl-hTabi. This command switches to the buffer you last used.
If you presshTabi again while still holding down Ctrl, you can switch to still older buffers. Hold down Shift
as well as Ctrl to move in the reverse order. You can press Ctrl-G to abort and return to the original buffer.

You can also change to another buffer using thenext-buffer andprevious-buffer commands. They
select the next (or previous) buffer and connect it to the current window. You can cycle through all the
buffers by repeating these commands. You can type F12 and F11, respectively, to run these commands. If
your keyboard doesn’t have these keys, you can also type Ctrl-X> and Ctrl-X<.

Summary: Ctrl-X B select-buffer
Ctrl-X Ctrl-B bufed
Ctrl-X K kill-buffer
Ctrl-X Ctrl-K kill-current-buffer
Ctrl-hTabi switch-buffers
F12, Ctrl-X> next-buffer
F11, Ctrl-X< previous-buffer

kill-all-buffers
new-file

4.8.2 Files

Reading Files

The Ctrl-X Ctrl-F key runs thefind-file command. It prompts you for a file name. First, it scans the current
buffers to see if any of them contain that file. If so, the command connects that buffer to the current window.
Otherwise, the command creates a buffer with the same name as the file, possibly modified to make it
different from the names of existing non-empty buffers, then reads the file into that buffer. Most people
considerfind-file the command they typically use to edit a new file, or to return to a file read in previously.

Normally Epsilon examines the file’s contents to determine if it’s a binary file, or in Unix or Macintosh
format. If you prefix a numeric argument tofind-file, Epsilon asks you for the correct format, as described
on page 100. (Unless you’ve used a numeric argument and selected a format, Epsilon may also perform
Unicode translation; see page 133.)

Thefind-file command examines a file’s name and contents to determine an appropriate language mode
for it. For instance, files with a .c extension are put in C mode. You can override this decision with a “file
variable”. See page 103. You can use thereset-mode command at any time to make Epsilon repeat that
process, setting the buffer to a different mode if appropriate. It can be handy after you’ve temporarily
switched to a different mode for any reason, or after you’ve started creating a new file with no extension and
have now typed the first few lines, enough for Epsilon to auto-detect the proper mode.

4.8. BUFFERS AND FILES 97

If you typehEnteri without typing any file name whenfind-file asks for a file, it runsdired on the
current directory. If you givefind-file a file name with wild card characters, or a directory name, it runs the
dired command giving it that pattern. See page 108 for a description of the very usefuldired command.
Also see page 102 for information on related topics like how to type a file name withhSpacei characters,
customize the way Epsilon prompts for files, and so forth.

By default, at most prompts for file names likefind-file’s, Epsilon types in for you the directory portion
of the current file. For example, suppose the current buffer contains a file named “nsrcnnewnll.c”. If you
invokefind-file , Epsilon will type in “nsrcnnewn” for you. This comes in handy when you want to read
another file in the same directory as the current file. You can simply begin typing another file name if you
want Epsilon to ignore the pre-typed directory name. As soon as Epsilon notices you’re typing an absolute
file pathname, it will erase the pre-typed directory name. See page 102 for details.

You can change the current directory with thecd command on F7. It prompts for a new current
directory, and then displays the full pathname of the selected current directory. You can type the name of a
new directory, or just typehEnteri to stay in the current directory. When you supply a file name, Epsilon
interprets it with respect to the current directory unless it begins with a slash or backslash. If you specify a
drive as part of the directory name, Epsilon will set the current drive to the indicated drive, then switch to the
indicated directory. Press Alt-E when prompted for a directory name, and Epsilon will insert the name of the
directory containing the current file.

Theinsert-file command on Ctrl-X I prompts for the name of a file and inserts it before point. It sets the
mark before the inserted text, so you can kill it with Ctrl-W. (Also see the
insert-file-remembers-file variable.)

Thefind-linked-file command on Ctrl-X Ctrl-L looks for a file name in the current buffer, then finds
that file. It works with plain text files, and also understands#include in C-like buffers, in
HTML-like buffers, and various other mode-specific conventions. You can highlight a file name first
whenever its automatic parsing of file names isn’t right. In a process buffer, it looks for error messages, not
file names (unless you’ve first highlighted a file name), and sets the current error message (as used by
next-error) to the current line.

Epsilon uses a built-in list of directories to search for#include files; you can set the
include-directories variable to add to that list. For files with a .lst extension, it assumes the current
line holds a file name, instead of searching for a pattern that matches a typical file name. This is one way to
more easily manage files in a project that are in many different directories.

The key Ctrl-X Ctrl-V runs thevisit-file command. It prompts you for a file name. If the file exists, the
command reads it into the current buffer, and positions point at the beginning. The command discards the
old contents of the buffer, but asks before discarding an unsaved buffer. If no file with the given name exists,
the command clears the current buffer. If you prefix this command with a numeric argument, the command
discards the old buffer content without warning. So if you want to revert to the copy of the file on disk,
disregarding the changes you’ve made since you last saved the buffer, press Ctrl-U Ctrl-X Ctrl-V, followed
by hEnteri. Most people use this command only to explicitly manipulate the file associated with a particular
buffer. To read in a file, use thefind-file command, described above.

Therevert-file command rereads the current file from disk. If you’ve made any unsaved changes, it
prompts first.

Summary: Ctrl-X Ctrl-F find-file
F7 cd
Ctrl-X I insert-file
Ctrl-X Ctrl-V visit-file

revert-file

98 CHAPTER 4. COMMANDS BY TOPIC

Read-Only Files

Whenever you read a read-only file into a buffer usingfind-file or visit-file, Epsilon makes the buffer
read-only, and indicates this by displaying “RO” in the modeline. Epsilon keeps you from modifying a
read-only buffer. Attempts to do so result in an error message. In a read-only buffer you can use thehSpacei
andhBackspacei keys to page forward and back more conveniently; see thereadonly-pages variable to
disable this.

If you want to modify the buffer, you can change its read-only status with thechange-read-only
command on Ctrl-X Ctrl-Q. With no numeric argument, it toggles the read-only status. With a non-zero
numeric argument, it makes the buffer read-only; with a numeric argument of zero, it makes the buffer
changeable.

Thechange-read-only command sets the buffer’s status but doesn’t change the read-only status of its
file. Use thechange-file-read-only command to toggle whether or not a file is read-only.

By default, when Epsilon reads a read-only file, it displays a message and makes the buffer read-only.
To make Epsilon do something else instead, you can set thereadonly-warning variable, default 3,
according to figure 4.6.

Action 0 1 2 3 4 5 6 7
Display a warning messageN Y N Y N Y N Y
Make buffer read-only N N Y Y N N Y Y
Ring the bell N N N N Y Y Y Y

Figure 4.6: Values for the readonly-warning variable.

Sometimes you may want to edit a file that is not read-only, but still have Epsilon keep you from
making any accidental changes to the file. Thefind-read-only-file command does this. It prompts for a file
name just likefind-file and reads it, but marks the buffer read-only so it cannot be modified, and sets it so
that if you should ever try to save the file, Epsilon will prompt for a different name.

Summary: Ctrl-X Ctrl-Q change-read-only
find-read-only-file
change-file-read-only

Saving Files

The Ctrl-X Ctrl-S key writes a buffer to the file name associated with the buffer. If the current buffer
contains no file, the command asks you for a file name.

To write the buffer to some other file, use the Ctrl-X Ctrl-W key. The command prompts for a file name
and writes the buffer to that file. Epsilon then associates that file name with the buffer, so later Ctrl-X Ctrl-S
commands will write to the same file. If the file you specified already exists, Epsilon will ask you to confirm
that you wish to overwrite it. To disable this warning, you can set the variable
warn-before-overwrite to zero. (Setting the variable to zero also prevents several other commands
from asking for confirmation before overwriting a file.)

Before Epsilon saves a file, it checks the copy of the file on disk to see if anyone has modified it since
you read it into Epsilon. This might happen if another user edited the file (perhaps over a network), or if a
program running concurrently with Epsilon modified the file. Epsilon does this by comparing the file’s date

4.8. BUFFERS AND FILES 99

and time to the date and time Epsilon saved when it read the file in. If they don’t match (within a tolerance
determined by thefile-date-tolerance variable), Epsilon displays a warning and asks you what you
want to do. You can choose to read the disk version of the file and discard the one already in a buffer,
replace the copy on disk with the copy you’ve edited, or compare the two versions.

Epsilon checks the file date of a file each time you switch to a buffer or window displaying that file, and
before you read or write the file. When a file changes on disk and you haven’t modified the copy in memory,
Epsilon automatically reads the new version. (It doesn’t do this automatically if the file on disk is
substantially smaller than the copy in memory.) You can make Epsilon always ask before reading by setting
the buffer-specific variableauto-read-changed-file to zero. Or set the buffer-specific variable
want-warn to 0 if you don’t want Epsilon to ever check the file date or warn you.

Epsilon automatically marks a buffer as “modified” when you change it, and shows this with a star ‘*’
at the end of the buffer’s mode line. When Epsilon writes a buffer to disk or reads a file into a buffer, it
marks the buffer as “unmodified”. When you try to exit Epsilon, it will issue a warning if any buffer
contains a file with unsaved changes.

You may occasionally want to change a buffer’s modified status. You can do this with the
change-modified command. Each time you invoke this command, the modified status of the current buffer
toggles, unless you invoke it with a numeric argument. A nonzero numeric argument sets the modified
status; a numeric argument of zero clears the modified status.

Thesave-all-buffers command, bound to Ctrl-X S, goes to each buffer with unsaved changes (those
marked modified), and if it contains a file, writes the buffer out to that file. See the
save-all-without-asking variable to alter what Epsilon does when there’s an error saving a file.

Thewrite-region command on Ctrl-X W takes the text between point and mark, and writes it to the file
whose name you provide.

Summary: Ctrl-X Ctrl-S save-file
Ctrl-X Ctrl-W write-file
Alt-˜ change-modified
Ctrl-X S save-all-buffers
Ctrl-X W write-region

Backup Files

Epsilon doesn’t normally keep the previous version of a file around when you save a modified version. If
you want backups of saved files, you can set the buffer-specific variablewant-backups to 1, using the
set-variable command described on page 126. If this variable is1, the first time you save a file in a session,
Epsilon will first preserve the old version by renaming any existing file with that name to a file with the
extension “.bak”. For instance, saving a new version of the file text.c preserves the old version in text.bak.
(If you delete a file’s buffer and later read the file again, Epsilon treats this as a new session and makes a new
backup copy the next time you save.) Ifwant-backups variable is2, Epsilon will do this each time you
save the file, not just the first time.

You can change the name Epsilon uses for a backup file by setting the variablebackup-name.
Epsilon uses this as atemplatefor constructing the backup file name. It copies the template, substituting
pieces of the original file for codes in the template, according to figure 4.7. The sequence %r substitutes a
relative pathname to the original file name, if the file is within the current directory or its subdirectories, or
an absolute pathname otherwise.

The sequence %x substitutes the full pathname of the directory containing the Epsilon executable. The
sequence %X substitutes the same full pathname, but this time after converting all Windows long file names

100 CHAPTER 4. COMMANDS BY TOPIC

making up the path to their equivalent short name aliases. For example, if the Epsilon executable was in the
directoryc:nProgram FilesnEpsilonnbinn, %x would use exactly that pathname, while %X might
yield c:nProgra˜nEpsilonnbinn. Except under 32-bit Windows, %X is the same as %x. Either
always ends with a path separator character like / orn.

Example 1 Example 2

Code Part c:ndosnread.me /usr/bin
%p Path c:ndosn /usr/
%b Base read bin
%e Extension .me (None)
%f Full name c:ndosnread.me /usr/bin
%r Relative path dosnread.me /usr/bin

(assuming current dir is c:n /usr/mark)
%x Executable path c:nProgram FilesnEpsilonnbinn /usr/local/bin/
%X Alias to path c:nProgra˜1nEpsilonnbinn /usr/local/bin/

Figure 4.7: File name template characters.

If any other character follows %, Epsilon puts that character into the backup file name. You can use this,
for example, to include an actual % character in your backup file name, by putting %% in the template.

Epsilon can automatically save a copy of your file every 500 characters. To make Epsilon autosave, set
the variablewant-auto-save to 1. Epsilon then counts keys as you type them, and every 500 keys, saves
each of your modified files to a file with the extension “.asv”. Epsilon uses a template (see above) to
construct this name as well, stored in the variableauto-save-name. You can alter the number of
keystrokes between autosaves by setting the variableauto-save-count.

Sometimes you may want to explicitly write the buffer out to a file for backup purposes, but may not
want to change the name of the file associated with the buffer. For that, use thecopy-to-file command on
Ctrl-F7. It asks you for the name of a file, and writes the buffer out to that file, but subsequent Ctrl-X
Ctrl-S’s will save to the original file.

Summary: Ctrl-F7 copy-to-file

Line Translation

Most Windows, DOS and OS/2 programs use files with lines separated by the pair of characters Return,
Newline (or Control-M, Control-J). But internally Epsilon separates lines with just the newline character,
Ctrl-J. Epsilon normally translates between the two systems automatically when reading or writing text files
in this format. When it reads a file, it removes all Ctrl-M characters, and when it writes a file, it adds a
Ctrl-M character before each Ctrl-J.

Epsilon will automatically select one of several other translation types when appropriate, based on the
contents of the file you edit. It automatically determines whether you’re editing a regular file, a binary file, a
Unix file, or a Mac file, and uses the proper translation scheme. You can explicitly override this if necessary.
Epsilon determines the file type by looking at the first few thousand bytes of the file, and applying heuristics.
This is quite reliable in practice. However, Epsilon may occasionally guess incorrectly. You can tell Epsilon
exactly which translation scheme to use by providing a numeric argument to a file reading command like
find-file. Epsilon will then prompt for which translation scheme to use.

4.8. BUFFERS AND FILES 101

Theset-line-translate command sets this behavior for the current buffer. It prompts for the desired type
of translation, and makes future file reads and writes use that translation. Epsilon will display “Binary”,
“Unix”, “DOS”, or “Mac” in the mode line to indicate any special translation in effect. (It omits this when
the “usual” translation is in effect: Unix files in Epsilon for Unix, DOS files in other versions.)

Set thedefault-translation-type variable if you want to force Epsilon to always use a
particular type of translation when reading existing files, rather than examining their contents and choosing
a suitable type. Set thenew-buffer-translation-type variable if you want Epsilon to create new
buffers and files with a translation type other than the default. For file names that start with ftp://, the
ftp-ascii-transfers variable can changes the meaning of some translation types; see its online help.

Epsilon remembers the type of translation you want in each buffer using the buffer-specific variable
translation-type.

Epsilon applies the following heuristics, in order, to determine a file’s type. These may change in future
versions.

A file that contains null bytes is considered binary. A file that has no Ctrl-M Ctrl-J pairs is considered a
Unix file if it contains Ctrl-J characters, or a Macintosh file if it contains Ctrl-M. A file containing a Ctrl-M
character not followed by either Ctrl-M or Ctrl-J is considered binary. Any other files, or files of less than
five characters, are considered to be in standard DOS format (in Epsilon for Unix, Unix format).

Bear in mind that Epsilon makes all these decisions after examining only the first few thousand bytes of
a file, and phrases like “contains null bytes” really mean “contains null bytes in its first few thousand
characters.”

Summary: set-line-translate

DOS/OEM Character Set Support

Windows programs typically use a different character set than do DOS programs. The DOS character set is
known as the OEM/DOS character set, and includes various line drawing characters and miscellaneous
characters not in the Windows/ANSI set. The Windows/ANSI character set includes many accented
characters not in the OEM/DOS character set. Epsilon for Windows uses the Windows/ANSI character set
(with most fonts).

Theoem-to-ansi command converts the current buffer from the OEM/DOS character set to the
Windows/ANSI character set. Theansi-to-oem command does the reverse. If any character in the buffer
doesn’t have a unique translation, these commands warn before translating, and move to the first character
without a unique translation.

Thefind-oem-file command reads a file using the OEM/DOS character set, translating it into the
Windows/ANSI character set, and arranges things so when you save the file, the reverse translation
automatically occurs. These commands are only available in Epsilon for Windows.

Summary: oem-to-ansi
ansi-to-oem
find-oem-file

102 CHAPTER 4. COMMANDS BY TOPIC

File Name Prompts

You can customize many aspects of Epsilon’s behavior when prompting for file names.

By default, many commands in the Windows version of Epsilon use the standard Windows common file
dialog, but only when you invoke them from a menu or the tool bar. When you invoke these commands
using their keyboard bindings, they use the same kind of dialog as other Epsilon prompts.

Setwant-common-file-dialog to 2 if you want Epsilon to use the common file dialog whenever
it can. Setwant-common-file-dialog to 0 to prevent Epsilon from ever using this dialog. The
default value of1 produces the behavior described above.

The Windows common file dialog includes a list of common file extensions. You can customize this list
by editing the Epsilon source file filter.h. See the comments in that file for more information.

All the remaining variables described in this section have no effect when Epsilon uses the standard
Windows dialog; they only modify Epsilon’s own file dialogs.

Theprompt-with-buffer-directory variable controls how Epsilon uses the current directory
at file prompts. When this variable is2, the default, Epsilon inserts the current buffer’s directory at many file
prompts. This makes it easy to select another file in the same directory. You can edit the directory name, or
you can begin typing a new absolute pathname right after the inserted pathname. Epsilon will delete the
inserted pathname when it notices your absolute pathname. This behavior is similar to Gnu Emacs’s.

Whenprompt-with-buffer-directory is 1, Epsilon temporarily changes to the current
buffer’s directory while prompting for a file name, and interprets file names relative to the current directory.
This behavior is similar to the “pathname.e” extension available for previous versions of Epsilon.

Whenprompt-with-buffer-directory is 0, Epsilon doesn’t do anything special at file
prompts. This was Epsilon’s default behavior in previous versions.

Thegrep andfile-query-replace commands use a separate variable
grep-prompt-with-buffer-directory for their file patterns, with the same meaning as above. By
default it’s1.

During file name completion, Epsilon can ignore files with certain extensions. The
ignore-file-extensions variable contains a list of extensions to ignore. By default, this variable has
the value ‘|.obj|.exe|.b|.b2|.bu|’, which makes file completion ignore files that end with .obj,
.exe, .b, .b2, and .bu. Each extension must appear between ‘|’ characters. You can augment this list using
theset-variable command, described on page 126.

Similarly, theonly-file-extensions variable makes completion look only for files with certain
extensions. It uses the same format asignore-file-extensions, a list of extensions surrounded by|
characters. If the variable holds a null pointer, Epsilon usesignore-file-extensions as above.

When Epsilon prompts for a file name, thehSpacei key performs file name completion on what you’ve
typed. To create a new file with spaces in its name, you must quote the space characters by typing Ctrl-Q
before each one, while entering the name, or type" characters around the file name (or any part containing
spaces).

At any Epsilon prompt (not just file prompts), you can type Alt-E to retrieve your previous response to
that prompt. Alt-hUpi or Ctrl-Alt-P show a list of previous responses. See page 30 for complete details. And
Alt- hDowni or Ctrl-Alt-N let you easily copy text from the buffer into the prompt (useful when the buffer
contains a file name or URL). See page 28 for more information.

When Epsilon shows a dialog containing a list of previous responses, or files matching a pattern, the list
may be too wide for the dialog. You can generally resize the dialog by simply dragging its border. This
works for most Epsilon dialogs. Epsilon will automatically remember the size of each dialog from session to
session.

4.8. BUFFERS AND FILES 103

File Name Case

When retrieving file names from some file systems, Epsilon automatically translates the file names to lower
case. Epsilon uses various different rules for determining when to convert retrieved file names to lower case,
and when two file names that differ only by case refer to the same file.

Epsilon distinguishes between three types of file systems:

On a case-sensitive file system, MyFile, MYFILE, and myfile refer to three different files. Unix file
systems are case-sensitive.

On a case-preserving (but not case-sensitive) file system, MyFile, MYFILE, and myfile all refer to the
same file. But if you create a file as MyFile, the file system will display that file as MyFile without altering
its case. VFAT, NTFS, and HPFS file systems used in Windows and OS/2 are case-preserving.

On a non-case-preserving file system, MyFile, MYFILE, and myfile all refer to the same file. Moreover,
the operating system converts all file names to upper case. So no matter how you create the file, the
operating system always shows it as MYFILE. DOS’s FAT file system is non-case-preserving. When
Epsilon displays a file name from such a file system, it changes the file name to all lower case.

Epsilon asks the operating system for information on each drive, the first time the drive is accessed.
(Actually only Epsilon for 32-bit Windows and Epsilon for OS/2 can do this; Epsilon for Windows 3.1
assumes that all drives are non-case-preserving. Epsilon for DOS asks the operating system when it runs
under Windows 95/98; in other environments it assumes drives are non-case-preserving. Epsilon for Unix
assumes all file systems are case-sensitive, and the rest of this section does not apply.)

You can tell Epsilon to use particular rules for each drive on your system by defining an environment
variable. The MIXEDCASEDRIVES environment variable should contain a list of drive letters or ranges. If
the variable exists and a lower case letter like k appears in it, Epsilon assumes drive K: has a Unix-style
case-sensitive file system. If the variable exists and an upper case letter like J appears in it, Epsilon assumes
drive J: is not case-preserving or case-sensitive, like traditional FAT drives. If the variable exists but a drive
letter does not appear in it, Epsilon assumes the drive has a case-preserving but not case-sensitive file system
like NTFS, HPFS, or VFAT drives.

If, for example, drives h:, i:, j:, and p: access Unix filesystems over a network, drive q: accesses a server
that uses a FAT filesystem, and other drives use a VFAT filesystem (local drives under Windows, for
example), you could set MIXEDCASEDRIVES toh-jpQ. When Epsilon finds a MIXEDCASEDRIVES
variable, it assumes the variable contains a complete list of such drives, and doesn’t examine filesystems as
described. If an EPSMIXEDCASEDRIVES configuration variable exists, that overrides any
MIXEDCASEDRIVES environment variable that may be found. (Note that MIXEDCASEDRIVES appears
in the environment under all operating systems, while EPSMIXEDCASEDRIVES is a configuration
variable must be put in lugeps.ini, in the registry, or in the environment, depending on the operating system.
See page 9 for details.)

You can set the variablepreserve-filename-case nonzero to tell Epsilon to use the case of
filenames exactly as retrieved from the operating system. By default, Epsilon changes all-uppercase file
names to lower case, except on case-sensitive file systems.

File Variables

Thefind-file command examines a file’s name and contents to determine an appropriate language mode for
it. For instance, files with a .c extension are put in C mode. You can override this decision with a “file
variable”.

These are specially-formatted lines at the top or bottom of a file that indicate the file should use a
particular language mode or tab size. For example, you can put-*- mode: VBasic -*- anywhere on

104 CHAPTER 4. COMMANDS BY TOPIC

the first line of a file to force Epsilon to Visual Basic mode, or write-*- tab-size: 3 -*- to make
Epsilon use that tab size setting.

Epsilon recognizes a syntax for file variables that’s designed to be generally compatible with Emacs.
The recognized formats are as follows. First, the first line of the file (or the second, if the first starts with#!,
to accommodate the Unix “shebang” line) may contain text in one of these formats:

-*- mode: modename-*-

-*- modename-*-

-*- tab-size: number -*-

-*- tab-width: number -*-

-*- mode: modename; tab-width: number -*-

Other characters may appear before or after each possibility above; typically there would be
commenting characters, so a full line might read/* -*- mode: shell -*- */. The first two
examples set that buffer to the specified mode name, such as Perl or VBasic or C, by running a command
namedmodename-mode if one exists. (A mode name of “C++” makes Epsilon uses the C++ submode of C
mode.) The next two behave identically, setting the width of a tab character for that buffer. (Epsilon
recognizes either name for compatibility.)

The other syntax for file variables must appear at the end of the file, starting within the last 3000
characters. It looks like this:

Local Variables:

mode: modename
tab-size: number
End:

The first and last lines are required; inside are the settings, one per line. Each line may have additional
text at the start and end of each line (so it will look like a comment in the file’s programming language).

4.8.3 Internet Support

Epsilon for Windows or Unix has several commands and facilities that make it easy for you to edit files on
other computers using the Internet.

Thefind-file anddired commands, as well as a few others, understand Internet URL’s. If you do a
find-file and provide the URL ftp://user@machine.com/myfile.c, Epsilon will engage in an FTP interaction
to download the file and display it in a buffer. All of the Internet activity happens in the background, so you
don’t have to wait for the file to download before continuing with your work. In fact, the file appears in the
buffer as it downloads (syntax highlighted if appropriate), so you can be editing the beginning of a large file
while the rest of it downloads.

Saving a file in such a buffer, or writing a buffer to a file name that starts with ftp://, will cause Epsilon
to send the file to the remote computer. Upload and download status is indicated in the mode line, and
there’s also ashow-connections command (on Ctrl-Alt-C) that shows the status of all Internet activities and
buffers. As inbufed, you can select a buffer and presshEnteri to switch to it, or presshEscapei to remain in
the current buffer.

4.8. BUFFERS AND FILES 105

FTP URL’s work withdired also, so if you do adired (or afind-file) on ftp://user@machine.com,
you’ll get a directory listing of the files on the remote machine, in a familiar dired context. Dired knows how
to delete and rename remote files, and sort by size, date, file name or extension. To make Epsilon work with
certain host computers (systems running VMS, for example), you may need to set the variables
ftp-ascii-transfers or ftp-compatible-dirs nonzero; see the descriptions of those variables
in the online help. Other systems may require you to set the variableftp-passive-transfers.

Thetelnet command lets you connect to a command shell on a remote computer. It puts you in a buffer
that works much like the Epsilon process buffer, except the commands you type are executed on the remote
machine. Provide a numeric prefix argument and telnet will connect on the specified port instead of the
default port. Or use the syntaxhostname:port for the host name to specify a different port. You can
either use thetelnet command directly, or specify a telnet: URL tofind-file. (Epsilon ignores any username
or password included in the URL.)

If you specify an http: URL tofind-file (for example, http://www.lugaru.com), Epsilon will use the
HTTP protocol to retrieve the HTML code from the given location. The HTML code will appear in an
appropriately named buffer, syntax highlighted. Header information for the URL will be appended to a
buffer named “HTTP Headers”. You can tell Epsilon to send its requests by way of a proxy by setting the
variableshttp-proxy-server, http-proxy-port, andhttp-proxy-exceptions. You can
tell Epsilon to identify itself to the server as a different program by settinghttp-user-agent.

The Alt-E and Alt-hDowni keys infind-file come in handy when you want to follow links in an HTML
buffer; see page 30 for information on Alt-E and page 28 for information on Alt-hDowni. Also see the
find-linked-file command on Ctrl-X Ctrl-L.

The commandview-web-site on Shift-F8 searches for the next URL in the buffer. It prompts with that
URL, and after you modify it if necessary, it then launches an external browser on the URL. The
view-lugaru-web-site command launches a browser and points it to Lugaru’s web site. Epsilon for Unix
uses a shell script namedgoto_url to run a browser. See page 39. Epsilon for Windows uses the system’s
default browser.

Thefinger command prompts for a string like “user@host.com”, then uses the finger protocol to query
the given machine for information about the given user. The output appears in an appropriately named
buffer.

Summary: Ctrl-Alt-C show-connections
telnet
telnet-mode
finger
view-web-site
view-lugaru-web-site

URL Syntax

In Epsilon, URL’s must start with ftp://, http://, or telnet://. (If you omit the ftp: part, Epsilon for Windows
will pass the file name to Windows as a UNC-style network file name.)

You can specify a user name, password, or port number using the URL syntax of
service://username:password@hostname:portnumber/filepath. If you include a user name but omit the
:password part, Epsilon will prompt for one (and will make sure the password does not appear in your state
file, session file, or similar places). But if you include a password in your URL, note that it may be saved in
Epsilon’s session file or similar places.

106 CHAPTER 4. COMMANDS BY TOPIC

If you omit the username:password@ or username@ part entirely in an ftp URL, Epsilon uses the user
name “anonymous” and the password specified by theanon-ftp-password variable (default:
EpsilonUser@unknown.host). You can set this to your email address if you prefer.

You can also use Emacs-style syntax for specifying remote file names: /username@hostname:filepath.
Epsilon will behave as if you had typed the corresponding URL.

In ftp:// URL’s, Epsilon treats a file name following the / as a relative pathname. That is,
ftp://user@host.com/myfile refers to a file named myfile in the user’s home directory. Put two slashes, as in
ftp://user@host.com//myfile, to refer to /myfile in the root directory. You can typen instead of / in any URL
and Epsilon will substitute /.

If you type the name of a local directory to thefind-file command,find-file will run the dired command
on it. With ftp:// URL’s, find-file won’t always know that what you typed is a remote directory name (as
opposed to a file name) and might try to retrieve the URL as a file, leading to an error message like “Not a
plain file”. End your URL with a / to indicate a directory name.

4.8.4 Printing

Theprint-buffer command on Alt-F9 prints the current buffer. If a region is highlighted on the screen, the
command prints just that region. Theprint-region command on Shift-F9 always prints just the current
region, whether or not it’s highlighted.

Under Windows, the printing commands display the familiar Windows print dialog. From this dialog,
you can select a different printer, select particular pages to print, and so forth. Theprint-setup command
lets you select a different printer without printing anything, or set the margins. Invoke the printing
commands with a numeric prefix argument to skip the print dialog and just print with default settings. The
print-buffer-no-prompt command also skips the print dialog and uses default settings.

You can change the font Epsilon for Windows uses for printing with theset-printer-font command.
See page 89 for more information.

By default, Epsilon for Windows will print in color on color printers, and in black & white on non-color
printers. You can set theprint-in-color variable to0, if you don’t want Epsilon to ever print in color,
or to2 if you want Epsilon to attempt to use colors even if the printer doesn’t appear to be a color printer.
(Some printers will substitute shades of grey.) The default value,1, produces color printing only on color
printers.

If you have a color printer, and want to use a different color scheme when printing than you do for
screen display, set the variableprint-color-scheme to the name of the color scheme Epsilon should
use for printing.

Epsilon for Windows prints a heading at the top of each page. You can set theprint-heading
variable to control what it includes. The value1 makes Epsilon include the file name,2 makes Epsilon
include a page number, and4 makes Epsilon include the current date. You can add these values together; the
default value of7 includes all the above items.

You can set the variableprint-line-numbers nonzero if you want Epsilon to include line
numbers, or setprint-doublespaced if you want Epsilon for Windows to skip alternate lines.

Under DOS or OS/2, the printing commands prompt for the device name of the printer, such as LPT1 or
COM2. They then write the text to that device name. If you want Epsilon to run a program that will print the
file, you can do that too. See the description of theprint-destination variable in the online help.
(For Unix, seeprint-destination-unix, which by default runs thelpr program to print a file.) If
you want Epsilon for Windows to run a program in order to print a file, bypassing the Windows print dialog,
you can setwant-gui-printing to zero.

4.8. BUFFERS AND FILES 107

By default, Epsilon converts tabs to spaces in a copy of the buffer before printing it. Set the variable
print-tabs to one if you want Epsilon to print the file just as it is, including the tab characters.

Summary: Alt-F9 print-buffer
Shift-F9 print-region

print-setup

4.8.5 Extended file patterns

This section describes Epsilon’s extensions to the rules for wildcard characters in file names. You can
specify more complicated file name patterns in Epsilon than Windows, Unix, DOS, or OS/2 normally allow,
using the wildcard characters of square brackets[], commas, semicolons, and curly bracesfg. Epsilon also
lets you use the* and? characters in more places. These patterns work in thegrep command, thedired
command, and in all other places where file name wildcards make sense. (They don’t work with Internet
URL’s, though.)

First, you can put text after the standard wildcard character* and Epsilon will match it. In standard
DOS-style patterns, the system ignores any text in a pattern between a* and the end of the pattern (or the
dot before an extension). But in Epsilon,ab*ut matches all files that start withab and end withut. The*
matches the dot character in file names, so the above pattern matches file names likeabout as well as
absolute.out. (Useab*ut. to match only files like the former, orab*.*ut to match ones like the
latter.)

Instead of? to match any single character (except dot, slash, or backslash), you can provide a list of
characters in square brackets (similar to the regular expression patterns of searching). For example,
file[0123456789stuvw]matchesfile4, file7, andfiles, but notfiler. Inside the square
brackets, two characters separated by a dash represent a range, so you could write the above pattern as
file[0-9s-w]. A caret character̂ just after the[permits any character but the listed ones, so
fil[ˆtm]er matches all the files thatfil?er matches, exceptfilter andfilmer. (To include a
dash or] in the pattern, put it right after the[or ˆ. The pattern[ˆ-]] matches all characters but- and].)

You can use? and* (and the new square bracket syntax) in directory names. For example,
nv*n*.bat might match all.bat files innvirtmem and innvision. Because a star character never
matches backslash characters, it would not matchnvisionnsubdirntest.bat.

The special directory name** matches any number of directory names. You can use it to search entire
directory trees. For example,n**n*.txt matches all.txt files on the current drive. The pattern
**nincluden*.hmatches all.h files inside aninclude directory, looking in the current directory, its
subdirectories, and all directories within those.

The simplest new file pattern character is the comma. You can run grep on the file pattern
foo,bar,baz and Epsilon will search in each of the three files. You can use a semicolon in place of a
comma, if you want.

A segment of a file pattern enclosed in curly braces may contain a sequence of comma-separated parts.
Epsilon will substitute each of the parts for the whole curly-brace sequence. For example,
nccnincludenc*t.fbat,txtgmatches the same files as
nccnincludenc*t.bat,nccnincludenc*t.txt. A curly-brace sequence may not contain another
curly-brace sequence, but may contain other wildcard characters. For example, the pattern
f,c*ng*.ftxt,batgmatches.txt and.bat files in the current directory, or in any subdirectory
starting with “c”. The brace syntax is simply a shorthand for the comma-separated list described above, so
that an equivalent way to write the previous example is*.txt,c*n*.txt,*.bat,c*n*.bat. Epsilon
breaks a complete pattern into comma-separated sections, then replaces each section containing curly braces

108 CHAPTER 4. COMMANDS BY TOPIC

with all the possible patterns constructed from it. You can use semicolons between the parts in braces
instead of commas if you prefer.

To match file names containing one of the new wildcard characters, enclose the character in square
brackets. For example, the patternabc[g] matches the file nameabcg. (Note that legal DOS file names
may not contain any of the characters[],;, but they may contain curly bracesfg. Other file systems,
including Windows VFAT, Windows NT’s NTFS, most Unix file systems, and OS/2’s HPFS, allow file
names that contain any of these characters.)

Use curly braces to search on multiple drives.fc,d,eg:n**n*.txtmatches all.txt files on drives
C:, D:, or E:. Epsilon does not recognize the*, ?, or[] characters in the drive name.

4.8.6 Directory Editing

Epsilon has a special mode used for examining and changing the contents of a directory conveniently. The
dired command, bound to Ctrl-X D, asks for the name of a directory and puts a listing of the directory,
similar to what the DOS or OS/2 “dir” command produces (or, for Unix, “ls -lF”), in a special dired buffer.
By default,dired uses the current directory. You can supply a file pattern, such as “*.c”, and only matching
files will appear. Thedired command puts the information in a buffer whose name matches the directory
and file pattern, then displays the buffer in the current window. You can have multiple dired buffers, each
displaying the result of a different file pattern.

You can also invokedired from thefind-file command. If you presshEnteri without typing any file
name whenfind-file asks for a file, it does adired on the current directory. If you givefind-file a file name
with wild card characters, it runs thedired command giving it that pattern. If you givefind-file a directory
name, it does adired of that directory. (When using ftp:// URL’s that refer to a directory, end them with /.
See page 106 for details.)

You can use extended file patterns to list files from multiple directories. (See page 107.) If you use a file
pattern that matches files in more than one directory, Epsilon will divide the resulting dired buffer into
sections. Each section will list the files from a single directory. Epsilon sorts each section separately.

While in a dired buffer, alphabetic keys run special dired commands. All other keys still invoke the
usual Epsilon commands.

You run most dired commands by pressing plain letters. TheN andP commands go to the next and
previous files, respectively.

The E,hSpacei, andhEnteri keys let you examine the contents of a file. They invoke thefind-file
command on the file, making the current window display this file instead of the dired buffer. To
conveniently return to the dired buffer, use theselect-buffer command (Ctrl-X B). PresshEnteri when
prompted for the buffer name and the previous buffer shown in the current window (in this case, the dired
buffer) will reappear.

When applied to a subdirectory, the E key invokes anotherdired on that directory, using the name of the
directory for that dired buffer. If you have marked files for deletion, and you run a dired on the same
directory, the markings go away.

The ‘.’ or “ˆ” keys invoke adired on the parent directory of the directory associated with the current
dired buffer.

To set Epsilon’s current directory to the directory being displayed, pressG (for Go). If the current line
names a directory, Epsilon will make that be the current directory. If the current line names a file, Epsilon
will set the current directory to the one containing that file.

PressD to flag a file that you wish to delete. Epsilon will mark the file for deletion by placing a ‘D’
before its name. (You may delete empty directories in the same way.) PressC or M to select files for copying

4.8. BUFFERS AND FILES 109

or moving (renaming), respectively. Epsilon will mark the files by placingC or M before their names. TheU
command unmarks the file on the current line, removing any marks before its name.

TheX command actually deletes, copies, or moves the marked files. Epsilon will list all the files marked
for deletion and ask you to confirm that you want them deleted. If any files are marked for copying or
moving, Epsilon will ask for the destination directory into which the files are to be copied or moved. If there
is only one file to copy or move, you can also specify a file name destination, so you can use the command
for renaming files. Epsilon prompts for a single destination for all files to be copied, and another for all files
to be moved.

There are a few specialized commands for renaming files. Press Shift-L to mark a file for lowercasing
its name, or Shift-U for uppercasing. When you execute with X, each marked file will be renamed by
changing each uppercase character in its name to lowercase (or vice versa). (Note that Epsilon for Windows
displays all-uppercase file names in lowercase by default, so Shift-U’s effect may not be visible within
Epsilon. Seepreserve-filename-case.)

Shift-R marks a file for a regular-expression replacement on its name. When you press X to execute
operations on marked files, Epsilon will ask for a pattern and replacement text. Then, for each file marked
with Shift-R, Epsilon will take the file name and perform the indicated regular expression replacement on it,
generating a new name. Then Epsilon will rename the file to the new name. For instance, to rename a group
of files like dirnfile1.cxx, dirnfile2.cxx, etc. to dir2nfile1.cpp, dir2nfile2.cpp, use Shift-R and specify
dirn(.*).cxx as the search text anddir2n#1.cpp as the replacement text. To rename some .htm files
to .html, specify.* as the search text and#0l as the replacement text.

The! dired subcommand prompts for a command line, then runs the specified program, adding the
name of the current line’s file after it.

The+ command creates a new subdirectory. It asks for the name of the subdirectory to create.

TheR command refreshes the current listing. Epsilon will use the original file pattern to rebuild the file
listing. If you’ve marked files for copying, moving, or deleting, the markings will be discarded if you
refresh, so Epsilon will prompt first to confirm that you want to do this.

TheS key controls sorting. It prompts you to enter another letter to change the sorting method. PressN,
E, S, orD to select sorting by file name, file extension, size, or time and date of modification, respectively.
PressU to turn off sorting the next time Epsilon makes a dired listing, and display the file names in the same
order they come from the operating system. (You can have Epsilon rebuild the current listing using theR
subcommand.)

Press+ or - at the sorting prompt to sort in ascending or descending order, respectively, orR to reverse
the current sorting order.

PressG at the sorting prompt to toggle directory grouping. With directory grouping, Epsilon puts all
subdirectories first in the list, then all files, and sorts each part individually. Without directory grouping, it
mixes the two together (although it still puts. and.. first).

Press Shift-P to print the current file. In Epsilon for Windows, pressV to run the “viewer” for that file;
the program assigned to it according to Windows file association. For executable files, this will run the
program. For document files, it typically runs the Windows program assigned to that file extension. See
page 113 for information on associating Epsilon with particular file extensions. PressT to display the
properties of a file or directory. (This is a convenient way to see the total size of all files in a directory.)

Several keys provide shortcuts for common operations. The 1 key examines the selected file in a
window that occupies the whole screen (like typing Ctrl-X 1 E). The 2 key splits the current window
horizontally and examines the selected file in the second window, leaving the dired buffer in the first (like
typing Ctrl-X 2 E). The 5 key functions like the 2 key, but splits the window vertically (like typing Ctrl-X 5
E). The O key examines the selected file in the next window on the screen, without splitting windows any
further. The Z key zooms the window to full-screen, then examines the selected file (like typing Ctrl-X Z E).

110 CHAPTER 4. COMMANDS BY TOPIC

Press lowercase L to create a live link. First Epsilon creates a second window, if there’s only one
window to start with. (Provide a numeric argument to get vertical, not horizontal, window splitting.) Then
Epsilon displays the file named on the current dired line in that window, in a special live link buffer. As you
move around in the dired buffer, the live link buffer will automatically update to display the current file.
Files overdired-live-link-limit bytes in size won’t be shown, to avoid delays. Delete the live link
buffer or window, or show a different buffer there, to stop the live linking.

Finally, typing H or ? while indired invokes help on thedired command.

Thequick-dired-command command on Alt-o is like running a dired on the current file, then
executing a single dired command and discarding the dired buffer. It provides a convenient way of
performing various simple file operations without running dired. It prompts for another key, one of C, D, M,
G, !, T, or V. Then it (respectively) copies, deletes, or renames the current file, changes Epsilon’s current
directory to the one containing that file, runs a command on the file, shows the file’s properties, or views it
using associations. Alt-o . displays a dired of the current file. Alt-o F views its folder in MS-Windows
Explorer. (The T, V and F options are only available in Epsilon for Windows.)

Thelocate-file command prompts for a file name and then searches for that file, using dired to display
the matches. In Windows, DOS, and OS/2, it searches for the file on all local hard drives, skipping over
removable drives, CD-ROM drives, and network drives. On Unix, it searches through particular parts of the
directory hierarchy specified by thelocate-path-unix variable.

Thelist-files command also takes a file pattern and displays a list of files. Unlikedired, its file list uses
absolute pathnames, and it omits the file’s size, date, and other information. It provides just the file names,
one to a line. The command also doesn’t list directory names, asdired does. The command is often useful
when preparing response files for other programs.

Summary: Ctrl-X D dired
Alt-o quick-dired-command

list-files

4.8.7 Buffer List Editing

Thebufed command on Ctrl-X Ctrl-B functions likedired, but it works with buffers instead of files. It
creates a list of buffer names. Each buffer name appears on a line along with the size of the buffer, the
associated file name (if any) and a star if the buffer contains unsaved changes, and/or an R if the buffer is
currently marked read-only. Thebufed command pops up the list, and highlights the line describing the
current buffer.

In this buffer, alphabetic keys run special bufed commands. Alphabetic keys not mentioned do nothing,
and non-alphabetic keys run the usual commands. The N and P keys go to the next and previous buffers in
the list, respectively, by going down or up one line. The D command deletes the buffer on the current line,
but warns you if the buffer contains unsaved changes. The S key saves the buffer on the current line, and
Shift-P prints the buffer like theprint-buffer command. The E orhSpacei command selects the buffer on
the current line and displays it in the current window, removing the bufed listing.

As in dired, several keys provide shortcuts for common operations. The 1 key expands the current
window to take up the whole screen, then selects the highlighted buffer. The 2 key splits the current window
horizontally and selects the highlighted buffer in the second window. The 5 key works like the 2 key, except
it splits the window vertically. The Z key zooms the current window to full-screen, then selects the
highlighted buffer.

By default, the most recently accessed buffers appear at the top of the list, and those you haven’t used
recently appear at the end. The current buffer always appears at the top of the list. You can press ‘b’, ‘f’, or

4.9. STARTING AND STOPPING EPSILON 111

‘i’ to make Epsilon sort the list by buffer name, file name, or size, respectively. Pressing ’a’ makes Epsilon
sort by access time again. Pressing the upper case letters ‘B’, ‘F’, ‘I’, or ‘A’ reverses the sense of the sort.
Pressing ‘u’ produces a buffer list ordered by time of creation, with the oldest buffers at the bottom.

Thebufed command does not normally list special buffers such as the kill buffers. To include even
these buffers, give thebufed command a numeric argument. Thebufed command will display buffers that
start with a dash character (“-”) only if you prefix the command with a numeric argument. By default,
bufed pops up a 50-column window in the non-Windows versions. You can change this width by setting the
bufed-width variable. (In Epsilon for Windows, change the dialog’s width by dragging its border, as
usual.)

Summary: Ctrl-X Ctrl-B bufed

4.9 Starting and Stopping Epsilon

You generally exit the editor with Ctrl-X Ctrl-Z, which runs the commandexit-level. If in a recursive editing
level,exit-level will not exit, but bring you back to the level that invoked the recursive edit. If you haven’t
saved all your files, Epsilon will display a list usingbufed and ask if you really want to exit.

You may also useexit, Ctrl-X Ctrl-C, to exit the editor. It ignores any recursive editing levels. When
given a numeric argument, Epsilon won’t warn you about unsaved files, or write a session file (see the next
section). It will simply exit immediately.

You can customize Epsilon’s actions at startup by defining a hook function using EEL. See page 446.

In Epsilon for Unix, an alternative to exiting Epsilon is to suspend it using the Alt-xsuspend-epsilon
command. This returns control to the shell that launched Epsilon. Use the shell’s fg command to resume
Epsilon. When Epsilon runs as an X program, this command instead minimizes Epsilon’s window.

Summary: Ctrl-X Ctrl-Z exit-level
Ctrl-X Ctrl-C exit

suspend-epsilon

4.9.1 Session Files

When you start up Epsilon, it will try to restore the window and buffer configuration you had the last time
you ran Epsilon. It will also restore items such as previous search strings, your positions within buffers, and
the window configuration.

If you set the variablesession-always-restore to zero, Epsilon will only try to restore your
previous session if you invoke it without giving a file name on the command line. If you provide an explicit
file to edit on the command line, Epsilon will read just that file in, and will refrain from restoring the
previous session. (Also see page 8.)

Epsilon restores your previous session by consulting a session file named epsilon.ses, which is normally
stored in the directory with Epsilon’s other configuration files (or, under Unix, in the directory ˜/.epsilon).
By default, Epsilon will write such a file when you exit. If you set the value of the variable
preserve-session to zero, then Epsilon will not write a session file before exiting. See the description
of this variable for more details. Also see the-p flag described on page 14.

112 CHAPTER 4. COMMANDS BY TOPIC

You can tell Epsilon to search for an existing session file, starting from the current directory. If a session
file doesn’t exist in the current directory, then Epsilon looks in its parent directory, then in that directory’s
parent, and so forth, until it reaches the root directory or finds a session file.

To let Epsilon search like this, set thesession-tree-root variable to empty. If this variable is set
to a directory name in absolute form, Epsilon will only search for an existing session file in the named
directory or one of its children. For example, ifsession-tree-root holds c:njoenproj, and the current
directory is c:njoenprojnsrc, Epsilon will search in c:njoenprojnsrc, then c:njoenproj, for a session file. If the
current directory is c:njoenmisc, on the other hand, Epsilon won’t search at all (sincenjoenmisc isn’t a child
of njoenproj), but will use the rules below. By default this variable is set to the wordNONE, an impossible
absolute directory name, so searching is disabled.

If Epsilon finds no such file by searching as described above (or if such searching is disabled, as it
usually is), then Epsilon looks for a session file in each of these places, in this order:

� If the session-default-directory variable is non-empty, in the directory it names. (This
variable is empty by default.)

� If the configuration variable EPSPATH can be found, in the first directory it names. (See page 9 for
more on configuration variables.)

� In the root directory of the current drive (or, for Unix, the˜/.epsilon directory).

All of the above implies that, if you install Epsilon normally and don’t change any settings, Epsilon puts
session files in the current user’s home directory under Unix, and in the directory containing its other files in
other environments.

There are three ways to tell Epsilon to search for a file with a different name, instead of the default of
epsilon.ses. With any of these methods, specifying an absolute path keeps Epsilon from searching and forces
it to use a particular file. Epsilon checks for alternate names in this order:

� The-p flag can specify a different session file name.

� An ESESSION configuration variable can specify a different session file name.

� Thesession-file-name variable can specify a name.

If you wish, you may maintain different sessions associated with different directories. To make Epsilon
look for its session file only in the current directory, and create a new session file there on exiting, set
session-default-directory to “.” and leavesession-tree-root set to “NONE”. This will
force Epsilon to restrict its attention to the current directory when looking for a session file.

Thewrite-session command writes a session file, detailing the files you’re currently editing, the
window configuration, default search strings, and so forth. By default, Epsilon writes a session file
automatically whenever you exit, but you can use this command if you prefer to save and restore sessions
manually. Theread-session command loads a session file, first asking if you want to save any unsaved files.
Reading in a session file rereads any files mentioned in the session file, as well as replacing search strings,
all bookmarks, and the window configuration. However, any files not mentioned in the session file will
remain, as will keyboard macros, key bindings, and most variable settings. If you use either command and
specify a different session file than the default, Epsilon will use the file name you provided when it
automatically writes a session file as you exit.

You can set thesession-restore-files variable to control whether Epsilon restores files named
in a session file, or just search strings, command history, and similar settings. If
session-restore-files is 0, when Epsilon restores a session, it won’t load any files named in the

4.9. STARTING AND STOPPING EPSILON 113

session, only things like previous search strings. If1, the default, Epsilon will restore previous files as well
as other settings. If2, Epsilon will restore previous files only if there were no files specified on Epsilon’s
command line.

You can set thesession-restore-max-files variable to limit the number of files Epsilon will
reread, which is by default 15. The files are prioritized based on the time of their last viewing in Epsilon, so
by default Epsilon restores the 15 files you’ve most recently edited. Also, Epsilon won’t automatically
restore any files bigger than the size in bytes specified by thesession-restore-biggest-file
variable.

You can set thesession-restore-directory variable to control whether Epsilon restores any
current directory setting in the session file. Set it to0 and Epsilon will never do this. Set it to1 and Epsilon
will always restore the current directory when it reads a session file. The default value2 makes Epsilon
restore the current directory setting only when the-w1 flag has been specified. (Under Windows, Epsilon’s
installer includes this flag when it makes Start Menu shortcuts.)

Summary: read-session
write-session

4.9.2 File Associations and DDE

You can set up file associations in Epsilon for Windows using thecreate-file-associations command. It lets
you modify a list of common extensions, then sets up Windows to invoke Epsilon to edit files with those
extensions. The files will be sent to an existing copy of Epsilon, if one is running, via a Windows DDE
execute message.

Dynamic Data Exchange, or DDE, is one mechanism in Windows for programs to talk to each other. A
DDE server is a program that knows how to “listen” for messages from other programs. A DDE client is a
program that knows how to send a message using DDE.

When you double-click on a shell icon, and you want a program to start editing a file, Windows
arranges for this in one of two ways. The simple way: Windows just starts a new copy of the program and
tells it to edit that file. The disadvantage is that you get multiple copies of the program running, if you click
on multiple files.

The better way uses DDE. Thecreate-file-associations command sets things up so that Windows will
know how to use DDE to talk to a copy of Epsilon. So now when you double-click on a file registered to
Epsilon, Windows will first try to send a message to Epsilon saying “please edit this file”. If there’s no
running copy of Epsilon, Windows will notice that no program accepted the message, and it will know it
needs to run the program itself.

Summary: create-file-associations

4.9.3 Sending Files to a Prior Session

Epsilon’s command line flag-add tells Epsilon to locate an existing instance of itself (a “server”), send it a
message containing the rest of the command line, and immediately exit. (Epsilon ignores the flag if there’s
no prior instance.) This feature works in Epsilon for Windows and Epsilon for Unix.

The command line flag-noserver tells Epsilon that it should not respond to such messages from future
instances.

114 CHAPTER 4. COMMANDS BY TOPIC

The command line flag-server may be used to alter the server name for an instance of Epsilon, which
is “Epsilon” by default. An instance of Epsilon started with-server:somename-add will only pass its
command line to a previous instance started with the same-server:somenameflag.

An -add message to Epsilon uses a subset of the syntax of Epsilon’s command line. It can contain file
names to edit, the+linenumflag, the flag-dvarname=valueto set an Epsilon variable,-lfilenameto load an
EEL bytecode file, or-rfuncnameto run an EEL function, command, or macro.

Spaces separate file names and flags in the message; surround a file name or flag with" characters if it
contains spaces. In EEL, such messages arrive via a special kind ofWIN_DRAG_DROP event.

In Epsilon for Unix you can use the-wait flag instead of-add. This causes the client Epsilon to send
the following command line to an existing instance and then wait for a response from the server, indicating
the user has finished editing the specified file. Use theresume-client command on Ctrl-C # to indicate this.

Epsilon for Windows normally acts as a server for its own internal-format messages, as described
above, and also acts as a DDE server for messages from Windows Explorer. The-noserver flag described
above also disables DDE, and the-server flag also sets the DDE server name. The DDE server in Epsilon
uses a topic name of “Open” and a server name determined as described above (normally “Epsilon”).

Summary: Ctrl-C # resume-client

4.9.4 MS-Windows Integration Features

Epsilon can integrate with Microsoft’s Developer Studio (Visual Studio) in several ways. One lets you press
a key (or click a button) while editing a file in Developer Studio, and start Epsilon on the same file. The
other automates this process, so any attempt to open a source file in Developer Studio is routed to Epsilon.

For on-demand integration, you can add Epsilon to the Tools menu in Microsoft Developer Studio.
You’ll then be able to select Epsilon from the menu and have it begin editing the same file you’re viewing in
Developer Studio, at the same line. To do this, use the Tools/Customize menu command in Developer
Studio. Select the Tools tab in the Customize dialog that appears. Create a new entry for the Tools menu,
and set the Command field to the name of Epsilon’s executable, epsilon.exe. Set the Arguments field to
-add +$(CurLine):$(CurCol) $(FilePath). You may set the Initial Directory field to
$(FileDir) if you wish.

You can also set up Developer Studio 5.0 or later to do the above automatically, so that every time
Developer Studio tries to open a source file, Epsilon appears and opens the file instead. To set up Developer
Studio 5.0 or later so its attempts to open a source file are passed to Epsilon, use the Customize command on
the Tools menu and select the Add-ins and Macro Files page in the dialog. Click Browse, select Add-ins
(.dll) as the File Type, and navigate to the VISEPSIL.DLL file located in the directory containing Epsilon’s
executable (typicallyc:nProgram FilesnEpsilonnbin). Select that file.

Close the Customize dialog and a window containing an Epsilon icon (a blue letter E) should appear.
You can move the icon to any toolbar by dragging it. Click the icon and a dialog will appear with two
options. Unchecking the first will disable this add-in entirely. If you uncheck the second, then any time you
try to open a text file in Dev Studio it will open in both Epsilon and Dev Studio. When checked, it will only
open in Epsilon.

Running Epsilon via a Shortcut

Epsilon comes with a program, sendeps.exe, that’s installed in the directory containing Epsilon’s main
executable. It provides some flexibility when you create a desktop icon for Epsilon, or use the Send To
feature (both of which involve creating a Windows shortcut).

4.9. STARTING AND STOPPING EPSILON 115

If you create a desktop shortcut for Epsilon, or use the Send To feature in Windows, have it refer to this
sendeps.exe program instead of Epsilon’s main executable. Sendeps will start Epsilon if necessary, or locate
an existing copy of Epsilon, and load the files named on its command line.

This is useful because Windows ignores a shortcut’s flags (command line settings) when you drop a
document on a shortcut, or when you use the Send To feature. (If it used the flags, you could simply create a
shortcut to Epsilon’s main executable and pass its-add flag. Since it doesn’t, sending a file requires a
separate program.) Also, Windows sends long file names without quoting them in these cases, which would
cause problems if sent directly to Epsilon.

Sendeps may be configured through entries in a lugeps.ini file located in your Windows directory. The
section name it uses is the same as the base name of its executable (so making copies of the executable
under different names lets you have multiple Send To entries that behave differently, for instance).

These are its default settings:

[SendEps]
server=Epsilon
topic=Open
ddeflags=
executable=epsilon.exe
runflags=-add -w1
nofilestartnew=1
nofileflags=-w1
usedde=0

Here’s how Sendeps uses the above settings. It first looks for an Epsilon server namedserver using
Epsilon’s-add protocol. If found, it sends the server a command line consisting of theddeflags setting,
followed by the file name passed on its command line (inside double quotes). If there’s no such server
running, Sendeps executes a command line built by concatenating theexecutable name, the
runflags, and the quoted file name.

You can tell Sendeps to use DDE instead of its usual-add protocol by setting usedde to1. In that case
it will use the specifiedtopic name.

When you invoke Sendeps without specifying a file name on its command line, its behavior is
controlled by thenofilestartnew setting. If nonzero it starts a new instance of Epsilon. If zero, it
brings an existing instance to the top, if there is one, and starts a new instance otherwise. In either case, if it
needs to start a new instance it usesnofileflags on the command line.

The Open With Epsilon Shell Extension

If you tell Epsilon’s installer to add an entry for Epsilon to every file’s context menu in Explorer, Epsilon
installs a shell extension DLL. You can configure it by creating entries in the lugeps.ini file located in your
Windows directory.

These are its default settings, which you can copy to lugeps.ini as a basis for your changes:

[OpenWith]
server=Epsilon
serverflags=
executable=epsilon.exe
runflags=-add -w1
menutext=Open With Epsilon

116 CHAPTER 4. COMMANDS BY TOPIC

When you select Open With Epsilon from the menu in Explorer, the shell extension first looks for an
Epsilon server namedserver using Epsilon’s-add protocol. If found, it sends the server a command line
consisting of theserverflags setting, followed by the file name you selected (inside double quotes).

If there’s no such server running, the DLL executes a command line built by concatenating the
executable name, therunflags, and the quoted file name. If theexecutable name is a relative
pathname, it first tries to run any executable by that name located in the DLL’s current directory. If that fails,
it uses the executable name as-is, and lets Windows search for it along the PATH.

If you’ve selected multiple files, it repeats the above process for each file.

You can alter the menu text Explorer displays by setting themenutext item. This setting doesn’t take
effect until you restart Explorer, or unload and reload theowitheps.dll file that provides this menu by
runningregsvr32 /u owitheps.dll, thenregsvr32 owitheps.dll. Other changes to the
DLL’s settings take effect immediately.

4.10 Running Other Programs

Epsilon provides several methods for running other programs from within Epsilon. Thepush command on
Ctrl-X Ctrl-E starts a command processor (shell) running. You can then issue shell commands. When you
type the “exit” command, you will return to Epsilon and can resume your work right where you left off.

With a numeric argument, the command asks for a command line to pass to the shell, runs this
command, then returns. Epsilon asks you to type a key when the command finishes, so that you have a
chance to read the command’s output before Epsilon reclaims the screen.

While Epsilon runs a command processor or other program with thepush command, it looks like you
ran the program from outside of Epsilon. But Epsilon can make a copy of the input and output that occurs
during the program’s execution, and show it to you when the program returns to Epsilon. If you set the
variablecapture-output to a nonzero value (normally it has the value zero), Epsilon will make such a
transcript. When you return to Epsilon, this transcript will appear in a buffer named “process”. In this case,
Epsilon won’t ask you to type a key when the process finishes, since the entire session appears in the process
buffer.

You can use thefilter-region command on Alt-| to process the current region through an external
command. Epsilon will run the command, sending a copy of the region to it as its standard input. By default,
the external command’s output goes to a new buffer. Runfilter-region with a numeric argument if you want
the output to replace the current region.

Under DOS, theshell-shrinks variable helps to determine the amount of memory available to the
process. If zero, Epsilon and the process split the available memory (see page 122 for details). Thus, very
large programs may run out of memory when run from within Epsilon in this way. Ifshell-shrinks has
a nonzero value, Epsilon will unload itself from memory until you exit from the process, leaving only a
small section of itself behind. We call thisshrinking. After your program runs, Epsilon will reload itself,
leaving you in exactly the same state as before the shrinking occurred. By default,shell-shrinks has a
nonzero value.

Epsilon for DOS shrinks by copying most of itself to a file namedeshrink, normally in the same
directory it creates a swap file in. See page 13. However, if Epsilon has access to EMS or XMS memory for
buffers, it will put as much of itself as will fit there before it creates an eshrink file.

Configuration variables (see page 9) let you customize what command Epsilon runs when it wants to
start a process. Epsilon runs the command file named by the EPSCOMSPEC configuration variable. If no
such variable exists, Epsilon uses the standard COMSPEC environment variable instead. Epsilon reports an
error if neither exists.

4.10. RUNNING OTHER PROGRAMS 117

If a configuration variable named INTERSHELLFLAGS has been defined, Epsilon passes the contents
of this variable to the program as its command line. When Epsilon needs to pass a command line to the
program, it doesn’t use INTERSHELLFLAGS. Instead, it inserts the contents of the CMDSHELLFLAGS
variable before the command line you type. (The sequence %% in CMDSHELLFLAGS makes Epsilon
interpolate the command line at that point, instead of adding it after the flags.)

If Epsilon can’t find a definition for INTERSHELLFLAGS or CMDSHELLFLAGS, it substitutes flags
appropriate for the operating system.

Summary: Ctrl-X Ctrl-E push
filter-region

4.10.1 The Concurrent Process

Epsilon can also run a program in a special way that allows you to interact with the program in a buffer and
continue editing while the program runs. It can help in preparing command lines, by letting you edit things
you previously typed, and it automatically saves what each program types, so you can examine it later. If a
program takes a long time to produce a result, you can continue to edit files while it works. We call a
program run in this way aconcurrent process.

Thestart-process command, bound to Ctrl-X Ctrl-M, begins a concurrent process. Without a numeric
argument, it starts a shell command processor which will run until you exit it (by going to the end of the
buffer and typing “exit”). With a numeric argument, it prompts you for the name of a program, instructs the
shell to execute just that one command, then terminates the concurrent process.

Epsilon maintains a command history for the concurrent process buffer. You can use Alt-P and Alt-N to
retrieve the text of previous commands. With a numeric prefix argument, these keys show a menu of all
previous commands. You can select one to repeat.

In a concurrent process buffer, you can use thehTabi key to perform completion on file names and
command names as you’re typing them. If no more completion is possible, it displays all the matches in the
echo area, if they fit. If not, presshTabi again to see them listed in the buffer.

The command uses different rules for the first word on the command line, searching for a command
along the PATH in a manner appropriate to the operating system. (It won’t know about any commands that
may be built into the current shell command processor, though.)

As described in the previous section, you can change the name of the shell command processor Epsilon
calls, and specify what command line switches Epsilon should pass to it, by setting configuration variables.
Some different configuration variable names override those variables, but only when Epsilon starts a
subprocess concurrently. For example, you might run a command processor that you have to start with a
special flag when Epsilon runs it concurrently. The INTERCONCURSHELLFLAGS and
CMDCONCURSHELLFLAGS variables override INTERSHELLFLAGS and CMDSHELLFLAGS,
respectively. The EPSCONCURCOMSPEC variable overrides EPSCOMSPEC.

For example, the 4DOS command processor replacement for DOS needs a special flag //Lineinput=yes
whenever you run it concurrently. Set these configuration variables (see page 9) to use Epsilon with 4DOS:

EPSCOMSPEC=c:\4dos\4dos.com
CMDCONCURSHELLFLAGS=//Lineinput=yes /c
INTERCONCURSHELLFLAGS=//Lineinput=yes

The Hamilton C Shell for OS/2 uses slightly different flags than the standard command processor
CMD.EXE. Set these configuration variables to use Epsilon with the C Shell:

118 CHAPTER 4. COMMANDS BY TOPIC

EPSCOMSPEC=c:\csh\bin\csh.exe
INTERSHELLFLAGS=-i
CMDSHELLFLAGS=-c

Note that you must type ahSpacei character after the-c flag for the Hamilton C Shell to work correctly.

A version of the Bash shell for Windows NT systems requires these settings:

EPSCOMSPEC=c:\cygwin\bin\bash.exe
INTERSHELLFLAGS=--login --noediting -i
CMDSHELLFLAGS=--login --noediting -c "%%"

These are configuration variables, so they would go in the environment for Unix or OS/2 versions of
Epsilon, or in the system registry or lugeps.ini file for Windows versions. See page 9.

When a concurrent process starts, Epsilon creates a buffer named “process”. In this buffer, you can see
what the process types and respond to the process’s requests for input. If a buffer named “process” already
exists, perhaps from running a process previously, Epsilon goes to its end. Provide a numeric argument to
thestart-process command and it will create an additional process buffer (in those environments where
Epsilon supports multiple process buffers).

If you set the variableclear-process-buffer nonzero, the commandsstart-process, push, and
make (described below) will each begin by emptying the process buffer. The variable normally has a value
of 0. See the variablestart-process-in-buffer-directory to control which directory the new
process starts in.

A program running concurrently behaves as it does when run directly from outside Epsilon except when
it prints things on the screen or reads characters from the keyboard. When the program prints characters,
Epsilon inserts these in the process buffer. When the program waits for a line of input, Epsilon will suspend
the process until it can read a line of input from the process buffer, at which time Epsilon will restart the
process and give it the line of input. You can type lines of input before the program requests them, and
Epsilon will feed the input to the process as it requests each line. Under DOS, Epsilon will also satisfy
requests from the concurrent process for single-character input.

In detail, Epsilon remembers a particular spot in the process buffer where all input and output takes
place. This spot, called thetype point, determines what characters from the buffer a program will read when
it does input, and where the characters a program types will appear. Epsilon inserts in the buffer, just before
the type point, each character a program types. When a process requests a line of input, Epsilon waits until a
newline appears in the buffer after the type point, then gives the line to the program, then moves the type
point past these characters. (Epsilon for DOS also distinguishes a request by a program to read a single
character. In that case, Epsilon will pause the concurrent process until you have inserted a character after the
type point, give that character to the concurrent process, then advance the type point past that character.)

You may insert characters into the process buffer in any way you please, typing them directly or using
theyank command to retrieve program input from somewhere else. You can move about in the process
buffer, edit other files, or do anything else at any time, regardless of whether the program has asked the
system for keyboard input.

To generate an end-of-file condition for DOS or Windows programs reading from the standard input,
insert aˆZ character by typing Ctrl-Q Ctrl-Z on a line by itself, at the end of the buffer.

Some programs will not work when running concurrently. Programs that do cursor positioning or
graphics will not work well, since such things do not correspond to a stream of characters coming from the
program to insert into a buffer. They may even interfere with what Epsilon displays. We provide the
concurrent process facility primarily to let you run programs like compilers, linkers, assemblers, filters, etc.

4.10. RUNNING OTHER PROGRAMS 119

At this writing, there are some limitations on the types of programs you can run under Epsilon for
Windows 95/98/ME. Specifically, 32-bit Win32 console mode programs running concurrently under Epsilon
for Windows 95/98 cannot receive console input. Read the release notes to see if the current version of
Epsilon still has this restriction. These restrictions don’t apply under NT or the following Windows versions.

If you run Epsilon under Windows 95/98/ME, you may find it necessary to increase the environment
space available to a subprocess. To do this, locate the file conagent.pif in the directory containing Epsilon’s
executable (typicallyc:nProgram FilesnEpsilonnbin). (Explorer may be set to hide the file’s .pif
extension.) Display its properties, and on the Memory tab enter a value in bytes for the Initial Environment
setting.

In some versions, Epsilon will let you run only one other program at a time. In others, you may rename
the process buffer using therename-buffer command, and start a different, independent concurrent process.
If you exit Epsilon while running a concurrent process, Epsilon kills that process, except in the DOS
version. Epsilon for DOS will not permit you to exit until you’ve stopped the concurrent process (normally
by typing the “exit” command at the end of the process buffer, or via theexit-process command).

Theexit-process command types “exit” to a running concurrent process. If the concurrent process is
running a standard command processor, it should then exit. Under DOS, Epsilon’sexit command asks if you
want to runexit-process when you try to exit with a running process. Also see the
process-warn-on-exit variable.

In the Windows and Unix versions of Epsilon, thekill-process command disconnects Epsilon from a
concurrent process, and forces it to exit. It operates on the current buffer’s process, if any, or on the buffer
named “process” if the current buffer has no process.

Thestop-process command, normally on Ctrl-C Ctrl-C, makes a program running concurrently believe
you typed Control-Break (or, for Unix, sends an interrupt signal). It operates on the current buffer’s process,
if any, or on the buffer named “process” if the current buffer has no process.

Under DOS, thepush command on Ctrl-X Ctrl-E (which always runs a command non-concurrently)
callsexit-process if a concurrent process is running, so it can run a process non-concurrently.

Summary: Ctrl-X Ctrl-M start-process
Ctrl-C Ctrl-C stop-process
Process mode only: Alt-hBackspacei process-backward-kill-word
Process mode only:hTabi process-complete
Process mode only: C-Y process-yank
Process mode only: Alt-n process-next-cmd
Process mode only: Alt-p process-previous-cmd

kill-process
exit-process

4.10.2 Compiling From Epsilon

Many compilers produce error messages in a format that Epsilon can interpret with itsnext-error command
on Ctrl-X Ctrl-N. The command searches in the process buffer (beginning at the place it reached last time,
or at the beginning of the last command) for a line that contains a file name, a line number, and an error
message. If it finds one, it uses thefind-file command to retrieve the file (if not already in a window), then
goes to the appropriate line in the file. With a numeric argument, it finds thenth next error message, or the
nth previous one if negative. In particular, a numeric argument of 0 repeats the last message. The

120 CHAPTER 4. COMMANDS BY TOPIC

previous-error command on Ctrl-X Ctrl-P works similarly, except that it searches backward instead of
forward.

The Ctrl-X Ctrl-N and Ctrl-X Ctrl-P keys move back and forth over the list of errors. If you move point
around in a process buffer, it doesn’t change the current error message. You can use thefind-linked-file
command on Ctrl-X Ctrl-L to reset the current error message to the one shown on the current line. (The
command also goes to the indicated source file and line, like Ctrl-X Ctrl-N would.)

Actually, Ctrl-X Ctrl-N runs thenext-position command, notnext-error. Thenext-position command
usually callsnext-error. After you use the grep command (see page 45), however,next-position calls
next-match instead, to move to the next match of the pattern you searched for. If you use any command that
runs a process, or runnext-error explicitly, thennext-position will again callnext-error to move to the
next error message.

Similarly, Ctrl-X Ctrl-P actually runsprevious-position, which decides whether to callprevious-error
or previous-match based on whether you last ran a compiler or searched across files.

To locate error messages, thenext-error command performs a regular-expression search using a pattern
that matches most compiler error messages. See page 59 for an explanation of regular expressions. The
command uses theERROR_PATTERNmacro, defined in the file proc.e. You can change this pattern if it
doesn’t match your compiler’s error message format. Thenext-error command also uses another
regular-expression pattern to filter out any error messages Epsilon should skip over, even if they match
ERROR_PATTERN. The variableignore-error stores this regular expression. For example, if
ignore-error contains the pattern “.*warning”, Epsilon will skip over any error messages that
contain the word “warning”.

The commandview-process on Shift-F3 can be convenient when there are many long error messages in
a compilation. It pops up a window showing the process buffer and its error messages, and lets you move to
a particular line with an error message and presshEnteri. It then goes to the source file and line in error. You
can also use it to see the complete error message from the compiler, whennext-error’s one-line display is
inadequate.

Themake command on Ctrl-X M functions somewhat like thepush command. It always runs a single
program, rather than an interactive command processor shell, and always captures the output of the program,
regardless of the setting of the variablecapture-output. It automatically runsnext-error for you when
the process returns. By default, it runs a program called “make”, but with a numeric argument it will prompt
for the command line to execute just like thepush command does. It will use that command line from then
on, if you invokemake without a numeric argument. See the variable
start-make-in-buffer-directory to control which directory the new process starts in.

Epsilon uses a template for the command line (stored in thepush-cmd variable), so you can define a
command line that depends on the current file name. See page 99 for information on templates. For
example,cl %f runs thecl command, passing it the current file name.

If a concurrent process already exists, Epsilon will attempt to run the program concurrently by typing
its name at the end of the process buffer (in those environments where Epsilon isn’t capable of creating more
than one process buffer). When Epsilon uses an existing process buffer in this way, it will runnext-error
only if you’ve typed no keys during the execution of the concurrent program. You can set the variable
concurrent-make to 0 to force Epsilon to exit any concurrent process, before running the “make”
command. Set it to 2 to force Epsilon to run the command concurrently, starting a new concurrent process if
it needs to. When the variable is 1 (the default), themake command runs the compiler concurrently if a
concurrent process is already running, non-concurrently otherwise.

Wheneverpush or make exit from a concurrent process to run a command non-concurrently, they will
restart the concurrent process once the command finishes. Set therestart-concurrent variable to
zero if you don’t want Epsilon to restart the concurrent process in this case.

4.10. RUNNING OTHER PROGRAMS 121

Beforemake runs the program, it checks to see if you have any unsaved buffers. If you do, it asks if it
should save them first, displaying the buffers using thebufed command. If you say yes, then themake
command saves all of your unsaved buffers using thesave-all-buffers command (which you can also invoke
yourself with Ctrl-X S). You can modify thesave-when-making variable to change this behavior. If it
has a value of 0, Epsilon won’t warn you that you have unsaved buffers. If it has a value of 1, Epsilon will
automatically save all the buffers without asking. If it has a value of 2 (as it has normally), Epsilon asks.

Thecompile-buffer command on Alt-F3 is somewhat similar tomake, but tries to compile only the
current file, based on its extension. There are several variables likecompile-cpp-cmd you can set to tell
Epsilon the appropriate compilation command for each extension. If Epsilon doesn’t know how to compile a
certain type of file, it will prompt for a command line. While Epsilon’smake command is good for
compiling entire projects,compile-buffer is handy for compiling simple, one-file programs.

The command is especially convenient for EEL programmers becausecompile-buffer automatically
loads the EEL program into Epsilon after compiling it. In Epsilon for 32-bit Windows and Unix, the EEL
compiler is integrated into Epsilon, so Epsilon doesn’t need to run another program to compile. When
Epsilon compiles EEL code using its internal EEL compiler, it looks in thecompile-eel-dll-flags
variable for EEL command line flags.

The buffer-specificconcurrent-compile variable tellscompile-buffer whether to run the
compiler concurrently. The value2 means always run the compiler concurrently,0 means never run
concurrently, and1 means run concurrently if and only if a concurrent process is already running. The value
3 (the default) means use the value of the variableconcurrent-make instead. (The
concurrent-make variable tells themake command whether to run its program concurrently, and takes
on values of0, 1, or2 with the same meaning as forconcurrent-compile.)

Summary: Ctrl-X Ctrl-N next-position
Ctrl-X Ctrl-P previous-position

next-error
previous-error

Shift-F3 view-process
Ctrl-X M make
Alt-F3 compile-buffer

4.10.3 Notes on the Concurrent Process under DOS

This section applies only to the DOS version.

When you specify the name of a file to Epsilon, Epsilon interprets it with respect to the current
directory unless it begins with a slash or backslash. We call a file name that begins with a slash an absolute
pathname, and one that does not begin with a slash a relative pathname. Under most operating systems each
program has its own current directory, but DOS has only one current directory that all programs share (well,
actually one per disk drive).

Some programs temporarily change the current directory for several seconds while the program runs.
Older versions of the DOS command processor do this when you give a command which it cannot find in
the current directory, and have defined a directory search PATH. If you issue a command likefind-file while
running such a program concurrently, and use a relative pathname, you may wind up with the wrong file.
File names shown on mode lines will change to reflect the current directory, so if a relative file name
suddenly turns into an absolute file name in a mode line, you know why. You should wait when DOS starts
up a command if you use search paths and an older version of DOS. Alternatively, you can always use an

122 CHAPTER 4. COMMANDS BY TOPIC

absolute pathname. This issue only arises under older versions of DOS, or with programs that change the
current directory.

Under DOS, thestop-process command will not take effect until the program’s next DOS call,
exclusive of console input or output. If the program does no DOS calls other than typing characters and
reading characters or lines, the vanilla version of thestop-process command won’t stop the program.

With a numeric argument, however,stop-process uses a different approach, which always stops the
program, but certain older programs, if stopped in this way, crash the system. In some versions of DOS prior
to version 3.1, the command processor exhibits this problem. Usestop-process with a numeric argument
only after a plainstop-process has failed to stop a program, and never with the command processor of a
version of DOS prior to version 3.1. With a numeric argument,stop-process can even stop programs with
infinite loops which would require rebooting outside of Epsilon.

If you’ve never tried a particular program before, you should make sure to save your work before you
try to run it concurrently. Programs that use DOS for I/O generally work, whereas programs that use the
BIOS to display characters or get input will not.

Under DOS, when a concurrent process exits, Epsilon normally reclaims the memory it used. However,
some programs leave part of themselves in memory when they exit from their first invocation. The DOS
Print and Mode commands do this, and some networking programs may act like this, too. If you run such
programs from within Epsilon, Epsilon cannot reclaim the space when the program exits. You should run
these programsoutsideEpsilon the first time you run them.

Epsilon for DOS must divide memory between itself and a concurrent process. The amount of memory
available to the concurrent process depends on what types of memory are available to Epsilon (EMS, XMS,
upper memory blocks, or conventional), what command line switches you’ve given, and the size of the files
you’re editing before starting the process.

To ensure that Epsilon provides the maximum possible space to a concurrent process:

� Provide the-m0 flag to make Epsilon use as little memory as possible (see page 14).

� If Epsilon can’t put its functions in XMS or EMS memory, the process will lose about 64k of potential
memory space. If you have an EMS memory manager program that only supports EMS 3.2, Epsilon
won’t be able to use it for storing its functions. Get a version that supports EMS 4.0, or install an
XMS memory manager.

� Make sure Epsilon doesn’t have to put buffer text in conventional memory.

Epsilon won’t have to use any conventional memory for buffer text if:

� At least 128k of EMS memory is available, or

� At least 128k of XMS memory is available, and at least 64k of memory is available in upper memory
blocks.

Otherwise, Epsilon will put up to 30k of buffer text in conventional memory.

Some programs are so big that even with-m0, they still won’t fit along with Epsilon. Epsilon can’t run
such programs concurrently, but you can run them without leaving Epsilon by having Epsilon shrink down
before running the program. See page 116.

4.11. REPEATING COMMANDS 123

4.11 Repeating Commands

4.11.1 Repeating a Single Command

You may give any Epsilon command a numeric argument. Numeric arguments can go up to several hundred
million, and can have either a positive or negative sign. Epsilon commands, unless stated otherwise in their
description, use a numeric argument as a repetition count if this makes sense. For instance,forward-word
goes forward 10 words if given a numeric argument of 10, or goes backward 3 words if given a numeric
argument of�3.

Theargument command, normally bound to Ctrl-U, specifies a numeric argument. After typing Ctrl-U,
type a sequence of digits and then the command to which to apply the numeric argument. Typing a minus
sign changes the sign of the numeric argument.

You may also use the Alt versions of the digit keys (Alt-1, etc.) with this command. Note that by default
the numeric keypad keys plus Alt do not give Alt digits. They produce keys like Alt-hPgUpi or let you enter
special characters by their numeric code. You can enter a numeric argument by holding down the Alt key
and typing the number on the main keyboard. Alt-hMinusi will change the sign of a numeric argument, or
start one at�4.

If you omit the digits, and just say Ctrl-U Ctrl-F, for instance, Epsilon will provide a default numeric
argument of 4 and move forward four characters. Typing another Ctrl-U after invokingargument multiplies
the current numeric argument by four, so typing Ctrl-U Ctrl-U Ctrl-N will move down sixteen lines. In
general typing a sequence ofn Ctrl-U’s will produce a numeric argument of4n.

Summary: Ctrl-U argument

4.11.2 Keyboard Macros

Epsilon can remember a set of keystrokes, and store them away in akeyboard macro. Executing a keyboard
macro has the same effect as typing the characters themselves. Use keyboard macros to make repetitive
changes to a buffer that involve the same keystrokes. You can even write new commands with keyboard
macros.

To define a keyboard macro, use the Ctrl-X (command. The echo area will display the message
“Remembering”, and the word “Def” will appear in the mode line. Whatever you type at the keyboard gets
executed as it does normally, but Epsilon also stores the keystrokes away in the definition of the keyboard
macro.

When you have finished defining the keyboard macro, press the Ctrl-X) key. The echo area will display
the message “Keyboard macro defined”, and a keyboard macro namedlast-kbd-macro will then exist with
the keys you typed since you issued the Ctrl-X (command. To execute the macro, use the Ctrl-F4 command
(or use Ctrl-X E if you prefer). This executes the last macro defined from the keyboard. If you want to
repeatedly execute the macro, give the Ctrl-F4 command a numeric argument telling how many times you
want to execute the macro.

You can give a different name to the last keyboard macro defined, using thename-kbd-macro function
on Ctrl-X Alt-N. Thereafter, you can invoke the keyboard macro by name as an extended command. Epsilon
will even do completion on its name. You can then bind this new command to a key, if desired.

You can make a keyboard macro that suspends itself while running to wait for some user input, then
continues. Press Shift-F4 while writing the macro and Epsilon will stop recording. Press Shift-F4 again to
continue recording. When you play back the macro, Epsilon will stop at the same point in the macro to let

124 CHAPTER 4. COMMANDS BY TOPIC

you type in a file name, do some editing, or whatever’s appropriate. Press Shift-F4 to continue running the
macro. When a macro has been suspended, “Susp” appears in the mode line.

Keyboard macros do not record most types of mouse operations. Commands in a keyboard macro must
be keyboard keys. However, you can invoke commands on a menu or tool bar while defining a keyboard
macro, and they will be recorded correctly. While running a macro, Epsilon’s commands for killing and
yanking text don’t use the clipboard; see page 55.

Instead of interactive definition with Ctrl-X (, you can also define keyboard macros in a command file.
The details appear in the section on command files, which starts on page 130. Command files also provide a
way to edit an existing macro, by inserting it into a scratch buffer in an editable format with the
insert-macro command, modifying the macro text, then using theload-buffer command to load the
modified macro.

Epsilon doesn’t execute a keyboard macro as it reads the definition from a command file, like it does
when you define a macro from the keyboard. This causes a rather subtle difference between the two methods
of definition. Keyboard macros may contain other keyboard macros, simply by invoking a second macro
inside a macro definition. When you create a macro from the keyboard, the keys you used to invoke the
second macro do not appear in the macro. Instead, the text of the second macro appears. This allows you to
define a temporary macro, accessible with Ctrl-F4, and then define another macro using the old macro.

With macros defined from files, this substitution does not take place. Epsilon makes such a macro
contain exactly the keys you specified in the file. When you execute this macro, the inner macro will execute
at the right time, then the outer macro will continue, just as you would expect.

The difference between these two ways of defining macros that contain other macros shows up when
you consider what happens if you redefine the inner macro. An outer macro defined from the keyboard
remains the same, since it doesn’t contain any reference to the inner macro, just the text of the inner macro
at the time you defined the outer one. However, an outer macro defined from a file contains a reference to
the inner macro, by name or by a key bound to that macro. For this reason the altered version of the inner
macro will execute in the course of executing the outer macro.

Normally Epsilon refrains from writing to the screen during the execution of a keyboard macro, or
during typeahead. The commandredisplay forces a complete rewrite of the screen. You may find this useful
for writing macros that should update the screen in the middle of execution.

Summary: Ctrl-X (start-kbd-macro
Ctrl-X) end-kbd-macro
Ctrl-F4, Ctrl-X E last-kbd-macro
Shift-F4 pause-macro
Ctrl-X Alt-N name-kbd-macro

insert-macro
load-buffer
redisplay

4.12 Simple Customizing

4.12.1 Bindings

Epsilon allows you to create your own commands and attach them, or any pre-existing Epsilon commands,
to any key. If you bind a command to a key, you can then invoke that command by pressing the key. For

4.12. SIMPLE CUSTOMIZING 125

example, at startup, Epsilon hasforward-character bound to the Ctrl-F key. By typing Ctrl-F, the
forward-character command executes, so point moves forward one character. If you prefer to have the
command which moves point to the end of the current line,end-of-line, bound to Ctrl-F, you may bind that
there.

You bind commands to keys with thebind-to-key command, which you can invoke with the F4 key.
Thebind-to-key command asks you for the name of a command (with completion), and the key to which to
bind that command. You may precede the key by any number ofprefix keys. When you type a prefix key,
Epsilon asks you for another key. For example, if you type Ctrl-X, Epsilon asks you for another key.
Suppose you type Ctrl-O. Epsilon would then bind the command to the Ctrl-X Ctrl-O key sequence. Prefix
keys give Epsilon a virtually unlimited number of keys.

Epsilon at startup provides Ctrl-X and Ctrl-C as the only prefix keys. You can invoke many commands,
such assave-file (Ctrl-X Ctrl-S) andfind-file (Ctrl-X Ctrl-F), through the Ctrl-X prefix key. You may define
your own prefix keys with the command calledcreate-prefix-command. Epsilon asks you for a key to make
into a prefix key. You may then bind commands to keys prefixed with this key using thebind-to-key
command. To remove prefix keys, see page 131.

When you press a prefix key, Epsilon displays the key in the echo area to indicate that you must type
another key. Epsilon normally displays the key immediately, but you can make it pause for a moment before
displaying the key. If you press another key during the pause, Epsilon doesn’t bother displaying the first key.

You control the amount of time Epsilon pauses using themention-delay variable, expressed in
tenths of a second. By default, this variable has a value of zero, which indicates no delay. You may find it
useful to setmention-delay to a small value (perhaps3). This delay applies in most situations where
Epsilon prompts for a single key, such as when entering a numeric argument.

Theunbind-key command asks for a key and then offers to rebind the key to thenormal-character
command, or to remove any binding it may have. A key bound tonormal-character will self-insert; that’s
how keys like ‘j’ are bound. A key with no binding at all simply displays an error message.

You may bind a given command to any number of keys. You may invoke a command, whether or not
bound to a key, usingnamed-command, by pressing the Alt-X key. Alt-X asks for the name of a command,
then runs the command you specified. This command passes any numeric argument you give it to the
command it invokes.

The commandalt-prefix, bound tohEsci, gets another key and executes the command bound to the Alt
version of that key. You will find this command useful if you must use Epsilon from a keyboard lacking a
working Alt key, or if you prefer to avoid using Alt keys. Also, you may find some combinations of control
and alt awkward to type on some keyboards. For example, some people prefer to invoke thereplace-string
command by typinghEsci & rather than by typing Alt-&.

The commandctrl-prefix, bound to Ctrl-̂ , functions similarly. It gets another key and converts it into
the Control version of that key. For example, it changes ‘s’ into the Ctrl-S key.

Epsilon distinguishes between upper case and lower case keys when determining key bindings. The
commandcase-indirect maps upper case letters and the alt versions of upper case letters to the
corresponding lower case keys. It also maps lower case to upper case. If you type a key bound to
case-indirect, say Alt-X, it executes the command bound to the corresponding other key, in this case Alt-x.
Secondary key tables like Ctrl-X usually bind the upper case letters along with alt versions tocase-indirect.
This has the effect of making keys you bind to the lower case letters work with both the upper and lower
case letter. You can still, however, bind different commands to the different cases. Note that control keys do
not have distinct cases: Ctrl-A and Ctrl-a both represent the same key.

Summary: Alt-X, F2 named-command
F4 bind-to-key

create-prefix-command

126 CHAPTER 4. COMMANDS BY TOPIC

unbind-key
hEsci alt-prefix
Ctrl-ˆ ctrl-prefix

case-indirect

4.12.2 Brief Emulation

Epsilon can emulate the Brief text editor. Thebrief-keyboard command loads a Brief-style keyboard map.
To undo this change, you can use theepsilon-keyboard command, which restores the standard keyboard
configuration. This command only modifies those key combinations that Brief uses. Other keys retain their
Epsilon definition. The Brief key map appears in figure 4.8.

In this release, Epsilon doesn’t emulate a few parts of Brief. The separate commands for toggling case
folding and regular expressions are not present, but you can type Ctrl-C and Ctrl-T within any searching
command to toggle those things. Regular expressions follow Epsilon’s syntax, not Brief’s. Brief’s
commands for loading and saving keyboard macro files aren’t implemented, since Epsilon lets you have an
unlimited number of macros loaded at once, not just one. Epsilon will beep if you press the key of an
unimplemented Brief emulation command.

In Brief, the shifted arrow keys normally switch windows. But Epsilon adopts the Windows convention
that shifted arrow keys select text. In Brief mode, the Alt-arrow keys on the separate cursor pad may be used
to switch windows.

You can make Epsilon’s display resemble Brief’s display using theset-display-look command. See
page 93.

4.12.3 CUA Keyboard

In CUA emulation mode, Epsilon recognizes most of the key combinations commonly used in Windows
programs. Other keys generally retain their usual Epsilon function.

To enable this emulation, press Alt-x, then typecua-keyboard and presshEnteri. Use Alt-x
epsilon-keyboard hEnteri to return to Epsilon’s default key assignments.

The table shows the CUA key combinations that differ from Epsilon’s native (Emacs-style) key
configuration. In addition, various Alt-letter key combinations not mentioned here invoke menu items (for
example, Alt-F displays the File menu in CUA mode, though it doesn’t in Epsilon’s native configuration).

Many commands in Epsilon are two-key combinations starting with Ctrl-X or Ctrl-C. In CUA mode,
use Ctrl-W instead of Ctrl-X, and Ctrl-K instead of Ctrl-C. For example, the commanddelete-blank-lines,
normally on Ctrl-X Ctrl-O, is on Ctrl-W Ctrl-O in CUA emulation.

4.12.4 Variables

You can set any user variable with theset-variable command. The variable must have the typechar, short,
int, array of chars, or pointer to char. The command first asks you for the name of the variable to set. You
can use completion. After you select the variable, the command asks you for the new value. Then the
command shows you the new value.

Whenever Epsilon asks you for a number, as in theset-variable command, it normally interprets the
number you give in base 10. But you can enter a number in hexadecimal (base 16) by beginning the number
with “0x”, just like EEL integer constants. The prefix “0o” means octal, and “0b” means binary. For

4.12. SIMPLE CUSTOMIZING 127

Alt-a mark-normal-region
Alt-b bufed
Ctrl-B line-to-bottom
Ctrl-C center-window
Alt-c mark-rectangle
Alt-d kill-current-line
Ctrl-D scroll-down
Alt-e find-file
Ctrl-E scroll-up
Alt-f display-buffer-info
Alt-g goto-line
Alt-h help
Alt-i overwrite-mode
Alt-j brief-jump-to-

bookmark
Alt-k kill-to-end-of-line
Alt-l mark-line-region
Alt-m mark-inclusive-region
Ctrl-N next-error
Alt-n next-buffer
Alt-o set-file-name
Alt-p print-region
Ctrl-P view-process
Alt-q quoted-insert
Alt-r insert-file
Ctrl-R argument
Alt-s string-search
Ctrl-T line-to-top
Alt-t replace-string
Ctrl-U redo
Alt-u undo
Alt-v show-version
Alt-w save-file
Ctrl-W set-want-backup-file
Alt-x exit
Ctrl-X write-files-and-exit
Alt-z push
Ctrl-Z zoom-window

Alt-1 brief-drop-bookmark 1
Alt-2 brief-drop-bookmark 2
... ...
Alt-0 brief-drop-bookmark 10
F1 move-to-window
Alt-F1 toggle-borders
F2 brief-resize-window
Alt-F2 zoom-window
F3 brief-split-window
F4 brief-delete-window
F5 string-search
Shift-F5 search-again
Alt-F5 reverse-string-search
F6 query-replace
Shift-F6 replace-again
Alt-F5 reverse-replace
F7 record-kbd-macro
Shift-F7 pause-macro
F8 last-kbd-macro
F10 named-command
Alt-F10 compile-buffer
Ctrl-hEnteri brief-open-line
hEsci abort
hDeli brief-delete-region
hEndi brief-end-key
hHomei brief-home-key
hInsi yank
Ctrl-hEndi end-of-window
Ctrl-hHomei beginning-of-window
Ctrl-hPgDni goto-end
Ctrl-hPgUpi goto-beginning
Alt-hMinusi previous-buffer
Ctrl-hMinusi kill-buffer
Ctrl-hBkspi backward-kill-word
Num + brief-copy-region
Num – brief-cut-region
Num * undo

Figure 4.8: Epsilon’s key map for Brief emulation.

128 CHAPTER 4. COMMANDS BY TOPIC

CUA Binding Epsilon Binding Command Name
Ctrl-A Ctrl-X H mark-whole-buffer
Ctrl-C Alt-W copy-region
Ctrl-F Ctrl-S incremental-search
Ctrl-H Alt-R query-replace
Ctrl-K ... Ctrl-C ... (prefix key: see below)
Ctrl-N new-file
Ctrl-O Ctrl-X Ctrl-F find-file
Ctrl-P Alt-F9 print-buffer
Ctrl-V Ctrl-Y yank (“paste”)
Ctrl-W ... Ctrl-X ... (prefix key: see below)
Ctrl-X Ctrl-W kill-region (“cut”)
Ctrl-Z F9 undo
Alt-A Ctrl-Z scroll-up
Alt-Z Alt-Z scroll-down
Alt-O Ctrl-X H mark-paragraph
hEscapei Ctrl-G abort
F3 Ctrl-S Ctrl-S search-again
hHomei Ctrl-A beginning-of-line
hEndi Ctrl-E end-of-line

Figure 4.9: CUA Key Assignments

example, the numbers “30”, “ 0x1E”, “ 0o36”, and “0b11110” all refer to the same number, thirty. You
can also specify an ASCII value by enclosing the character in single quotes. For example, you could type
’a’ to specify the ASCII value of the character “a” (in this example, 97).

Theset-any-variable command is similar toset-variable, but also includessystem variables. Epsilon
uses system variables to implement its commands; unless you’re writing EEL extensions, there’s generally
no reason to set them. When an EEL program defines a new variable, Epsilon considers it a system variable
unless the definition includes theuser keyword.

Theshow-variable command prompts for the name of the variable you want to see, then displays its
value in the echo area. The same restrictions on variable types apply here as toset-variable. The command
includes both user and system variables when it completes on variable names.

Theedit-variables command in the non-GUI versions of Epsilon lets you browse a list of all variables,
showing the current setting of each variable and the help text describing it, as you move through the list. You
can use the arrow keys or the normal movement keys to move around the list, or begin typing a variable
name to have Epsilon jump to that portion of the list. PresshEnteri to set the value of the currently
highlighted variable, then edit the value shown using normal Epsilon commands. To exit from
edit-variables, presshEsci or Ctrl-G. With a numeric argument, the command includes system variables in
its list.

In Epsilon for Windows, theedit-variables command behaves differently. It uses the help system to
display a list of variables. After selecting a variable, press the Set button to alter its value.

Some Epsilon variables have a different value in each buffer. Thesebuffer-specificvariables take on a
potentially different value each time the current buffer changes. Each buffer-specific variable also has a
default value. Whenever you create a new buffer, you also automatically create a new copy of the
buffer-specific variable as well. The value of this buffer-specific variable is initially this default value. In

4.12. SIMPLE CUSTOMIZING 129

Epsilon’s EEL extension language, you can define a buffer-specific variable by using thebuffer storage
class specifier, and give it a default value by initializing it like a regular variable.

Just as Epsilon provides buffer-specific variables, it also provideswindow-specificvariables. These have
a different value for each window. Whenever you create a new window, you automatically create a new copy
of the window-specific variable as well. When you split a window in two, both windows initially have the
same values for all their window-specific variables. Each window-specific variable also has a default value.
Epsilon uses the default value of a window-specific variable when it creates its first tiled window while
starting up, and when it creates pop-up windows. You define a window-specific variable in EEL with the
window storage class specifier, and you may give it a default value by initializing it like a regular variable.

If you ask theset-variable command to set a buffer-specific or window-specific variable, it will ask you
if you mean the value for the current buffer (or window), or the default value, or both. You can also tell the
set-variable command which value(s) you want to set by giving the command a numeric argument. Zero
means set only the current value; any positive numeric argument means set both the current and default
values; and any negative numeric argument means set only the default value.

Variables retain their values until you exit Epsilon, unless you make the change permanent with the
write-state command, described on page 130. This command saves only the default value for buffer-specific
and window-specific variables. It does not save the instantiated values of the variable for each buffer or
window, since the buffers and windows themselves aren’t listed in a state file. Session files, which do list
individual buffers and windows, also record selected buffer-specific and window-specific variables.

Theshow-variable command will generally show you both the default and current values of a
buffer-specific or window-specific variable. For string variables, though, the command will ask which you
want to see.

Thecreate-variable command lets you define a new variable without using the extension language. It
asks for the name, the type, and the initial value.

You can delete a variable, command, macro, subroutine, or color scheme with thedelete-name
command, or rename one with thechange-name command. Neither of these commands will affect any
command or subroutine in use at the time you try to alter it.

Summary: F8 set-variable
Ctrl-F8 show-variable

set-any-variable
edit-variables
create-variable
delete-name
change-name

4.12.5 Saving Changes to Bindings and Variables

Epsilon can save any new bindings you have made and any macros you have defined for future editing
sessions. Epsilon uses two kinds of files for this purpose, the state file and the command file. They both save
bindings and macros, but they differ in many respects:

� A state file contains commands, macros, variables, and bindings. A command file can contain only
macros and bindings.

� When Epsilon writes a state file, all currently defined commands, macros and variables go into it. A
command file contains just what you put there.

130 CHAPTER 4. COMMANDS BY TOPIC

� Epsilon can only read a state file during startup. It makes the new invocation of Epsilon have the same
commands as the Epsilon that performed thewrite-state command that created that state file. By
contrast, Epsilon can load a command file at any time.

� A command file appears in a human-readable format, so you can edit it as a normal file. By contrast,
Epsilon stores a state file in a non-human readable format. To modify a state file, you read it into a
fresh Epsilon, use appropriate Epsilon commands (likebind-to-key to change bindings), then save the
state with thewrite-state command.

� Epsilon can read a state file much faster than a command file.

You would use command files mostly for editing macros. They also provide compatibility with previous
versions of Epsilon, which did not offer state files. The next section describes command files.

Thewrite-state command on Ctrl-F3 asks for the name of a file, and writes the current state to that file.
The file name has its extension changed to “.sta” first, to indicate a state file. If you don’t provide a name,
Epsilon uses the name “epsilon.sta”, the same name that it looks for at startup. You can specify another state
file for Epsilon to use at startup with the-s flag.

For example, say Tom and Sue share a computer. Tom likes Epsilon just the way it comes, but Sue has
written some new commands and attached them to the function keys, and she now wants to use those
commands each time she uses Epsilon. She invokeswrite-state and gives the file name “sue”. Epsilon
writes all its commands and bindings on a file named “sue.sta”. She can now invoke Epsilon with her
commands by typing “epsilon -ssue”. Or, she can use a configuration variable to specify this switch
automatically every time she runs Epsilon. See page 12.

By default, when you write a new state file, Epsilon makes a copy of the old one in a file named
ebackup.sta. You can turn backups off by setting the variablewant-state-file-backups to 0, or
change the backup file name by modifying thestate-file-backup-name template. See page 99 for
information on templates.

Summary: Ctrl-F3 write-state

4.12.6 Command Files

Epsilon provides several commands to create and executecommand files. These files contain macro
definitions and key bindings in a human-readable format, as described below. Theload-file command asks
you for the name of a file, then executes the commands contained in it. Theload-buffer command asks you
for the name of a buffer, then executes the commands contained in that buffer.

Epsilon’s command files appear in a human-readable format, so you can easily modify them.
Parentheses surround each command. Inside the parentheses appear a command name, and one or two
strings, sections of text enclosed in double quotes ("). Spaces separate one field from the next. Thus, each
command looks something like this:

(command-name "first-string" "second-string")

You can include comments in a command file by putting a semicolon or hash sign (‘#’) anywhere an
opening parenthesis may appear. Such a comment extends to the end of the line. Note that you cannot put a
comment inside a string.

Command files may contain three types of commands. The first,bind-to-key, functions like the regular
Epsilon command of the same name. For bind-to-key, the first string specifies the name of some Epsilon
command, and the second string represents the key whose binding you wish to modify, in a format we’ll

4.12. SIMPLE CUSTOMIZING 131

describe in detail in a moment. For instance, the following command binds the command
show-matching-delimiter to g:

; This example binds show-matching-delimiter to the
; } character so that typing a } shows the matching
; { character.
(bind-to-key "show-matching-delimiter" "}")

Unlike the regular command version, bind-to-key in a command file can unbind a prefix key. Say you
want to make Ctrl-X no longer function as a prefix key, but instead have it invokedown-line. If, from the
keyboard, you typed F4 to invokebind-to-key, supplied the command namedown-line, and then typed
Ctrl-X as the key to rebind, Epsilon would assume you meant to rebind somesubcommandof Ctrl-X, and
wait for you to type a Ctrl-K, for instance, to binddown-line to Ctrl-X Ctrl-K. Epsilon doesn’t know you
have finished typing the key sequence. But in a command file, quotes surround each of the arguments to
bind-to-key. Because of this, Epsilon can tell exactly where a key sequence ends, and you could rebind
Ctrl-X as above (discarding the bindings available through Ctrl-X in the process) by saying:

(bind-to-key "down-line" "C-X")

In a command file,define-macroallows you to define a keyboard macro. Its first string specifies the
name of the new Epsilon command to define, and its second string specifies the sequence of keys you want
the command to type. The define-macro command does not correspond to any single regular Epsilon
command, but functions like a combination ofstart-kbd-macro, end-kbd-macro, andname-kbd-macro.

The third command file command,create-prefix-command, takes a single string, which specifies a key,
and makes that key a prefix character. It works just as the regular command of the same name does.

The strings that describe keys in each of these commands use a representation similar to what Epsilon
uses when it refers to some key. Normal characters represent themselves, control characters have a “C-”
before them, alt characters have an “A-”, and function keys have an “F-” followed by the number of the
function key. Cursor keys appear in a notation like<Home>. See page 138 for details.

In practice, you don’t need to remember exactly how to refer to a particular key, because Epsilon
provides commands that construct command files for you. See theinsert-macro andinsert-binding
commands, described below.

You can also use the special syntax<!cmdname> in a keyboard macro to run a commandcmdname
without knowing which key it’s bound to. For example,<!find-file> runs the find-file command.
When you define a keyboard macro interactively and invoke commands from the menu bar or tool bar,
Epsilon will use this syntax to define them, since there may be no key sequence that invokes the specified
command.

Do not put extra spaces in command file strings that represent keys. For example, the string"C-X F"
represents “C-X<Space> F”, not “C-X F” with no hSpacei. When Epsilon describes a multi-key sequence
to you (during help, for example), it typically puts in spaces for readability.

If a backslash character ‘n’ appears in a string, it removes any special meaning from the character that
follows. For instance, to make a string with a quote character (") the sequence""" doesn’t work, because
Epsilon interprets it as a string, followed by a quote. Instead, use"n"".

If you need a string with the character “<” or the sequence “C-” in it (or “A-”, “S-”, “F-” or “N-”),
you’ll need to put a backslash (n) before it, to prevent its interpretation as a Control, Alt or other special
character. You can get a backslash in a string with a pair of backslashes, the first preventing special
interpretation of the second. Thus, the DOS file namenjobnletter.txt in a string looks likennjobnnletter.txt.

Consider this example command file:

132 CHAPTER 4. COMMANDS BY TOPIC

; This macro makes the window below the
; current one advance to the next page.
(define-macro "scroll-next-window" "C-XnC-VC-Xp")
(bind-to-key "scroll-next-window" "C-A-v")

;This macro asks for a file and puts
;it in another window.
(define-macro "split-and-find" "A-Xsplit-window
A-Xredisplay
A-Xfind-file
")

The first two lines contain comments. The third line begins the definition of a macro called
scroll-next-window. It contains three commands. First Ctrl-x n invokesnext-window, to move to the next
window on the screen. The Ctrl-v key runsnext-page, scrolling that window forward, and Ctrl-x p then
invokesprevious-window, to return to the original window. The fourth line of this example binds this new
macro to the Ctrl-Alt-v key, so that from then on, typing a ‘v’ with Control and Alt depressed will scroll the
next window forward.

The file defines a second macro namedsplit-and-find. It invokes three commands by name. Notice that
the macro could have invoked two of the commands by key. Invoking by name makes the macro easier to
read and modify later. Theredisplay command shows the action ofsplit-window before thefind-file
command prompts the user for a file name.

Rather than preparing command files according to the rules presented here, you may wish to have
Epsilon write parts of them automatically. Epsilon has two commands that produce the special bind-to-key
and define-macro commands appropriate to recreate a current binding or macro.

Theinsert-binding command asks you for a key, and inserts a bind-to-key command into the current
buffer. When you load the command buffer, Epsilon will restore the binding of that key.

Theinsert-macro command creates an appropriate define-macro command for a macro whose name
you specify, and inserts the command it builds into the current buffer. This comes in handy for editing a
keyboard macro that already exists.

In addition to the above syntax with commands inside parentheses, command files may contain special
lines that define variables, macros, key tables or bindings. Epsilon understands all the different types of lines
generated by thelist-all andlist-colors commands. Let’s say you want to create a command file with many
different macros or bindings you’ve defined in the current session. You could type the command file in
manually, or you could use theinsert-binding andinsert-macro commands described above to write the
command file line by line. But you may find it easier to runlist-all, and then extract just the lines you want.

Besides listing variables, macros, key tables, and bindings, thelist-all command also creates lines that
report that a command or subroutine with a particular name exists. These lines give the name, but not the
definition. When Epsilon sees a line like that, it makes sure that a command or subroutine with the given
name exists. If not, it reports an error. Epsilon does the same thing with variables that have complicated
types (pointers or structures, for example).

Summary: load-file
load-buffer
insert-binding
insert-macro

4.12. SIMPLE CUSTOMIZING 133

4.12.7 Using National Characters

This section explains how to configure Epsilon to conveniently edit text containing non-English characters
such as ˆe orå.

Epsilon supports 8-bit national character sets such as ISO 8859-1 (Latin 1), in those environments (such
as Unix and MS-Windows) that provide the appropriate fonts.

Epsilon can also read and write Unicode files encoded in the UTF-16 format. Epsilon autodetects and
translates such files to 8-bit format as it reads them and translates back to UTF-16 when writing.

In UTF-8 format, any characters outside the range 0–127 are represented as multi-byte sequences of
graphic characters. Epsilon will instead translate to Latin 1 instead of UTF-8 if you set the
unicode-use-latin1 variable nonzero. This displays the proper glyph for characters in the range
128–255, unlike the UTF-8 option, but it will perform no conversion at all if a file contains any characters
outside the range 0–255.

By default Epsilon automatically translates only those files that start with a UTF-16 marker (a 4-byte
sequence that marks the start of most such files). Set the variableunicode-detection to 2 if you want
Epsilon to translate files that appear to be in UTF-16 even if they lack this marker. This setting is only
recognized if you also setunicode-use-latin1 nonzero. Setunicode-detection to zero to
disable automatic UTF-16 detection. The commandunicode-convert-encoding may be used for manual
translation. Theset-unicode-encoding command sets the type of translation Epsilon will perform when you
save the current buffer.

The current version of Epsilon cannot utilize Unicode text or other non-8-bit character sets in any other
way, only 8-bit character sets.

To use a different 8-bit character set, in windowed environments such as MS-Windows or X, select a
font for Epsilon that contains the appropriate national characters. (See page 89.) In non-windowed
environments, configure the system with a suitable font before starting Epsilon.

Once you’ve used the operating system to configure the keyboard for your language and selected a
suitable font, Epsilon should treat national characters like any other characters. You can ignore the rest of
this section unless you have trouble typing national characters in Epsilon.

First, check to see if Epsilon is using a multi-character representation for characters. View a file
containing some national characters. If some national characters appear with multi-character representations
like M-ˆH orxCE, use theset-show-graphic command. (See page 87.)

You may find that when you type a certain national character, Epsilon beeps, or runs an unexpected
command, or something similar. The character might happen to use the same code as an Epsilon command.
In Epsilon for Unix, running without X support, see thenational-keys-not-alt variable.
Alternatively, you can fix this problem by rebinding that key. (See page 26.)

To rebind the key for a national character, press F4 to run thebind-to-key command. It will ask for the
name of a command to bind. Typenormal-character and presshEnteri. It will then ask you to press the key
you want to rebind. Press the troublesome key. This should fix the problem. Because this procedure replaces
key bindings, you may find that typing a command’s key sequence unexpectedly inserts a national character.
You can bind that command to a different key, or run it by name.

The rest of this section only applies to Epsilon for DOS and OS/2.

Before rebinding a key as explained above, DOS users should run theprogram-keys command, and
select the I option to modify the translation of an individual key. Press the troublesome key. Epsilon will
display a message such as “Key Alt-+, #299 is translated to Alt-+, #299 – change?” Press Y to change the
key’s translation, and enter�1 as the key’s new translation. If this doesn’t correct the problem, use the
procedure above to rebind the key.

134 CHAPTER 4. COMMANDS BY TOPIC

With some national keyboards, to type certain characters you must hold down the Alt key, and enter the
key code numerically on the keypad. By default, this doesn’t work in Epsilon for DOS or OS/2. To make it
work, run theprogram-keys command. Then select the A option. (See page 141.) Instead of making this
change, you can use Epsilon’sinsert-ascii command on Alt-# to enter a code by number. See page 51. If you
often enter the same character in this way, a keyboard macro can make this more convenient. See page 123.

4.13 Advanced Topics

4.13.1 Changing Commands with EEL

Epsilon has many built-in commands, but you may want to add new commands, or modify the way some
commands work. We used a language called EEL to write all of Epsilon’s commands. You can find the EEL
definitions to all of Epsilon’s commands in files ending in “.e”. EEL stands for Epsilon Extension Language.

Before you can load a group of commands from a “.e” file into Epsilon, you must compile them with
the EEL compiler. You do this (outside of Epsilon, or in Epsilon’s concurrent process buffer) by giving the
command “eelfilename” wherefilenamespecifies the name of the “.e” file you wish to compile (with or
without the “.e”). The EEL compiler will read the source file and, if it finds no errors, will produce a
“bytecode” file with the same first name but with a “.b” extension. A bytecode file contains command,
subroutine, and variable definitions from the source file translated to a binary form that Epsilon can
understand. It’s similar to a regular compiler’s object file.

Once you’ve compiled the file, the Epsilonload-bytes command, bound to F3, gets it into Epsilon. This
command prompts for a file name, then loads it into Epsilon. You may omit the extension.

If you’re currently editing an EEL source file, you can compile and load it in one step using the
compile-buffer command on Alt-F3. See page 121.

Often a new EEL command won’t work the first time. Epsilon incorporates a simple debugger to help
you trace through the execution of a command. It provides single-stepping by source line, and you can enter
a recursive edit level to locate point or to run test functions. The debugger takes the following commands:

hSpacei Step to the next line. This command will trace a function call only if you have enabled
debugging for that function.

S If the current line calls a function, step to its first line. Otherwise, step to the current
function’s next line.

G Cancel debugging for the rest of this function call and let the function run. Resume
debugging if someone calls the current function again.

R Begin a recursive edit of the current buffer. You may execute any command, including
show-variable or set-variable. Ctrl-X Ctrl-Z resumes debugging the stopped function.
(When debugging a function doing input, you may need to type Ctrl-U Ctrl-X Ctrl-Z to
resume debugging.)

T Toggle whether or not the current function should start the debugger when called the next
time. Parentheses appear around the word “Debug” in the debug status line to indicate that
you have not enabled debugging for the current function.

+ Enlarge the debug window.

– Shrink the debug window.

? List all debugger commands.

4.13. ADVANCED TOPICS 135

To start the debugger, use theset-debug command. It asks for the name of a command or subroutine,
providing completion, and toggles debugging for that function. (A zero numeric argument turns off
debugging for that function. A nonzero numeric argument turns it on. Otherwise, it toggles.)

Under DOS or OS/2, you can also start the debugger by pressing Control-hBreaki during the execution
of a command. (Under OS/2, you must then select the D option.)

Compiling a file with the-s EEL compiler flag disables debugging for routines defined in that file. See
page 299 for information about the EEL command line options, including the-s flag.

Theprofile command shows where a command spends its time. When you invoke the profile command,
it starts a recursive edit level, and collects timing information. Many times each second, Epsilon notes the
source file and source line of the EEL code then executing. When you exit from the recursive edit with
Ctrl-X Ctrl-Z, Epsilon displays the information to you in a buffer.

Epsilon doesn’t collect any profiling information on commands or subroutines that you compile with
the-s EEL flag. Epsilon for Windows 3.1 doesn’t support profiling.

Thelist-undefined command makes a list of EEL functions that are called from some other EEL
function, but have no definition. These are typically the result of misspelled function names.

Summary: F3 load-bytes
set-debug
profile
list-undefined

4.13.2 Updating from an Old Version

A new version of Epsilon often has a different internal format for the bytecode and state files it uses. If you
have customized Epsilon, you’ll probably want to incorporate your changes into the new version. This
section describes how to do this with a minimum of trouble. If you want to preserve your changes, please
read it before overwriting your existing copy of Epsilon with a new version.

If you’ve changed Epsilon by writing commands in Epsilon’s extension language, EEL, you should
recompile them using the new EEL compiler and load them into Epsilon. (If some of your commands have
cursor key bindings, and you want to update from version 4.4 or earlier, use theeel-change-key-names
command on your EEL files before compiling them, as described at the end of this section.) If some of the
built-in functions or subroutines you call have changed, you will have to modify your commands to take this
into account. Look in the file “fromversion” for a list of changes, whereversionrepresents the old version
number. (Find the closest file to your version. If you had version 3.23, for example, you would use the file
“from32”, since we do not provide a “from323”). The installation process normally installs these files in the
changes subdirectory within Epsilon’s main directory.

Other types of changes you might make include setting variables, changing bindings, or adding macros.
To move these changes to the new version requires several steps.

� Start the old version of Epsilon as you do normally.

� To update from a Unix version of Epsilon prior to version 4.05, issue thekey-switch command and
give the name “xxxx” when it asks for the terminal to switch to. This ensures that Epsilon records
your key bindings in a terminal-independent manner.

� Run thelist-all command. Epsilon provides this command starting with version 4.0. If you have an
older version of Epsilon, see page 137.

136 CHAPTER 4. COMMANDS BY TOPIC

This will make a list of all the variables, bindings, macros, and functions defined in your old version
of Epsilon.

� Save the result in a file. We will assume you wrote it to a file named “after”.

� If you wish to transfer customized color settings, run theexport-colors command to construct a
mycolors.e file. If you’re running a version of Epsilon prior to 9.0, and for more details, see page 137.

� You should no longer need the old version of Epsilon, so you can now install the new version in place
of the old one if you wish. Or you can install the new version in a separate directory.

� Locate the “changes” subdirectory within Epsilon’s main directory.

For each old version of Epsilon, you’ll need several files in the steps below. In the description that
follows, we will assume that you want to move from Epsilon 9.0 to this version, and will use files with
names like list90.std. Substitute the correct file name if you have a different version (for example, list10.std
to upgrade from Epsilon 10).

� Locate the file in the changes subdirectory from the new version of Epsilon with a name like
list90.std. It resembles the “after” file, but comes from an unmodified copy of that version of Epsilon.
We will call this the “before” file. If you have a very old version for which there is no .std file, see
page 137 to make one.

� Start the new version of Epsilon. Run thelist-changes command. It will ask for the names of the
“before” and “after” files, and will then make a list of differences between the files, a “changed” file.
When it finishes, you will have a list of the changes you made to the old version of Epsilon, in the
format used by thelist-all command. Edit this to remove changes you don’t want in the new version,
and save it.

� To update from version 4.4 or earlier, load the bytecode file called newkeys.b in the changes
subdirectory, using theload-bytes command on key F3. Now you can run thechange-key-names
command to convert any old-style key names such as N-3 to their new names (in this case,<PgDn>).

� Run theload-changes command, and give it the name of the “changed” file from the previous step. It
will load the changes into Epsilon. You can define commands, subroutines, and some variables only
from a compiled EEL file, not viaload-changes. If any of these appear in your changed file, Epsilon
will add a comment after that line, stating why it couldn’t make the change.

� Use thewrite-state command to save your new version of Epsilon. (Epsilon will automatically make
a backup copy of your old state file.)

Note that this procedure will not spot changes made in .e files, only those made to variables, bindings or
macros. It will notice if you have defined a new command, but not if you have modified an existing
command.

The above procedure uses several commands. Thelist-all command lists the current state of Epsilon in
text form, mentioning all commands and subroutines, and describing all key bindings, macros, and
variables. Thelist-changes command accepts the names of the “before” and “after” files produced by
list-all, and runs thecompare-sorted-windows command on them to make a list of the lines in “after” that
don’t match a line in “before”.

Finally, theload-changes command reads this list of differences and makes each modification listed. It
knows how to create variables, define macros, and make bindings, but it can’t transfer extension-language
commands. You’ll have to use the new EEL compiler to incorporate any EEL extensions you wrote.

4.13. ADVANCED TOPICS 137

Importing Color Settings

Starting in version 8.0, Epsilon records color selections in an EEL extension language file. Once your color
changes are in an EEL file, you’ll be able to move them to a new version of Epsilon by simply recompiling
them. When you move from an older version of Epsilon to version 8.0 or later, you’ll need to create this
EEL file.

Use theimport-colors command to import your color choices from Epsilon 7.X or earlier versions. It
reads the same “changed” file asload-changes and builds an EEL file named mycolors.e, which you can
compile and load into Epsilon with thecompile-buffer command on Alt-F3.

If you’re updating from Epsilon 8.0, your color changes should already be in an EEL file. Simply
compile and load this file into the new version of Epsilon. Starting in Epsilon 9.0, you can generate a
mycolors.e file from Epsilon’s current color settings using theexport-colors command.

Once you’ve loaded your color choices, you may need to use theset-color command to select the
particular color scheme you modified.Import-colors doesn’t change which color scheme Epsilon uses,
only the color choices making up the scheme.

Updating from Epsilon 4.0 or Older Versions

If you’re updating from a version of Epsilon before 4.0, you’ll have to make several files before updating.
You will need your old version of Epsilon (including the executable program files for Epsilon and EEL), the
state file you’ve been using with it (typically named epsilon.sta), and the original state file that came with
that version of Epsilon (which you can find on your old Epsilon distribution disk). You’ll also need the file
list-all.e, included with the new version of Epsilon. First, read the comments in the file list-all.e and edit it as
necessary to match your version. Then compile it with the old EEL compiler. This will create the bytecode
file listversion.b. Start your old version of Epsilon with its original state file, using a command like
epsilon -snoldvernepsilon, and load the bytecode file you just created, using theload-bytes
command on the F3 key. Now save the resulting list in a file named “before”. Then start your old version of
Epsilon again, this time with your modified state file, and load the bytecode file listversion.b again. Now
save the resulting list in a file named “after”. Next, start the new version of Epsilon, read in the “before” file,
and sort using thesort-buffer command, and write it back to the “before” file. You can now continue with
the procedure above, running thelist-changes command and providing the two files you just created.

If we didn’t provide a .std file for your version of Epsilon, and you’re running Epsilon 4.0 or later,
here’s how to make one. You will need your old version of Epsilon, the state file you’ve been using with it
(typically named epsilon.sta), and the original state file that came with that version of Epsilon (which you
can find on your old Epsilon distribution disk). Start your old version of Epsilon with its original state file,
using a command likeepsilon -snoldvernepsilon, and run thelist-all command. Now save the
resulting list in a file named “before”. Then start your old version of Epsilon again (just as you normally do)
using the state file that contains the changes you’ve made, and run thelist-all command again. Now save the
resulting list in a file named “after”. Next, start the new version of Epsilon, read in the “before” file, and sort
using thesort-buffer command, and write it back to the “before” file. You can now continue with the
procedure above, running thelist-changes command and providing the two files you just created.

The commandschange-key-names andeel-change-key-names mentioned above replace old-style
cursor key names from Epsilon 4.4 and earlier with the new names for these keys. The latter command
transforms key names that appear in EEL program syntax (for example, convertingNUMDIGIT(0) to
KEYINSERT). Use the former command to convert command files and before/after lists (in which N-7
becomes<Home>). Before you can run these commands, you must load the bytecode file newkeys.b from
the “changes” subdirectory described on page 136, using theload-bytes command on key F3.

Summary: list-all

138 CHAPTER 4. COMMANDS BY TOPIC

<Ins> <Insert>
<End>

<Down>
<PgDn> <PageDn> <PgDown> <PageDown>

<Left>

<Right>
<Home>

<Up>
<PgUp> <PageUp>

 <Delete>

Figure 4.10: Names Epsilon uses for the cursor keypad keys.

list-changes
load-changes
export-colors
change-key-names
eel-change-key-names

4.13.3 Keys and their Representation

This section describes the legal Epsilon keys, and the representation that Epsilon uses when referring to keys
and reading command files. The key representation used when writing extension language programs appears
on page 451.

Epsilon recognizes a total of 684 distinct keys you can type on the keyboard (including control and alt
keys). You can bind a command to each of these keys. Each key can also function as a prefix key to allow an
additional 684 keys accessible through that key.

First, the keyboard provides the standard 128 ASCII characters. All the white keys in the central part of
the PC keyboard, possibly in combination with the Shift and Control keys, generate ASCII characters. So do
thehEsci, hBackspacei, hTabi, andhEnteri keys. They generate Control[, Control H, Control I, and Control
M, respectively. Depending upon the national-language keyboard driver in use, there may be up to 128
additional keys available by pressing various combinations of Control and AltGr keys, for a total of 256
keys.

You can get an additional 256 keys by holding down the Alt key while typing the above keys. In
Epsilon, you can also enter an Alt key by typing anhEsci before the key. Similarly, the Control-ˆ key says
to interpret the following key as if you had held down the Control key while typing that key.

If you want to enter an actualhEsci or Control-̂ instead, type a Control-Q before it. The Ctrl-Q key
“quotes” the following key against special interpretations. See page 125.

In command files and some other contexts, Epsilon represents Control keys by C-hchari, with hchari
replaced by the original key. Thus Control-t appears as C-T. The case of thehchari doesn’t matter for
control characters when Epsilon reads a command file, but the C- must appear in upper case. The Delete
character (ASCII code 127) appears as C-?. Note that this has nothing to do with the key marked “Del” on
the PC keyboard. The Alt keys appear with A- appended to the beginning of their usual symbol, as in A-f for
Alt-f and A-C-h for Alt-Control-H.

4.13. ADVANCED TOPICS 139

N-<Ins> N-<Insert> N-0
N-<End> N-1
N-<Down> N-2
N-<PgDn> N-<PageDn> N-<PgDown> N-<PageDown> N-3
N-<Left> N-4
N-5
N-<Right> N-6
N-<Home> N-7
N-<Up> N-8
N-<PgUp> N-<PageUp> N-9
N- N-<Delete> N-.

Figure 4.11: Numeric keypad key names recognized and displayed by Epsilon.

Epsilon represents function keys by F-1, F-2, . . . F-12. The F must appear in upper case. You can also
specify the Shift, Control, and Alt versions of the function keys. When typing a function key, Epsilon only
recognizes one “modifier.” If you press the Alt key down, Epsilon ignores the Control and Shift keys, and if
you press the Control key down, Epsilon ignores the Shift key. You can specify 48 keys in this way. In a
command file, you specify the Shift, Control, and Alt versions with a prefix of S-, C-, or A-, respectively.
For example, Epsilon refers to the key you get by holding down the Shift and Alt keys and pressing the F8
key as A-F-8.

Keys on the cursor keypad work in a similar way. Epsilon recognizes several synonyms for these keys,
as listed in figure 4.10. Epsilon generally uses the first name listed, but will accept any of the names from a
command file. Epsilon recognizes Control, Shift, and Alt versions of these keys as well, and indicates these
with a prefix of C-, S-, or A-, respectively. You can only use one of these prefixes at a time.

Epsilon normally treats the shifted versions of these keys as synonyms for the unshifted versions. When
you press Shift-hLefti, Epsilon runs the command bound tohLefti. The commands bound to most of these
keys then examine the Shift key and decide whether to begin or stop selecting text. (Holding down the shift
key while using the cursor keys is one way to select text in Epsilon.) In a macro, Epsilon indicates that a
cursor key was shifted using the E- prefix. You can make Epsilon treat shifted cursor keys as entirely
separate keys using theprogram-keys command, described in the next section.

Epsilon doesn’t distinguish between the keys of a separate cursor pad and those of the numeric key pad
unless you use the-ke switch, described on page 13. If you use-ke, Epsilon refers to the numeric keypad
keys with the names given in figure 4.11. Whether or not you use-ke, Epsilon refers to the numeric
keypad’s 5 key (which doesn’t exist on the cursor pad) as N-5.

Epsilon actually does distinguish between the numeric pad and the cursor pad, even if you don’t use
-ke, in one case. Under DOS and OS/2, you can use theprogram-keys command to enable entering
graphic characters by holding down Alt and typing their codes on the numeric keypad (see page 141). That
won’t affect the Alt versions of the cursor pad keys. You can still bind Epsilon commands to those keys.

The numeric keypad has a dual nature, in that it can function as both a cursor pad and a numeric pad.
ThehNum Locki key switches between these two functions. You can temporarily change the state of
hNum Locki with either Shift key. With the Control or Alt keys depressed, Epsilon always generates cursor
keys, and ignores thehNum Locki and Shift keys.

As usual, thehCaps Locki key reverses the action of the shift key when used to modify alphabetic
characters.

In a command file, you can also represent keys by their conventional names, by writing<Newline> or

140 CHAPTER 4. COMMANDS BY TOPIC

<Escape>, or by number, writing<#0> for the null character̂ @, for example. Epsilon understands the
same key names here as in regular expression patterns (see figure 4.3 on page 61).

Macros defined in command files may also use the syntax<!cmdname> to run a commandcmdname
without knowing which key it’s bound to. For example,<!find-file> runs the find-file command.
When you define a keyboard macro interactively and invoke commands from the menu bar or tool bar,
Epsilon will use this syntax to define them, since there may be no key sequence that invokes the specified
command.

Several keys on the PC keyboard act as synonyms for other keys: the grey keys *,�, and + by the
numeric keypad, and thehBackspacei, hEnteri, hTabi, andhEsci keys. The first three act as synonyms for
the regular white ASCII keys, and the other four act as synonyms for the Control versions of ‘H’, ‘M’, ‘I’
and ‘[’, respectively. Epsilon normally translates these keys to their synonyms automatically, but you can
change this using theprogram-keys command, described in the next section.

Under DOS, thehScroll Locki key halts the currently running command, if possible, just like theabort
command. The command itself must check for an abort request (as most commands that take a long time
do). Control-hScroll Locki starts the extension language debugger on the currently running function. For
this to work, you need to have compiled the function using EEL’s-s flag.

Under OS/2,hScroll Locki does nothing. Control-hScroll Locki asks you whether to abort the current
command likeabort, start the extension language debugger, immediately exit Epsilon, or do nothing.

You cannot bind commands to the specialhScroll Locki and Control-hScroll Locki keys. They always
behave as described.

Mouse Keys

When you use the mouse, Epsilon generates a special key code for each mouse event and handles it the same
way as any other key. (For mouse events, Epsilon also sets certain variables that indicate the position of the
mouse on the screen, among other things. See page 454.)

M-<Left> M-<LeftUp> M-<DLeft> M-<Move>
M-<Center> M-<CenterUp> M-<DCenter>
M-<Right> M-<RightUp> M-<DRight>

Epsilon uses the above names for mouse keys when it displays key names in help messages and similar
contexts. M-<Left> indicates a click of the left button, M-<LeftUp> indicates a release, and
M-<DLeft> a double-click. See page 142 before binding new commands to these keys.

Epsilon doesn’t record mouse keys in keyboard macros. Use the equivalent keyboard commands when
defining a macro.

There are several “input events” that Epsilon records as special key codes. Their names are listed below.
See page 460 for information on the meaning of each key code.

M-<MenuSel> M-<HScroll> M-<WinHelpReq> M-<LoseFocus>
M-<Resize> M-<DragDrop> M-<Button>
M-<VScroll> M-<WinExit> M-<GetFocus>

Under Windows, Epsilon displays a tool bar. Thetoggle-toolbar command hides or displays the tool
bar. To modify the contents of the tool bar, see the definition of thestandard-toolbar command in the file
menu.e, and the description of the tool bar primitive functions starting on page 418.

4.13. ADVANCED TOPICS 141

Theinvoke-windows-menu command brings up the Windows system menu. Alt-hSpacei is bound to
this command. If you bind this command to an alphabetic key like Alt-P, it will bring up the corresponding
menu (the Process menu, in this example).

In a typical Windows program, pressing and releasing the Alt key without pressing any other key moves
to the menu bar, highlighting its first entry. Set the variablealt-invokes-menu to one if you want
Epsilon to do this. The variable has no effect on what happens when you press Alt and then press another
key before releasing Alt: this will run whatever command is bound to that key. If you want Alt-E, for
example, to display the Edit menu, you can bind the commandinvoke-windows-menu to it.

Summary: toggle-toolbar
invoke-windows-menu

4.13.4 Altering Keys

This section describes Epsilon’s facilities for internally altering the keys you type. You might need to do this
to make Epsilon for DOS work with a TSR program or to force it recognize a nonstandard key combination.
Epsilon has a general-purpose low-level facility called thekeytran array to do this (see page 452). The
program-keys command presents a menu of options, listing some typical customizations you may need to
do.

1, 2, 3 . . . Under DOS, Epsilon uses several “nonstandard” keys such as the Alt-hPeriodi key
and the Ctrl-hUpi key. A few resident utility programs (also known as keyboard
enhancers, Pop-up utilities, and TSR’s) use the same nonstandard keys that the DOS
version of Epsilon uses. Normally, Epsilon keeps these keys for its own use, and resident
programs won’t see them. The numbered options ofprogram-keys instruct Epsilon to
release the conflicting keys used by several resident programs. Epsilon will then pass
these keys to the resident program instead of using these keys itself.

A Both DOS and OS/2 allow you to enter graphic characters by holding down the Alt key and
typing their decimal codes on the numeric keypad. However, Epsilon normally binds
commands to these keys. The ‘A’ options tells Epsilon you want to enter graphic
characters numerically in this way. (Note: Epsilon for Windows always acts as if you had
selected this option. So does Epsilon for OS/2, when running in an OS/2 Presentation
Manager window.) You can also enter a character by its decimal code using the
insert-ascii command.

I Use this option if you must alter the translations of individual keys. Epsilon will ask you to
press a key, show you the current translation of that key, and ask for a new translation.
To replace one key with another, use the I option to determine the numeric code of the
replacement key. Then use the I option again and press the key you want to modify. Press
Y to enter a new translation for the key. Then enter the numeric code of the replacement
key.
You can also use this facility to defeat the automatic replacement that the computer’s
BIOS does (in the DOS version), forcing Epsilon to distinguish between two keys when
the BIOS considers them identical. To do this, use the I option to select the key you want
to modify. When Epsilon asks for the new translation value, type in the same number
shown as the key’s code. For example, to make Epsilon distinguish Shift-hGreyPlusi,
shown as key number 579, change its translation from the default value of-1 to 579.
Sometimes you have to do just the opposite. By default, a key like Alt-< (key number
316) has a translation code of 316, telling Epsilon to retain the key and not pass it to the

142 CHAPTER 4. COMMANDS BY TOPIC

BIOS (DOS version only). Epsilon does this because the BIOS ignores this key
combination. Similarly, the BIOS normally changes the key combination Alt-# (key
number 291) into Alt-3 (the unshifted form). So Epsilon sets its translation to 291 so the
BIOS never sees it. But sometimes TSR programs watch for a particular key combination,
typically one the BIOS doesn’t recognize. You may have to tell Epsilon to pass such a key
combination through, so that the TSR program can see it. Do this by setting the key’s
translation to-1. The numbered options ofprogram-keys described above do this, for
the special keys used by some common TSR programs.
There are a few other things you can do with key translation codes. See the description of
thekeytran array on page 452 for more details.

D This option restores Epsilon to its default state, undoing all the changes you’ve made with
these options.

Q This option exits theprogram-keys command.

Summary: program-keys

4.13.5 Customizing the Mouse

You can rebind the mouse buttons in the same way as other keys using thebind-to-key command, but if, for
example, you rebind the left mouse button tocopy-region, then that button will copy the region from point
to mark, regardless of the location of the mouse. Instead, you might want to use the left button to select a
region, and then copy that region. To do this, leave the binding of the left mouse button alone, and instead
define a new version of themouse-left-hook function. By default, this is a subroutine that does nothing.
You can redefine it as a keyboard macro using thename-kbd-macro command. Epsilon runs this hook
function after you release the left mouse button, if you’ve used the mouse to select text or position point (but
not if, for example, you’ve clicked on the scroll bar).

Normally Epsilon runs themouse-select command when you click or double-click the left mouse
button, and themouse-to-tag command when you click or double-click the right mouse button. Epsilon runs
themouse-move command when you move the mouse; this is how it changes the mouse cursor shape or
pops up a scroll bar or menu bar when the mouse moves to an appropriate part of the screen under DOS or
OS/2.

Both mouse-select andmouse-to-tag run the appropriate hook function for the mouse button that
invoked them, whenever you use the mouse to select text or position point. The hook functions for the other
two mouse buttons are namedmouse-right-hook andmouse-center-hook. You can redefine these hooks to
make the mouse buttons do additional things after you select text, without having to write new commands
using the extension language. (Note that in Epsilon for Windowsmouse-to-tag displays a context menu
instead of selecting text, by calling thecontext-menu command, and doesn’t call any hook function.)

By default, the center mouse button runs the commandmouse-center, which calls eithermouse-yank
to make the mouse yank text from the clipboard under Unix, ormouse-pan, so that button makes the mouse
scroll or pan (in other environments).

Summary: M-hLefti mouse-select
M-hRighti mouse-to-tag
M-hCenteri mouse-center
M-hMovei mouse-move

mouse-pan
mouse-yank

4.14. MISCELLANEOUS 143

context-menu

4.14 Miscellaneous

You can use theeval command to quickly evaluate an arbitrary EEL expression, or do simple integer-only
math. Similarly, theexecute-eel command executes a line of EEL code that you type in. Both commands are
available in 32-bit Windows versions and under Unix.

The commandnarrow-to-region temporarily restricts your access to the current buffer to the region
between the current values of point and mark. Epsilon hides the portion of the buffer outside this region.
Searches will only operate in the narrowed region. While running with the buffer narrowed, Epsilon
considers the buffer to start at the beginning of the region, and end at the end of the region. However, if you
use a file-saving command with the buffer narrowed in this manner, Epsilon will write the entire file to disk.
To restore normal access to the buffer, use thewiden-buffer command.

Under DOS and Windows, you can set Epsilon’s key repeat rate with thekey-repeat-rate
variable. It contains the number of repeats to perform in each second. Setting this variable to 0 lets the
keyboard determine the repeat rate, as it does outside of Epsilon. Epsilon never lets repeated keys pile up; it
ignores automatically repeated keys when necessary.

Summary: narrow-to-region
widen-buffer
eval
execute-eel

Chapter 5

Alphabetical
Command List

145

abort Ctrl-G Abort the currently executing command.

This special command causes a currently executing command to stop, if possible. It cancels any
executing macros, and discards any characters you may have typed that Epsilon hasn’t read.
Under DOS, thehScroll Locki key also aborts, while under OS/2, the Control-hScroll Locki key
serves the same purpose. Use theset-abort-key command to change the abort key.

about-epsilon Show Epsilon’s version number and operating system.

alt-prefix ESC Interpret the next key as an Alt key.

This command reads a character from the keyboard, then runs the command bound to the Alt
version of that key.

ansi-to-oem Convert buffer’s Windows character set to DOS.

Windows programs typically use a different character set than do DOS programs. The DOS
character set is known as the DOS/OEM character set, and includes various line drawing
characters and miscellaneous characters not in the Windows/ANSI set. The Windows/ANSI
character set includes many accented characters not in the DOS/OEM character set. Epsilon for
Windows uses the Windows/ANSI character set (with most fonts).

Theansi-to-oem command converts the current buffer from the Windows/ANSI character set to
the DOS/OEM character set. If any character in the buffer doesn’t have a unique translation, the
command warns first, and moves to the first character without a unique translation.

This command ignores any narrowing established by thenarrow-to-region command. It’s only
available in Epsilon for Windows.

append-next-kill Ctrl-Alt-W Don’t discard a kill buffer.

Normally, kill commands select a new kill buffer before inserting their own text there, unless
immediately preceded by another kill command. This command causes an immediately
following kill command to append to the current kill buffer. However, if the current region is
rectangular, this command instead deletes it by invokingdelete-rectangle.

apropos List commands pertaining to a topic.

This command asks for a string, then displays a list of commands and variables and their
one-line descriptions that contain the string. You can get more information on any of these by
following the links: double-click or usehTabi andhEnteri.

argument Ctrl-U Set the numeric argument or multiply it by four.

Followed by digits (or the Alt versions of digits), this command uses them to specify the
numeric argument for the next command. If not followed by digits, this command sets the
numeric argument to four, or multiplies an existing numeric argument by four. If bound to a
digit or Alt digit, argument acts as if you typed that digit after invoking it.

Most commands use a numeric argument as a repeat count. For example, Ctrl-U 7 Alt-F moves
forward seven words, and Ctrl-U Ctrl-U Ctrl-F moves forward sixteen (four times four)
characters.

Some other commands interpret the numeric argument in their own way. See also
auto-fill-mode, query-replace, andkill-line.

146 CHAPTER 5. ALPHABETICAL COMMAND LIST

asm-mode Set up for editing Assembly Language files.

This command puts the current buffer in Asm mode, suitable for assembly files.

auto-fill-mode Toggle automatic line breaking.

Epsilon can automatically break lines when you type text. With auto filling enabled, Epsilon
will break the line when necessary by turning some previous space into a newline, breaking the
line at that point. You can set the maximum line length for breaking purposes with the
set-fill-column command.

Use this command to enable or disable auto filling for the current buffer. A nonzero numeric
argument turns auto filling on. A numeric argument of zero turns it off. With no numeric
argument, the command toggles the state of auto filling. In any case, the command reports the
new status of auto filling in the echo area.

To set auto-fill on by default in new buffers you create, use theset-variable command on F8 to
set the default value of thefill-mode variable to 1.

In C mode buffers, this command simply sets the variablec-auto-fill-mode.

back-to-tab-stop Shift-hTabi Move back to the previous tab stop.

This command moves point to the left until it reaches a tab stop, a column that is a multiple of
the tab size.

If a region is highlighted, Epsilon unindents the region by one tab stop. With a numeric prefix
argument, Epsilon unindents by that amount.

This command uses the variablesoft-tab-size if it’s nonzero. Otherwise it uses
tab-size.

backward-character Ctrl-B Move point back.

Point moves back one character. Nothing happens if you run this command with point at the
beginning of the buffer.

backward-delete-character Ctrl-H Delete the character before point.

This command deletes the character before point. When given a numeric argument, the
command deletes that many characters, and saves them in a kill buffer.

backward-delete-word Brief: Ctrl-hBackspacei Delete the word before point.

The command moves point as inbackward-word, deleting the characters it passes over. See
backward-kill-word for a similar command that cuts the text to a kill buffer.

backward-ifdef C mode: Alt-[, Alt-hUpi Find matching preprocessor line.

This command moves to the previous #if/#else/#endif (or similar) preprocessor line. When
starting from such a line, Epsilon finds the previous matching one, skipping over inner nested
preprocessor lines.

147

backward-kill-level Alt- hDeli Kill a bracketed expression backwards.

The command moves point as inbackward-level, killing the characters it passes over.

backward-kill-word Ctrl-Alt-H Kill the word before point.

The command moves point as inbackward-word, killing the characters it passes over.

backward-level Ctrl-Alt-B Move point before a bracketed expression.

Point moves backward searching for one of),g, or]. Then point moves back past the nested
expression and positions point before the corresponding left delimiter.

backward-paragraph Alt-[Go back one paragraph.

Point travels backward through the buffer until positioned at the beginning of a paragraph. Lines
that start with whitespace (including blank lines) always separate paragraphs. For information
on changing Epsilon’s notion of a paragraph, see theforward-paragraph command.

backward-sentence Alt-A Go back one sentence.

Point travels backwards through the buffer until positioned at the beginning of a sentence. A
sentence ends with a period, exclamation point, or question mark, followed by two spaces or a
newline, with any number of closing characters", ’,),], between. A sentence also ends at the
end of a paragraph. Seeforward-paragraph.

backward-word Alt-B Go back one word.

Point travels backward until positioned before the first character in some word.

beginning-of-line Ctrl-A Go to the start of the line.

This command positions point at the beginning of the current line, before the first character.

beginning-of-window Alt-, Go to the upper left corner.

Position point before the first character in the window.

bind-to-key F4 Put a named command on a key.

This command prompts you for the name of a command, then for a key. Thereafter, pressing
that key runs that command. This key binding persists only until you exit Epsilon, unless you
save the binding in a command file or save Epsilon’s entire state with thewrite-state command.

brief-copy-region Brief: Grey+ Copy a highlighted region, saving it.

This command saves a copy of the highlighted region to a kill buffer so you can insert it
somewhere else. If no region is highlighted, the command copies the current line.

148 CHAPTER 5. ALPHABETICAL COMMAND LIST

brief-cut-region Brief: Grey- Delete a highlighted region, saving it.

This command kills the highlighted region, saving a copy of the region to a kill buffer so you
can insert it somewhere else. If no region is highlighted, the command kills the current line.

brief-delete-region Brief: hDeli Delete a highlighted region without saving.

This command deletes the highlighted region without saving it in a kill buffer. If no region is
highlighted, the command deletes the next character in the buffer.

brief-delete-window Brief: F4 Remove one of a window’s borders.

This command prompts you to indicate which of the current window’s borders you wish to
delete. Press an arrow key and Epsilon will delete other windows as needed to remove that
window border.

brief-drop-bookmark Brief: Alt-0 ... Alt-9 Remember this location.

This command remembers the current buffer and position, so that you can easily return to it
later withbrief-jump-to-bookmark. Normally, the command looks at the key you pressed to
invoke it, to determine which of the ten Brief bookmarks to set. For example, if you press Alt-3
to invoke it, it sets bookmark 3. If you press Alt-0 to invoke it, it sets bookmark 10. When you
invoke the command by pressing some other key, it prompts for the bookmark to set.

Brief bookmarks 1–10 are really synonyms for Epsilon bookmarks A–M. You can use Epsilon
commands likelist-bookmarks to see all the bookmarks and select one.

brief-end-key Brief: hEndi Go to the end of the line/window/buffer.

This command goes to the end of the current line. When you press it twice in succession, it
goes to the end of the current window. When you press it three times in succession, it goes to
the end of the current buffer.

brief-home-key Brief: hHomei Go to the start of the line/window/buffer.

This command goes to the start of the current line. When you press it twice in succession, it
goes to the start of the current window. When you press it three times in succession, it goes to
the start of the current buffer.

brief-jump-to-bookmark Brief: Alt-J Jump to a bookmark.

This command returns to a bookmark previously set withbrief-drop-bookmark. It prompts for
the number of the bookmark you wish to return to.

Brief bookmarks 1–10 are really synonyms for Epsilon bookmarks A–M. You can use Epsilon
commands likelist-bookmarks to see all the bookmarks and select one.

brief-keyboard Load the Brief-style keyboard layout.

This command redefines the keyboard to resemble the key arrangement used by the Brief editor.
Use the commandepsilon-keyboard to return to Epsilon’s default keyboard arrangement.

149

brief-open-line Brief: Ctrl-hEnteri Make a new line below this one.

This command adds a new line after the current one and moves to it.

brief-resize-window Brief: F2 Move the window’s border.

This command prompts you to indicate which of the current window’s borders you would like
to move. Press an arrow key to select one. Then press arrow keys to move the window’s border
around. PresshEnteri when you are satisfied with the window’s size. Epsilon will resize other
windows as necessary.

brief-split-window Brief: F3 Put a new border inside this window.

This command prompts you to indicate where you would like to create a new window border.
Press an arrow key and Epsilon will split off a new window from the current one, with the
border between the two in the indicated direction.

bufed Ctrl-X Ctrl-B Manipulate a list of buffers.

This command makes a list of buffers, puts the list in the bufed buffer, and lets you edit it.
Alphabetic keys run special bufed commands. The N and P commands go to the next and
previous buffers in the list, respectively. The D command deletes the buffer on the current line
immediately. It warns you if the buffer has unsaved changes. ThehSpacei or E key selects the
buffer on the current line, and the S key writes the buffer named on the current line to its file.
Typing 1 makes the window occupy the whole screen, then selects the buffer like E. Typing 2 or
5 splits the window horizontally or vertically, then selects the indicated buffer. Shift-P prints the
buffer on the current line.

In a bufed listing, the A, B, F, and I keys makebufed sort the buffer list by last access time,
buffer name, file name, or size, respectively. Use the shifted versions of these keys to sort in
reverse. Pressing U requests an unsorted buffer list: the newest buffers appear first in the list.

This command does not normally list special buffers such as the kill buffers whose names begin
with the “-” character. To list even these buffers, give thebufed command (or a sorting
command) a numeric argument.

c-close C mode:g,) Self-insert, then fix this line’s
indentation for C.

c-colon C mode: : Self-insert, then fix this line’s
indentation for C.

c-hash-mark C mode: # Self-insert, then fix this line’s
indentation for C.

c-mode Do automatic indentation for C-like languages.

This command puts the current buffer in C mode, appropriate for editing programs written in
any language with a syntax similar to C (such as EEL). In C mode,hEnteri indents each new
line by scanning previous lines to determine the proper indentation.hTabi reindents the current
line when you invoke it with point inside a line’s indentation. With point outside a line’s
indentation, or when repeated, this command adds more indentation.

By default, thefind-file command automatically turns on C mode for files that end with .c, .cpp,
.hpp, .cxx, .hxx, .y, .h, .java, .inl, idl, .cs or .e.

150 CHAPTER 5. ALPHABETICAL COMMAND LIST

c-open C mode:f Self-insert, then fix this line’s
indentation for C.

capitalize-word Alt-C Upper case beginning character.

Point travels forward through the buffer as withforward-word. Each time it encounters a run
of alpha characters, it converts the first character to upper case, and the remainder to lower case.

For example, if you execute this command with point positioned just before “wORd”, it
becomes “Word”. Similarly, “wORd_wORd” becomes “Word_Word”.

If the current buffer contains a highlighted region, Epsilon instead capitalizes all the words in
the region, leaving point unchanged.

case-indirect Do the reverse-case binding of the invoking key.

Upper case Alt keys and upper case Control-X keys normally run this command. The command
invokes the alternate case version of the key that invoked it. If you happen to type Ctrl-x E
(which runs the commandcase-indirect) instead of Ctrl-x e (which runslast-kbd-macro), the
case-indirect command would invokelast-kbd-macro for you.

cd F7 Change the current directory.

The cd command prompts for the name of a directory, then sets Epsilon’s current directory. If
you press Alt-E when prompted for the directory name, Epsilon will type in the name of the
directory portion of the current file name.

When Epsilon displays a file name (for example, in a buffer’s mode line), it usually describes
the file relative to this current directory.

Epsilon uses its notion of the current directory when it prompts for a file name and the current
buffer has no specific directory associated with it. (This typically happens when the buffer has
no associated file name.)

Also, if you remove any pre-typed directory name and type a relative pathname to such a
command, Epsilon will interpret what you type relative to the directory set by the cd command.

See theprompt-with-buffer-directory variable for more information.

center-line Alt-S Center line horizontally.

This command centers the current line between the first column and the right margin, by
changing the line’s indentation if necessary. You can set the right margin with the
set-fill-column command.

center-window Ctrl-L Vertically center the current window.

This command makes the line containing point appear in the center of the window. With a
numeric argumentn, it makes the line appear on linen of the window. Line 0 refers to the top
line.

change-code-coloring Toggle code coloring on or off in this buffer.

This command toggles between coloring and not coloring the program text in the current buffer
by setting thewant-code-coloring variable. The command has no effect in buffers
Epsilon doesn’t know how to color.

151

change-file-read-only Change the read-only status of a file.

This command prompts for a file name (default: the current file) and toggles its read-only
attribute. Under Unix, it either makes the file unwritable to all, or writable to all (to the extent
permitted by the current umask). Use Alt-o! chmod for finer control.

change-font-size Set the font’s width and height.

This command supplements theset-font command by providing additional font choices. Some
Windows fonts include a variety of character cell widths for a given character cell height. (For
example, many of the font selections available in windowed DOS sessions use multiple widths.)
Commands likeset-font utilize the standard Windows font dialog, which doesn’t provide any
way to select these alternate widths. This command lets you choose these fonts.

Thechange-font-size command doesn’t change the font name, or toggle bold or italic. You’ll
need to use theset-font command to do that.

Instead,change-font-size lets you adjust the height and width of the current font using the
arrow keys. You can abort to restore the old font settings, or presshEnteri or hSpacei to keep
them. This is a handy way to shrink or expand the font size. A width or height of 0 means use a
suitable default.

change-line-wrapping Change whether this window wraps or scrolls long lines.

This command toggles whether the current window displays long lines by wrapping them onto
succeeding screen lines, rather than truncating them at the right edge of the screen. With a
negative numeric argument, it forces wrapping. With a non-negative argument, it forces
truncation, and tries to set the display column to the value of the numeric argument.

change-modified Alt-˜ Change the modified status of the buffer.

This command causes Epsilon to change its opinion as to the modified status of the buffer.
Epsilon uses this modified status to warn you of unsaved buffers when you exit. Epsilon
indicates modified buffers by displaying a star at the end of the mode line.

change-name Rename a variable or command.

You can change the name of a command, keyboard macro, or EEL variable with this command.

change-read-only Change the read-only status of the buffer.

This command changes the read-only status of the buffer. Attempting to modify a read-only
buffer results in an error message. If a window contains a read-only buffer, the modeline
contains the letters “RO”. With no numeric argument, the command toggles the read-only status
of the buffer. With a non-zero numeric argument, the buffer becomes read-only; otherwise, the
buffer becomes changeable.

change-show-spaces Shift-F6 Toggle whether or not Epsilon
makes whitespace visible.

Epsilon can display the nonprinting characters space, tab, or newline using special graphic
characters to indicate the position of each character in the buffer. This command switches
between displaying markers for these characters and making them invisible, by setting the
current value of the buffer-specific variableshow-spaces.

152 CHAPTER 5. ALPHABETICAL COMMAND LIST

clear-tags Forget all the tags in the current tag file.

See also the commandsselect-tag-file andtag-files.

compare-sorted-windows Find lines missing from the current
or next windows.

This command copies all lines that appear in both the current window’s buffer, and the next
window’s buffer, into a buffer named “inboth”. It copies other lines to buffers named “only1”
and “only2”. It assumes that you already sorted the original buffers.

compare-windows Ctrl-F2 Find the next difference between
the current and next windows.

This command moves forward from point in the buffers displayed in the current window and
the next window. It compares the text in the buffers, stopping when it finds a difference or
reaches the end of a buffer, then reports the result.

If repeated, it alternates between finding the next difference and finding the next match (by
resynchronizing the buffers).

compile-buffer Alt-F3 Compile the current buffer as appropriate.

This command tries to compile the current buffer. It uses the compiling command appropriate
for the current buffer. For .c files, this is contained in thecompile-c-cmd variable. For .cpp
or .cxx files, this is contained in thecompile-cpp-cmd variable. For .e files, this is
contained in thecompile-eel-cmd variable. When you compile an EEL file successfully,
Epsilon automatically loads the resulting bytecode file.

If the current buffer has no compilation command associated with it, Epsilon will prompt for the
appropriate command and record it in the buffer-specific variablecompile-buffer-cmd.
For C, C++, and EEL files, Epsilon automatically sets this to refer to the variables listed above.

Before and after running the compilation command, Epsilon does any mode-specific operations
needed, by calling the buffer-specific function pointer variablespre_compile_hook and
post_compile_hook, respectively. An EEL programmer can use these hooks to make
Epsilon perform additional actions each time you compile buffers. Epsilon uses the
post_compile_hook to automatically load an EEL file after it’s been successfully
compiled.

The function pointed to bypost_compile_hook receives one parameter, a status code
returned by thedo_compile() subroutine. See that function’s definition in proc.e for details.
The function pointed to bypre_compile_hook receives no parameters. If either variable
holds a null pointer, Epsilon doesn’t call it.

conf-mode Set up for editing configuration files.

This command sets up generic syntax highlighting suitable for miscellaneous Unix
configuration files.

context-menu Shift-F10 Display a right-mouse-button menu.

This command displays a context menu in Epsilon for Windows. The right mouse button runs
this command.

153

copy-rectangle Copy the current rectangle to a kill buffer.

This command copies the rectangular block between point and mark to a kill buffer, without
changing the current buffer. (Actually, the command may insert spaces at the ends of lines, or
convert tabs to spaces, if that’s necessary to reach the starting or ending column on one of the
lines in the region. But the buffer won’t look any different as a result of these changes.)

copy-region Alt-W Copy the region to a temporary buffer.

This command copies the region of the buffer between point and mark to a kill buffer, without
changing the current buffer.

copy-to-clipboard Copy the current region to the clipboard.

When running under MS-Windows or as an X program in Unix, this command copies the
current region onto the clipboard so other applications can access it. Under DOS, the region
must have fewer than 65,500 characters.

copy-to-file Ctrl-F7 Copy buffer contents to a file.

This command prompts you for a file name, then writes the buffer to that file. The file
associated with the current buffer remains the same. See alsowrite-file.

copy-to-scratch Ctrl-X X Copy the region to a permanent buffer.

This command copies the text in the region between point and mark. It asks for a letter (or
number), then associates that character with the text. Subsequently, you can insert the text by
invoking theinsert-scratch command. See also the commandskill-region andcopy-region.

count-lines Ctrl-X L Show the number of lines in the buffer.

A message showing the number of lines in the buffer appears in the echo area. The message
also gives the line number of the current line, and the length of the file when written to disk. If
there is a highlighted region, its line count is displayed as well.

create-file-associations Make Windows run Epsilon to launch certain file types.

You can set up Windows file associations for Epsilon using thecreate-file-associations
command. It lets you modify a list of common extensions, then sets up Windows to invoke
Epsilon to edit files with those extensions. The files will be sent to an existing copy of Epsilon,
if one is running. If not, a new instance of Epsilon will be started.

create-prefix-command Define a new prefix key.

This command asks for a key and then turns that key into a prefix key, like Ctrl-X.

create-variable Define a new EEL variable.

This command lets you define a new variable without using the extension language. It prompts
for the name, the type, and the initial value.

154 CHAPTER 5. ALPHABETICAL COMMAND LIST

ctrl-prefix Ctrl-ˆ Interpret the next key as a Control key.

This command reads a character from the keyboard, then executes the command bound to the
Control version of that key.

cua-keyboard Load the CUA-style keyboard layout.

This command redefines the keyboard to resemble the key arrangement used by typical
MS-Windows programs. Use the commandepsilon-keyboard to return to Epsilon’s default
keyboard arrangement.

delete-blank-lines Ctrl-X Ctrl-O Remove blank lines around point.

This command deletes empty lines adjacent to point, or lines that contain only spaces and tabs,
turning two or more such blank lines into a single blank line. The command deletes a lone
blank line. If you prefix a numeric argument ofn, exactlyn blank lines appear regardless of the
number of blank lines present originally.

delete-character Ctrl-D Delete the character after point.

If you prefix a numeric argument, the command deletes that many characters, and saves them in
a kill buffer. If invoked immediately after a kill command,delete-character will store the
deleted character(s) in the same kill buffer that the kill command used.

delete-current-line Brief: Alt-d Delete the current line.

This command deletes the entire current line, including any newline at its end.

delete-horizontal-space Alt-n Delete whitespace near point.

This command deletes spaces and tabs surrounding point.

delete-matching-lines Delete lines containing a regex pattern.

This command prompts for a regular expression pattern. It then deletes all lines below point in
the current buffer that contain the pattern. While you type the pattern, Ctrl-W enables or
disables word searching, restricting matches to complete words. Ctrl-T enables or disables
regular expression searching, in which the search string specifies a pattern (seeregex-search
for rules). Ctrl-C enables or disables case-folding.

delete-name Delete a function, variable, etc.

This command prompts you for the name of a command, subroutine or variable, with
completion, and then tries to delete the item.

delete-rectangle Delete the characters in the current rectangle.

This command removes from the current buffer the characters in the rectangular area between
point and mark. Unlike thekill-rectangle command, this command does not copy the
characters to a kill buffer.

155

delete-to-end-of-line Delete the remaining characters on this line.

describe-command F1 C Give help on the named command.

This command prompts you for a command name, then displays a description of that command
along with its current bindings (if any).

describe-key F1 K Give help on the key.

This command prompts you for a key, then displays a description of the command bound to that
key (if any).

describe-variable F1 R Display help on a variable.

This command prompts for the name of variable. Then it displays the documentation for that
variable.

dialog-regex-replace Replace using a dialog.

This command displays the Replace dialog, which you can use to find and replace text in the
buffer. The dialog is initialized so that the Regular Expression box is checked.

dialog-replace Replace using a dialog.

This command displays the Replace dialog, which you can use to find and replace text in the
buffer.

dialog-reverse-search Search backwards using dialog.

This command displays a Find dialog initialized to search backwards.

dialog-search Search using the Find dialog.

This command displays a Find dialog, which you can use to search for text in the buffer.

diff List differences between current and next windows.

Make a list of all differences between the buffers in the current and next windows. The
command prompts you for the name of the buffer to put the list in. The list shows what lines you
would have to remove from or add to the first buffer to make it identical to the second buffer.

dired Ctrl-X D Edit the contents of a directory.

The commanddired (for directory edit) allows you to conveniently peruse the contents of a
directory, examining the contents of files and, if you wish, selecting some for deletion, copying,
or moving.

The command prompts for the name of a directory or a file pattern. By default, it uses the
current directory. It then displays a buffer in the current window, with contents similar to what
the operating system command “dir” would display. Each line of the dired buffer contains the
name of a file and information about it.

In dired mode, alphabetic keys run special dired commands. See the description of the
dired-mode command for details. Typing H or ‘?’ in dired mode gives help ondired
subcommands.

156 CHAPTER 5. ALPHABETICAL COMMAND LIST

dired-mode Edit a directory of file names.

A dired (directory edit) buffer lists the contents of a directory. In a dired buffer, you can use
these keys:

N moves to the next entry in the list.

P moves to the previous entry.

D flags a file (or empty directory) that you wish to delete by placing a ‘D’ before its
name.

C marks a file for copying.

M marks a file for moving (renaming).

U removes any flags from the file listed on the current line.

X actually deletes, copies, or moves the files. Epsilon will ask for the destination
directory into which the files are to be copied or moved, if any files are so
marked. If there is only one file to copy or move, you can also specify a file
name destination, so you can use the command for renaming files. Epsilon
prompts for a single destination for all files to be copied, and another for all files
to be moved. If any files are marked for deletion, Epsilon will ask you to
confirm that you want to delete the files.

E or hSpacei or hEnteri lets you examine the contents of a file. It invokes the
find-file command on the file, making the current window display this file
instead of the dired buffer. After examining a file, you can use theselect-buffer
command (Ctrl-X B) to return to the dired buffer. PresshEnteri when prompted
for the buffer name and the previous buffer shown in the current window will
reappear (in this case, the dired buffer). Applied to a directory, the E command
does a dired of that directory.

lowercase L creates a live link. First Epsilon creates a second window, if there’s
only one window to start with. (Provide a numeric argument to get vertical, not
horizontal, window splitting.) Then Epsilon displays the file named on the
current dired line in that window, in a special live link buffer. As you move
around in the dired buffer, the live link buffer will automatically update to
display the current file. Delete the live link buffer or window, or show a
different buffer there, to stop the live linking.

V runs the “viewer” for that file; the program assigned to it according to Windows
file association. For executable files, it runs the program. For document files, it
typically runs the Windows program assigned to that file extension. (Epsilon for
Windows only.)

T displays the MS-Windows properties dialog for that file or directory. For a
directory, this lets you view the size of its contents.

R refreshes the current listing. Epsilon will use the original file pattern to rebuild
the file listing. If you’ve marked files for copying, moving, or deleting, the
markings will be discarded if you refresh the listing, so Epsilon will prompt first
to confirm that you want to do this.

S controls sorting. It prompts you to enter another letter to change the sorting
method. Type ‘?’ at that prompt to see the sorting options available.

+ creates a subdirectory. It asks for the new subdirectory’s name.

. or ˆ invokes adired on the parent directory of the current dired.

1 makes the window occupy the whole screen, then acts like E.

157

2 or 5 splits the window horizontally or vertically, then acts like E in the new
window.

O switches to the next window, then acts like E.
Z zooms the current window like thezoom-window command, then acts like E.
! prompts for a command line, then runs the specified program, adding the name of

the current line’s file after it.
Shift-U or Shift-L marks a file for uppercasing or lowercasing its file name,

respectively. Press X to rename the marked files, as with other renaming keys.
(Note that Epsilon for Windows displays all-uppercase file names in lowercase
by default, so Shift-U’s effect may not be visible within Epsilon. See
preserve-filename-case.)

Shift-R marks a file for a regular-expression replacement on its name. When you
press X to execute operations on marked files, Epsilon will ask for a pattern and
replacement text. Then for each marked file, it will perform the indicated
replacement on its name to create a new file name, then rename the file to the
new name. For instance, to rename a group of files like dirnfile1.cxx,
dirnfile2.cxx, etc. to dir2nfile1.cpp, dir2nfile2.cpp, use Shift-R and specify
dirn(.*).cxx as the search text anddir2n#1.cpp as the replacement
text. To rename some .htm files to .html, specify.* as the search text and#0l
as the replacement text.

Shift-P prints the current file using theprint-buffer command.
H or ? gives this help.

dired-sort Dired mode: S Sort a directory listing differently.

In a dired buffer, this subcommand controls sorting. It prompts you to enter another letter to
change the sorting method. PressN, E, S, orD to select sorting by file name, file extension, size,
or time and date of modification, respectively. PressU to turn off sorting the next time Epsilon
makes a dired listing, and display the file names in the same order they come from the operating
system. (You can have Epsilon rebuild the current listing using theR dired subcommand.)

Press+ or - at the sorting prompt to sort in ascending or descending order, respectively, orR to
reverse the current sorting order. PresshEnteri to sort again using the currently selected sorting
order.

PressG at the sorting prompt to toggle directory grouping. With directory grouping, Epsilon
puts all subdirectories first in the list, then all files, and sorts each part individually. Without
directory grouping, it mixes the two together (although it still puts. and.. first).

display-buffer-info Brief: Alt-F Display the name of the current file.

This command displays the name of the file associated with the current buffer, and the mode of
the current buffer. It displays an asterisk after the file name if the file has unsaved changes. This
command can be useful if you’ve set Epsilon so it doesn’t display these things continuously.

do-c-indent C mode:hTabi Indent this line for C.

In a line’s indentation, reindent the line correctly for C code. Inside the text of a line, or when
repeated, insert a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric
prefix argument, Epsilon indents by that amount.

158 CHAPTER 5. ALPHABETICAL COMMAND LIST

down-line Ctrl-N Move point to the next line.

This command keeps point near the same horizontal position as it occupied on the previous line,
if possible.

edit-variables Alt-F8 Interactively set variables from a list.

This command displays a list of all variables and lets you set them. You can use the arrow keys
or the normal movement keys to move around the list, or begin typing a variable name to have
Epsilon jump to that portion of the list. PresshEnteri to set the highlighted variable, then edit
the value shown using normal Epsilon commands.

To exit fromedit-variables, presshEsci or Ctrl-G.

With a numeric argument, the command includes system variables in its list.

In Epsilon for Windows, this command displays a list of variables. You can choose one, see its
description and its current value, and modify it. The command will only list those variables
included in the help file.

end-kbd-macro Ctrl-X) Stop defining a keyboard macro.

This command completes the keyboard macro started by thestart-kbd-macro command. You
may then execute the macro with the commandlast-kbd-macro, or you may give the macro a
name with the commandname-kbd-macro.

end-of-line Ctrl-E Go to the end of the line.

This command positions point at the end of the current line, just before the newline character.

end-of-window Alt-. Go to last character in window.

Position point before the last character in the current window.

enlarge-window Ctrl-hPgUpi Enlarge window by one line.

If possible, the mode line of the window on top of the current window moves up. Otherwise, the
current window’s mode line moves down. This command has no effect if it would make any
window smaller than two lines, counting the mode line.

enlarge-window-horizontally Alt- hPgDni Enlarge window by one column.

If possible, the left boundary of the current window moves to the left by one character.
Otherwise, the current window’s right boundary moves to the right. This command has no
effect if it would make any window smaller than one character wide.

enlarge-window-interactively Ctrl-X + Use arrow keys to resize a window.

This command lets you interactively change the size of the current window. After you invoke
the command, use the arrow keys to point to a window border. The indicated border moves in a
direction so as to make the current window larger. Keep pressing arrow keys to move window
borders. To switch from enlarging to shrinking, press the minus key. Thereafter, the arrow keys
cause the window border to move in a direction so as to shrink the window. When the window
looks right, presshEnteri to leave the command.

159

enter-key Ctrl-M Insert a newline character.

This command acts likenormal-character but inserts a newline character regardless of the key
that invoked it. In overwrite mode, thehEnteri key simply moves to the beginning of the next
line.

epsilon-html-look-up F1 h Look up a topic in the HTML Epsilon manual.

This command prompts for a topic, then displays a section of the Epsilon manual that refers to
that topic, using a web browser.

epsilon-info-look-up F1 f Look up a topic in the Epsilon manual.

This command prompts for a topic, then displays a section of the Epsilon manual that refers to
that topic, using Info mode. It’s like using theepsilon-manual-info command followed by the
info-index command. In EEL source code, the identifier at point becomes the default topic.

epsilon-keyboard Load a default keyboard, undoing keyboard changes.

This command restores Epsilon’s original keyboard arrangement after running the
brief-keyboard or cua-keyboard commands, which see. It restores a “canned” keyboard
arrangement from the file epsilon.kbd, which must be on the path.

epsilon-manual-html Display the HTML-format version of the Epsilon manual.

This command displays the Epsilon manual’s table of contents using a web browser.

epsilon-manual-info Display the Info-format version of the Epsilon manual.

This command enters Info mode and jumps to the top node of Epsilon’s manual.

epsilon-manual Display Epsilon’s manual.

This command makes Epsilon for Windows display its on-line manual in WinHelp. If you
highlight a keyword first, Epsilon will look for help on the highlighted text. Otherwise, Epsilon
will display the manual’s table of contents. Also seeepsilon-manual-info.

eval Compute and display the value of an expression.

This command prompts for an expression, then computes and displays its value using the
integrated EEL compiler. The expression may have a numeric or string type. Also see the
execute-eel command. Only the Unix and 32-bit Windows versions support this command.

exchange-point-and-mark Ctrl-X Ctrl-X Swap point and mark.

Some commands such askill-region andcopy-region operate on the text between the point and
the mark.

execute-eel Execute a line of EEL code.

This command prompts for an EEL statement, then executes it using the integrated EEL
compiler. Also see theeval command. Only the Unix and 32-bit Windows versions support this
command.

160 CHAPTER 5. ALPHABETICAL COMMAND LIST

exit Ctrl-X Ctrl-C Exit the editor.

If you haven’t saved all your files, Epsilon will display a list usingbufed and ask if you really
want to exit. If you prefix this command with a numeric argument, however, Epsilon will
simply exit and not ask you about any unsaved buffers.

Also see theprocess-warn-on-exit variable.

exit-level Ctrl-X Ctrl-Z Exit the current recursive edit.

If you have entered a recursive edit (typically fromquery-replace), this command exits the
recursive edit (bringing you back to the replace), otherwise it invokesexit.

exit-process Type “exit” to the concurrent process.

This command tries to make the currently executing concurrent process stop, by typing “exit” to
it. A standard command processor exits when it receives this command.

export-colors Save color settings to an EEL source file.

Theexport-colors command constructs an EEL source file of color settings based on the
current color settings. Use it to transfer color changes to a different version of Epsilon, or to get
a human-readable version of your color selections.

file-query-replace Shift-F7 Replace text in many files.

This command prompts for the text to search for and the replacement text. Then it prompts for a
file name which may contain wildcards. The command then performs aquery-replace on each
file that matches the pattern, going to each occurrence of the search text, and asking whether or
not to replace it.

Epsilon skips over any file with an extension listed ingrep-ignore-file-extensions;
by default some binary file types are excluded.

With a numeric argument, the command instead searches through all buffers. The buffer name
pattern may contain the wildcard characters? to match any single character,* to match zero or
more characters, or a character class like[ˆa-zA-Z] to match any non-alphabetic character.

At each occurrence of the search text, you have these choices:

Y or hSpacei replaces and goes to the next match.
N or hBackspacei doesn’t replace, but goes to the next match.

hEsci exits immediately.
. replaces and then exits.
ˆ backs up to the previous match, as long as it’s within the same file.

! replaces all remaining occurrences in the current file without prompting, then asks
if you want to replace all occurrences without prompting in all remaining files.

, replaces the current match but doesn’t go to the next match.
Ctrl-R enters a recursive edit, allowing you to modify the buffer arbitrarily. When

you exit the recursive edit with exit-level, the query-replace continues.
Ctrl-G exits and returns point to its original location in the current buffer, then asks

if you want to look for possible replacements in the remaining files.
Ctrl-W toggles the state of word mode.

161

Ctrl-T toggles the state of regular expression mode (see the description of
regex-replace).

Ctrl-C toggles the state of case-folding.

Any other key causesquery-replace to exit and any command bound to that key to
execute.

The command doesn’t save modified files back to disk. You can use thesave-all-buffers
command on Ctrl-X S to do this.

fill-comment Various modes: Alt-q Reformat the current paragraph
in a comment.

This command fills the current paragraph in a programming language comment, so that each
line but the last becomes as long as possible without going past the fill column. It tries to
preserve any prefix before each line. It uses language-specific patterns for recognizing
comments, with special logic for C/C++/Java comments.

fill-indented-paragraph Alt-Shift-Q Fill paragraph preserving indentation.

This command fills the current paragraph, so that each line but the last becomes as long as
possible without going past the fill column. It tries to preserve any indentation before each line
of the paragraph.

With a numeric argument, it fills the paragraph using the current column as the right margin,
instead of themargin-right variable.

fill-paragraph Alt-q Fill the current paragraph.

This command fills the current paragraph, so that each line but the last becomes as long as
possible without going past the fill column. This command does not right-justify the paragraph
with respect to the fill column.

With a numeric argument greater than 5, the paragraph is filled using that value as a temporary
right margin. With a smaller numeric argument, the paragraph is filled using an infinite right
margin, so all text goes on one long line.

fill-region Fill the current region between point and mark.

This command fills each paragraph in the region between point and mark as infill-paragraph.
For this command, only completely empty lines separate one paragraph from another.

With a numeric argument greater than 5, the paragraph is filled using that value as a temporary
right margin. With a smaller numeric argument, the paragraph is filled using an infinite right
margin, so all text goes on one long line.

filter-region Alt-| Send the current region through an external program.

This command prompts for the name of a program and runs it, passing the current region to it as
its standard input. It then displays any output from the program in a separate buffer. With a
prefix argument, it replaces the current region with the program’s output. This command is only
available under Unix and in 32-bit Windows versions.

162 CHAPTER 5. ALPHABETICAL COMMAND LIST

find-delimiter Alt-) Show the matching left delimiter.

This command shows the left parenthesis, square bracket, or brace in a balanced expression. It
invokesbackward-level, displays this location, pauses, and then returns point to its original
location. Note that the cursor must appear after a right delimiter, not on it, to show the match
for that delimiter.

You may change the length of time that this command pauses at the left delimiter by setting the
variablesnear-pause andfar-pause. The former specifies how long to pause (in
hundredths of a second) if the left delimiter appeared in the window originally. The latter
specifies how long to pause otherwise.

Regardless of the length of the pause, the pausing stops when you press a key.

find-file Ctrl-X Ctrl-F Put a file in the current window.

You would normally use this command to specify a file to edit. This command prompts you for
a file name, then scans the buffers to see if any of them contain that file. If so, the command
displays that buffer in the current window.

Otherwise, the command creates a buffer with the same name as the file, possibly modified to
make it different from the names of nonempty buffers, then reads the file into this buffer, then
displays that buffer in the current window.

Epsilon auto-detects the line termination convention of the file and performs any necessary
translation. (Seeset-line-translate.) With a numeric argument, the command prompts for the
desired translation method.

If you simply typehEnteri for a file name, the command invokesdired with the current
directory for the file pattern. Similarly, if you specify a directory or a file name with wild card
characters, the command invokesdired with that pattern.

See the descriptions of theprompt-with-buffer-directory and
want-common-file-dialog variables for more information on this command.

find-linked-file Ctrl-X Ctrl-L Grab the file name on this line and edit it.

Look on the current line for a file name, and edit that file like thefind-file command. Epsilon
uses special rules for certain modes. For HTML mode it looks for “” links. For
C/C++/Java mode it follows#include references via theinclude-directories
variable. In Java files it understands thepackage andimport keywords, and looks along the
CLASSPATH for packages. For files with a .lst extension, it assumes the current line holds a
file name, instead of searching for a pattern that matches a typical file name. You can highlight
a file name first if Epsilon has trouble picking it out.

find-oem-file Read a file that uses the DOS character set.

Windows programs typically use a different character set than do DOS programs. The DOS
character set is known as the DOS/OEM character set, and includes various line drawing
characters and miscellaneous characters not in the Windows/ANSI set. The Windows/ANSI
character set includes many accented characters not in the DOS/OEM character set. Epsilon for
Windows uses the Windows/ANSI character set (with most fonts).

Thefind-oem-file command reads a file using the DOS/OEM character set, translating it into
the Windows/ANSI character set, and arranges things so when you save the file, the reverse
translation automatically occurs. This command is only available in Epsilon for Windows. See
thedefault-character-set variable.

163

find-read-only-file Edit a file preventing changes to it.

Prompt for a file name and edit the specified file, like thefind-file command. Set the buffer
read-only, and mark it so attempts to save the file prompt for a different name.

find-unconverted-file Read a file without changing its character set.

If you’ve configured Epsilon for Windows to convert from the DOS/OEM character set to the
ANSI character set upon reading a file, and to perform the opposite conversion when writing
(by setting thedefault-character-set variable), use this command to bypass the
conversion for a particular file.

finger Show info on a user of a computer.

Thefinger command prompts for a string like “user@host.com”, then uses the finger protocol
to query the specified computer on the Internet for information about the given user. You may
omit the user name to get a list of users logged onto the machine. Not all computers support this
protocol. The output appears in an appropriately named buffer.

forward-character Ctrl-F Go forward one character.

Nothing happens if you run this command with point at the end of the buffer.

forward-ifdef C mode: Alt-], Alt-hDowni Find matching
preprocessor line.

This command moves to the next #if/#else/#endif (or similar) preprocessor line. When starting
from such a line, Epsilon finds the next matching one, skipping over inner nested preprocessor
lines.

forward-level Ctrl-Alt-F Move point past a bracketed expression.

Point moves forward searching for one of (,f, or[. Then point moves past the nested
expression. Point appears after the corresponding right delimiter.

forward-paragraph Alt-] Go to the next paragraph.

Point travels forward through the buffer until it appears at the beginning of a paragraph. Blank
lines (containing only spaces and tabs) always separate paragraphs.

You can control what Epsilon considers a paragraph using two variables.

If the buffer-specific variableindents-separate-paragraphs has a nonzero value, then
a paragraph also begins with a nonblank line that starts with a tab or a space.

If the buffer-specific variabletex-paragraphs has a nonzero value, then Epsilon will not
consider as part of a paragraph any sequence of lines that each start with at sign or period, if
that sequence appears next to a blank line. And lines starting withnbegin ornend or % will also
delimit paragraphs.

forward-search-again Search forward for the same search string.

164 CHAPTER 5. ALPHABETICAL COMMAND LIST

forward-sentence Alt-E Go to the end of the sentence.

Point travels forward through the buffer until positioned at the end of a sentence. A sentence
ends with a period, exclamation point, or question mark, followed by two spaces or a newline,
with any number of closing characters", ’,),], between. A sentence also ends at the end of a
paragraph.

forward-word Alt-F Move past the next word.

By default, a word consists of a sequence of letters or underscores. The buffer-specific variable
word-pattern contains a regular expression that defines Epsilon’s notion of a word for the
current buffer.

fundamental-mode Turn off any special key definitions.

This command removes changes to key bindings made by modes such as C mode or Dired
mode.

Every buffer has a major mode, and whenever you type keys in that buffer, Epsilon interprets
them according to the buffer’s mode. Each of Epsilon’s various modes is suitable for editing a
particular kind of text. Some modes only change the meanings of a few keys. For instance, C
mode makes thehTabi key indent the current line of C code. Other modes provide a group of
new commands, usually on the letter keys. For example, in Dired mode the D key deletes a file.
Each major mode is also the name of a command which puts the current buffer in that mode.
For example, Alt-X c-mode puts the current buffer in C mode.

The default mode for new buffers you create withselect-buffer is Fundamental Mode. (But see
new-file.) This command returns the current buffer to Fundamental Mode, removing any
changes to key bindings installed by another mode.

gams-mode Set up for editing GAMS files.

This command sets up syntax highlighting suitable for files in the GAMS language used for
mathematical programming.

goto-beginning Alt-< Go to the beginning of the buffer.

goto-end Alt-> Go to the end of the buffer.

goto-line Ctrl-X G Go to a certain line by number.

This command moves point to the start of then’th line in the file, wheren denotes the
command’s numeric argument. With no numeric argument, Epsilon will ask for the line
number. You may add:col after the line number (or in place of it) to specify a column.

goto-tag Ctrl-X . Ask for the name of a function, then go there.

The command prompts you for the name of a tagged function, with completion. Epsilon then
goes to the file and line where the function definition appears. If you give no name, Epsilon
goes to the next tag in the alphabetical tag list. With a numeric argument, it goes to the next tag
without asking for a tag name. Before moving to the tag, it sets a bookmark at the current
position likeset-bookmark.

165

grep Alt-F7 Search multiple files for a pattern.

This command lets you search a set of files for a pattern. It prompts for the search string and the
file pattern. Then it scans the files, accumulating matching lines in the grep buffer. The grep
buffer appears in the current window. By default, the grep command interprets the search string
as a regular expression. Press Ctrl-T at the search string prompt to toggle regular expression
mode. You can also type Ctrl-W or Ctrl-C to toggle word-mode or case-folding searches,
respectively.

At the file pattern prompt, you can presshEnteri if you want Epsilon to search the same set of
files as before. Type Ctrl-S and Epsilon will type in the directory part of the current buffer’s file
name; this is convenient when you want to search other files in the same directory as the current
file. As at other prompts, you can also press Alt-hUpi key or Alt-Ctrl-P to show a list of your
previous responses to the prompt. Use the arrow keys or the mouse to choose a previous
response to repeat, and presshEnteri. If you want to edit the response first, press Alt-E.

You can use extended file patterns to search in multiple directories using a pattern like
**.fc,cpp,hg (which searches in the current directory tree for .c, .cpp, and .h files). Epsilon
skips over any file with an extension listed ingrep-ignore-file-extensions; by
default some binary file types are excluded.

With a numeric argument,grep instead searches through all buffers. The buffer name pattern
may contain the wildcard characters? to match any single character,* to match zero or more
characters, or a character class like[ˆa-zA-Z] to match any non-alphabetic character.

In grep mode, alphabetic keys run special grep commands. See the description of the
grep-mode command for details. Typing H or ‘?’ in grep mode gives help ongrep
subcommands.

grep-mode Edit a list of lines containing a search string.

In a grep buffer, you can move around by using the normal movement commands. Most
alphabetic keys run special grep commands. The ‘N’ and ‘P’ keys move to the next and
previous entries. You can easily go from the grep buffer to the corresponding locations in the
original files. To do this, simply position point on the copy of the line, then presshSpacei,
hEnteri, or ‘E’. The file appears in the current window, with point positioned at the beginning of
the matching line. Typing ‘1’ brings up the file in a window that occupies the entire screen.
Typing ‘2’ splits the window horizontally, then brings up the file in the lower window. Typing
‘5’ splits the window vertically, then brings up the file. Typing ‘Z’ runs thezoom-window
command, then brings up the file.

help F1 Get documentation on commands.

If executed during another command, help simply pops up the description of that command.
Otherwise, you press another key to specify one of the following options:

? prints out this message.

k runsdescribe-key, which asks for the key, then gives full help on the command
bound to that key.

c runsdescribe-command, which asks for the command name, then gives full help
on that command, along with its bindings.

r runsdescribe-variable, which asks for the variable name, then shows the full help
on that variable.

166 CHAPTER 5. ALPHABETICAL COMMAND LIST

i runs theinfo command, which starts Info mode. Info mode lets you read the entire
Epsilon manual, as well as any other documentation you may have in Info
format.

Ctrl-C runs theinfo-goto-epsilon-command command, which prompts for the
name of an Epsilon command, then displays an Info page from Epsilon’s online
manual that describes the command.

Ctrl-K runs theinfo-goto-epsilon-key command, which prompts for a key, then
displays an Info page from Epsilon’s online manual that describes the command
it runs.

Ctrl-V runs theinfo-goto-epsilon-variable command, which prompts for an
Epsilon variable’s name, then displays an Info page from Epsilon’s online
manual that describes that variable.

f runs theepsilon-info-look-up command, which prompts for a topic, then starts
Info mode and looks up that topic in the Epsilon manual.

h displays Epsilon’s manual in HTML format, by running a web browser. It
prompts for a topic, which can be a command or variable name, or any other
text. (The browser will try to find an exact match for what you type; if not, it
will search for web pages containing that word.) When you’re looking at
Epsilon’s manual in Info mode, using one of the previous commands, this
command will default to showing the same topic in a browser.

w runs the WinHelp program to display Epsilon’s online manual, in Epsilon for
Windows.

a runsapropos which asks for a string, then lists commands and variables apropos
that string.

b runsshow-bindings, which asks for a command name, then gives you its
bindings.

q runswhat-is, which asks for a key, then tells you what command runs when you
type that key.

l runsshow-last-keys, which pops up a window that contains the last 60 keystrokes
you typed.

v runsabout-epsilon, which displays the current Epsilon version number and
similar information.

m shows documentation on the current buffer’s major mode.

hex-mode Switch to a hexadecimal view of the buffer.

Thehex-mode command creates a second buffer that shows a hex listing of the original buffer.
You can edit this buffer, as explained below. Press q when you’re done, and Epsilon will return
to the original buffer, offering to apply your changes.

These commands are available in hex mode:

A hex digit (0-9, a-f) in the left-hand column area moves in the hex listing to the new location.

A hex digit (0-9, a-f) elsewhere in the hex listing modifies the listing.

q quits hex mode, removing the hex mode buffer and returning to the original buffer. Epsilon
will first offer to apply your editing changes to the original buffer.

hTabi moves between the columns of the hex listing.

s or r searches by hex bytes. Type a series of hex bytes, like 0a 0d 65, and Epsilon will search
for them. S searches forward, R in reverse.

167

t toggles between the original buffer and the hex mode buffer, going to the corresponding
position. This provides a convenient way to search for literal text: press t to return to the
original buffer, use Ctrl-S to search as usual, then exit the search and press t to go back to
the hex buffer.

prompts for a new character value and overwrites the current character with it. You can use
any of these formats:’A’, 65, 0x41 (hex), 0b1100101 (binary), 0o145 (octal).

n or p move to the next or previous line.

o toggles the hex overwrite submode, which changes how Epsilon interprets keys you type in
the rightmost column of the hex listing. In overwrite mode, printable characters you type
in the rightmost column overwrite the text there, instead of acting as hex digits or
commands.
For instance, typing “3as” in the last column while in overwrite mode replaces the next
three characters with the characters 3, a, and s. Outside overwrite mode, they replace the
current character with one whose hex code is 3a, and then begin a search.
To use hex mode commands from overwrite mode, prefix them with a Ctrl-C character,
such as Ctrl-C o to exit overwrite mode. Or move out of the rightmost column withhTabi
or other movement keys.

? shows help on hex mode.

highlight-region Ctrl-X Ctrl-H Highlight area between point and mark.

This command toggles highlighting of the region of the buffer between point and mark. If you
prefix a nonzero numeric argument, the command highlights the region; a numeric argument of
zero turns highlighting off.

html-mode Set up for editing Hypertext Markup Language files.

This command puts the current buffer in HTML mode. Epsilon will do syntax-highlighting for
HTML and brace-matching.

import-colors Load color choices from earlier versions.

Use this command to import your color choices from Epsilon version 7 or earlier. It uses the
same “changes” file as theload-changes command. The end result will be a mycolors.e file,
which you can compile and load into Epsilon with thecompile-buffer command on Alt-F3.
When you receive a new version of Epsilon, you’ll be able to easily import your color changes
by recompiling this file.

Once you’ve loaded your color choices, you may need to use theset-color command to select
the particular color scheme you modified. Theimport-colors command doesn’t change which
color scheme Epsilon uses, only the color choices making up the scheme.

incremental-search Ctrl-S Search for a string as you type it.

Ctrl-Q quotes the next character. Backspace cancels the last character. Ctrl-S repeats a forward
search, and Ctrl-R repeats a backward search, or they change its direction. Ctrl-R or Ctrl-S with
an empty search string brings back the search string from the previous search. Ctrl-O enables or
disables incremental mode. Incremental mode searches as you type; non-incremental mode lets
you edit the search string.

Ctrl-W enables or disables word searching, restricting matches to complete words. Ctrl-T
enables or disables regular expression searching, in which the search string specifies a pattern

168 CHAPTER 5. ALPHABETICAL COMMAND LIST

(seeregex-search for rules). Ctrl-C enables or disables case-folding.hEnteri or hEsci exits the
search, leaving point alone.

If Epsilon cannot find all the input string, it doesn’t discard the portion it cannot find. You can
delete it, discard it all with Ctrl-G, use Ctrl-R or Ctrl-S to search the other way, change modes,
or exit from the search.

During incremental searching, if you type Control or Alt keys not mentioned above, Epsilon
exits the search and executes the command bound to the key. During a non-incremental search,
most Control and Alt keys edit the search string itself.

Quitting (with Ctrl-G) a successful search aborts the search and moves point back; quitting a
failing search just discards the portion of the search string that Epsilon could not find.

indent-for-comment Alt-; Indent and insert a comment.

This command creates a comment on the current line, using the commenting style of the current
language mode. The comment begins at the column specified by thecomment-column
variable (by default 40). (However, if the comment is the first thing on the line and
indent-comment-as-code is nonzero, it indents to the column specified by the buffer’s
language-specific indentation function.) If the line already has a comment, this command
reindents the comment to the comment column.

With a numeric argument, this command doesn’t insert a comment, but instead searches for one.
With a negative numeric argument, it searches backwards for a comment.

indent-previous hTabi Indent based on the previous line.

This command makes the current line start at the same column as the previous non-blank line.
Specifically, if you invoke this command with point in or adjacent to a line’s indentation,
indent-previous replaces that indentation with the indentation of the previous non-blank line. If
point’s indentation exceeds that of the previous non-blank line, or if you invoke this command
with point outside of the line’s indentation, this command simply inserts a tab character.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric
prefix argument, Epsilon indents by that amount.

indent-region Ctrl-Alt-n Indent from point to mark using
the function onhTabi.

This command goes to the start of each line in the region and does what thehTabi key would do
if pressed. It then deletes any resulting lines that contain only spaces and tabs, replacing them
with newline characters.

indent-rigidly Ctrl-X Ctrl-I Move all lines in the region left
or right by a fixed amount.

This command finds the indentation of each line in the region, and augments it by the value of
the numeric argument. With a negative numeric argument,�n, the command removesn
columns from each line’s indentation.

With no numeric argument it uses the variablesoft-tab-size if it’s nonzero. Otherwise it
usestab-size.

You can also invoke this command by highlighting the region and pressinghTabi or Shift-hTabi
to add or subtract indentation.

169

indent-under Ctrl-Alt-I Indent to the next text on the previous line.

This function starts at the current column on the previous non-blank line, and moves right until
it reaches the column where a run of non-spaces starts. It then replaces the indentation at point
with indentation that reaches to this column by inserting tabs and spaces. If the previous
non-blank line has no such pattern, it inserts a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric
prefix argument, Epsilon indents by that amount.

info F1 i Read documentation in Info format.

This command starts Epsilon’s Info mode for reading Info-format documentation. Use ‘q’ to
switch back to the previous buffer. Commands likehSpacei andhBackspacei, N and P, navigate
through the tree-structured Info hierarchy. Seeinfo-mode for details.

info-backward-node Info: [Walk the leaves of the Info hierarchy in reverse.

This command goes to the previous node in the sequence of Info nodes formed by walking the
leaves of the hierarchy within the current Info file.

In detail, it goes to the previous node, then as long as it’s on a node with a menu, goes to the last
menu item. However, if there’s no previous node (or it’s the same as the current node’s parent),
it goes up to the parent node as long as it’s in the same file.

info-directory-node Info: D Go to the Directory node.

Info nodes are arranged in a hierarchy. At the top of the hierarchy is one special node that
contains links to each of the other Info files in the tree. This command goes to that topmost
node.

info-follow-nearest-reference Info: hEnteri Follow the link near point.

After navigating among the cross references or menu items in an Info node withhTabi or
hBacktabi (or in any other way), use this key to follow the selected link.

info-follow-reference Info: F Prompt for a cross-reference in
this node, then go there.

This command prompts for the name of a cross-reference in this node, with completion, then
goes to the selected node.

info-forward-node Info:] Walk the leaves of the Info hierarchy.

This command goes to the next node in the sequence of Info nodes formed by walking the
leaves of the hierarchy within the current Info file.

In detail, if a menu is visible in the window, go to its next item after point. Otherwise, go to this
node’s next node. (If there is no next node, go up until reaching a node with a next node first,
but never to the Top node.)

170 CHAPTER 5. ALPHABETICAL COMMAND LIST

info-goto Info: G Ask for a node’s name, then go there.

This command prompts for the name of a node, then goes to it. It offers completion on the
names of all the nodes in the current file, but you may also refer to a different file using a node
name like (FileName)NodeName.

info-goto-epsilon-command F1 Ctrl-C Prompt for a command, look up Info.

This command prompts for the name of an Epsilon command, then displays an Info page from
Epsilon’s online manual that describes the command.

info-goto-epsilon-key F1 Ctrl-K Prompt for a key, look up Info.

This command prompts for a key, then displays an Info page from Epsilon’s online manual that
describes the command it runs.

info-goto-epsilon-variable F1 Ctrl-V Prompt for a variable, look up Info.

This command prompts for an Epsilon variable’s name, then displays an Info page from
Epsilon’s online manual that describes that variable.

info-index Info: I Prompt for an index entry; then go to
its first reference.

This command prompts for some text, then goes to the destination of the first index entry
containing that text. Use theinfo-index-next command onhCommai to see other entries. If you
just presshEnteri at the prompt, Epsilon goes to the first index node in the current Info file, and
you can peruse the index entries yourself.

info-index-next Info: hCommai Go to the next matching index entry.

This command goes to the next index entry that matches the text specified by the most recent
info-index command. Upon reaching the last item, it wraps and goes to the first matching item
again.

info-last Info: L Return to the most recently visited node.

Info remembers the history of all nodes you’ve visited. This command goes to the last node on
that list. Repeat it to revisit older and older nodes.

info-last-node Info: > Go to the last node in this file.

This command goes to the last node in this Info file. In detail, Epsilon goes to the top node of
the file, goes to the last node in its menu, then follows Next nodes until there are no more, then
moves likeinfo-forward-node until it can move no further.

info-menu Info: M Prompt for a menu item, then go there.

This command prompts for the name of a menu item in this node’s menu, with completion, then
goes to the selected node.

171

info-mode Put this buffer in Info mode.

This command sets up keys for browsing an Info file. Normally you would run theinfo
command, not this one.

These are the commands in Info mode:

H shows detailed documentation on using Info mode.
? displays this list of available Info commands.
hSpacei pages through the entire Info file one screenful at a time, scrolling either or

moving to a different node as appropriate.
hBackspacei pages backwards through the Info file.
hTabi moves to the next reference or menu item in this node.
hBacktabi moves to the previous reference or menu item in this node.
hEnteri follows the current reference or menu item to another node. You can also

double-click one of these with the mouse to follow it.
B moves to the beginning of the current node.
L goes to the most recently visited node before this one in the history list.
N goes to the next node after this one, as designated in the heading at the top of this

node.
P goes to the previous node before this one, as designated in the heading at the top

of this node.
U goes up to the parent of this node, as designated in the heading at the top of this

node.
M prompts for the name of an entry in this node’s menu, then goes to it.
1, 2, 3, ... 0 goes to the first, second, third, ... entry in this node’s menu. 0 goes to

the last entry in this node’s menu.
F prompts for the name of a cross-reference in this node, then goes to it.
T goes to the top node in the current Info file, which is always named Top.
D goes to the directory node, a node that refers to all known Info files. From here

you can navigate to any other Info file.
G prompts for the name of a node, then goes to it.
] goes to the next node in the sequence of Info nodes formed by walking the leaves

of the hierarchy within the current Info file, much likehSpacei but without
paging.

[goes to the previous node in the sequence of Info nodes formed by walking the
leaves of the hierarchy within the current Info file, much likehBackspacei but
without paging.

> goes to the last node in the file, viewed as a hierarchy (the node a repeated]
would eventually reach).

S prompts for a search string, then searches for the next match, switching nodes if
necessary. Keys like Ctrl-T to toggle regular expression mode work as usual.
Use Ctrl-S or Ctrl-R instead of S to search only within the current node.

I prompts for text, then looks it up in this Info file’s indexes, and goes to the first
node with an index entry containing that text. PresshEnteri without typing any
text to just go to the first index.

, goes to the next entry in the set of index entries set by the last I command.
Q quits Info mode by switching this window to the buffer it displayed before you

entered Info mode.

172 CHAPTER 5. ALPHABETICAL COMMAND LIST

info-mouse-double Follow the selected link.

Double-clicking a link (a menu item in an Info node, a cross-reference, or the Next, Prev, or Up
links at the top of a node) runs this command, which simply follows the link.

info-next Info: N Go to the next node after this one.

This command goes to the next node after this one, named in the current node’s header line.

info-next-page Info: hSpacei Page down, then move to the next node.

Use this command to page through the entire Info file one screenful at a time.

In detail, if a menu is visible in the window, this command goes to its next item after point.
Otherwise, it tries to scroll down. Otherwise, it goes to this node’s next node, going up the tree
if necessary to find a node with a next node.

info-next-reference Info: hTabi Move to the next reference or menu item.

This command moves forward to the next link in this node: either a reference or a menu item.
UsehTabi andhBacktabi to select a link, thenhEnteri to follow it.

info-nth-menu-item Info: 1, 2, ..., 0 Follow that menu entry.

This command goes to a menu entry without prompting as M does. 1 goes to the first item in
the menu, 2 to the second and so forth. 0 goes to the last item in the menu.

info-previous Info: P Go to the previous node before this one.

This command goes to the previous node before this one, named in the current node’s header
line.

info-previous-page Info: hBackspacei Page up, or move to a previous node.

Use this command to page backward through the entire Info file one screenful at a time.

In detail, if a menu is above point, go to its closest item and then keep following the last item in
the current node’s menu until reaching one without a menu. Otherwise (if the current node has
no menu above point), page up if possible. Otherwise move to this node’s previous node, and
then keep following the last item in the current node’s menu until reaching one without a menu.
Otherwise (if the original node had no previous node, or its previous node was the same as its
up node), move to the original node’s up node (but never to a different file).

info-previous-reference Info: hBacktabi Move to the previous reference
or menu item.

This command moves backward to the previous link in this node: either a reference or a menu
item. UsehTabi andhBacktabi to select a link, thenhEnteri to follow it.

info-quit Info: Q Exit Info mode.

This command leaves Info mode by switching this window to the buffer it displayed before you
entered Info mode.

173

info-search Info: S Search for text in many nodes.

This command prompts for search text, then searches for the text, switching nodes if necessary.
Keys like Ctrl-T to toggle regular expression mode work as usual. Use Ctrl-S or Ctrl-R instead
of S to search only within the current node.

info-tagify Rebuild the tag table for this Info file.

Epsilon can more quickly navigate between the nodes of a big Info file if it has an up-to-date tag
table. This command builds (or rebuilds) a tag table for the current Info file, and is useful after
you edit an Info file. The tag table is stored in a special hidden node.

info-top Info: T Go to the top node in the current file.

This command goes to the top node in the current Info file, which is always named Top.

info-up Info: U Go to parent of this node.

This command goes to the parent of the current node, indicated with “Up:” in this node’s
header line.

info-validate Check an Info file for errors.

This command checks an Info file for certain common errors. It reports on menu items or
cross-references that refer to non-existent nodes.

ini-mode A mode for editing .ini files.

This mode provides syntax highlighting suitable for MS-Windows .ini files.

insert-ascii Alt-# Insert an ASCII character into the buffer.

The command prompts for a numeric value, then inserts the ASCII character with that value
into the buffer. By default, it interprets the number as a decimal value. To specify a hex value,
prefix the number with the characters “0x”. To specify an octal value, prefix the number with
the characters “0o”. To specify a binary value, prefix the number with the characters “0b”.

insert-binding Make a command to re-establish
a key’s current binding.

The command prompts you for a key whose binding you want to save in command file format.
Epsilon constructs a bind-to-key command which will re-establish the current binding of the
key when executed, and inserts this command into the current buffer. You may subsequently
execute the buffer using theload-buffer command.

insert-clipboard Insert a copy of the clipboard at point.

When running under MS-Windows or X, this command inserts the contents of the clipboard
into the buffer at point. Under DOS, the clipboard must have fewer than 65,500 characters.

174 CHAPTER 5. ALPHABETICAL COMMAND LIST

insert-file Ctrl-X I Insert the specified file before point.

The command prompts for a file name, then inserts the contents of the file into the current
buffer before point, then sets mark to the other end of the inserted region.

insert-macro Construct a define-macro command.

The command prompts for the name of a macro. Epsilon constructs a define-macro command
which will redefine the macro when executed, and inserts this command in the current buffer.
You may subsequently execute the buffer using theload-buffer command.

insert-scratch Ctrl-X Y Insert previously copied text.

This command asks for a letter (or number) that specifies text that you previously copied with
thecopy-to-scratch command. Then it inserts that text before point. See also the commands
yank andyank-pop.

invoke-windows-menu Alt- hSpacei Display a system menu.

Theinvoke-windows-menu command brings up the Windows system menu. If you bind it to
an alphabetic key like Alt-S, it will bring up the corresponding menu (in this case, the Search
menu).

jump-to-column Alt-g Go to the specified column.

This command prompts for a number, then moves to the specified column on the current line. In
horizontal scrolling mode, it then horizontally centers the window on that column (or, if
possible, positions the window so that the start of the line is also visible). You can specify the
column with a numeric prefix argument and avoid the prompt.

jump-to-dvi TeX mode: Alt-Shift-J Show the DVI output
from this TeX material.

In a TeX buffer, this command tells a running MS-Windows DVI previewer to display the DVI
output resulting from the text near point.

The DVI viewer must understand Epsilon’s messages. Y&Y’s “DVIWindo” previewer, version
2.1.4 and later, understands them. And your TeX (or LaTeX) file must input srctex.sty (or
srcltx.sty) to include file name and line number information in your DVI file. Your TeX vendor
can supply these.

For documents made from multiple TeX files, Epsilon can’t determine the ultimate DVI file
name by examining one of the component TeX files. So the appropriate DVI file must already
be open in the viewer. (Epsilon builds a DVI file name by replacing the current TeX file’s
extension with.dvi. If a file with that name exists, Epsilon tells the previewer to load it.
Otherwise Epsilon assumes the DVI file is already loaded in the previewer.)

jump-to-last-bookmark Alt-J Go to a previously recorded place.

Use this command to jump to a location that you previously set with theset-bookmark
command. If you repeatedly press this key, you will cycle through the last 10 temporary
bookmarks.

175

jump-to-named-bookmark Ctrl-X J Go to a named bookmark.

Use this command to jump to a location that you previously saved with the
set-named-bookmark command. The command prompts for a bookmark name (a letter), then
jumps to that bookmark.

If you specify a digit instead of a letter, the command jumps to the corresponding temporary
bookmark (set withset-bookmark). Zero refers to the last such temporary bookmark, one to
the previous one, and so one.

You can press ‘?’ to get a list of the currently defined bookmarks, along with the text that
contains the bookmarks. To select one, simply move to the desired bookmark and presshEnteri.

keep-duplicate-lines Remove unduplicated lines.

This command deletes all lines that only occur once, and leaves one copy of each duplicated
line. If thecase-fold variable is nonzero, lines that only differ by case will be considered
identical. Also see theuniq andkeep-unique-lines command.

keep-matching-lines Delete all lines but those containing a regex pattern.

This command prompts for a regular expression pattern. It then deletes all lines below point in
the current buffer except those that contain the pattern. While you type the pattern, Ctrl-W
enables or disables word searching, restricting matches to complete words. Ctrl-T enables or
disables regular expression searching, in which the search string specifies a pattern (see
regex-search for rules). Ctrl-C enables or disables case-folding.

keep-unique-lines Entirely remove duplicate lines.

This command deletes all copies of any duplicated lines. If thecase-fold variable is
nonzero, lines that only differ by case will be considered identical. Also see theuniq and
keep-duplicate-lines command.

kill-all-buffers Delete all user buffers.

This command discards all of Epsilon’s buffers (except hidden system buffers).

kill-buffer Ctrl-X K Make a specified buffer not exist.

This command asks for a buffer name and then deletes that buffer. The command warns you
before deleting a buffer that contains unsaved changes.

kill-comment Kill the next comment.

This command searches forward for a comment, as defined by the current mode, then kills it.
Theset-comment-column command invokes this command if given a negative numeric
argument.

kill-current-buffer Ctrl-X Ctrl-K Make the current buffer not exist.

This command deletes the current buffer and switches to another, creating a new buffer if
necessary. The command warns you first if the current buffer contains unsaved changes.

176 CHAPTER 5. ALPHABETICAL COMMAND LIST

kill-current-line Kill the current line.

This command kills the entire current line, including any newline at its end. The killed text goes
to a kill buffer for possible later retrieval.

kill-level Ctrl-Alt-K Kill a bracketed expression.

The command moves point as inforward-level, killing the characters it passes over.

kill-line Ctrl-K Kill to end of line.

If invoked with point at the end of a line, this command kills the newline. Otherwise, it kills the
rest of the line but not the newline. If you givekill-line a numeric argument, it kills that many
lines and newlines. The killed text goes to a kill buffer for possible later retrieval.

kill-process Get rid of the concurrent process.

Under Epsilon for Windows or Unix, this command disconnects Epsilon from a concurrent
process and makes it exit.

kill-rectangle Kill the rectangular area between point and mark.

This command removes the characters in the rectangular area between point and mark, and puts
them in a kill buffer. By default, the deleted area is replaced with spaces and tabs, and text to
the right of the rectangle remains in the same position. See thekill-rectangle-removes
variable to make this command remove the deleted rectangle and shift any text to the right. Also
see thedelete-rectangle command.

kill-region Ctrl-W Kill the text between point and mark.

This command removes the characters between point and mark from the buffer, and puts them
in a kill buffer.

kill-sentence Alt-K Kill to the end of the sentence.

The command moves point as inforward-sentence, killing the characters it passes over.

kill-to-end-of-line Brief: Alt-K Kill the remainder of the current line.

This command kills the remainder of the current line, not including any newline at its end. If
point is at the end of the line, the command does nothing. The killed text goes to a kill buffer for
possible later retrieval.

kill-window Ctrl-X 0 Delete the current window.

This command gets rid of the current window, and gives the space to some other window. This
command does not delete the buffer displayed in the window.

kill-word Alt-D Kill the word after point.

The command moves point forward through the buffer as withforward-word, then kills the
region it traversed.

177

last-kbd-macro Ctrl-F4 Execute the last keyboard macro
defined from the keyboard.

This command runs the last keyboard macro you defined with thestart-kbd-macro and
end-kbd-macro commands.

latex-mode Set up for editing LaTeX documents.

This command sets up Epsilon for editing LaTeX documents. Keys in LaTeX mode include
Alt-i for italic text, Alt-Shift-I for slanted text, Alt-Shift-T for typewriter, Alt-Shift-B for
boldface, Alt-Shift-C for small caps, Alt-Shift-F for a footnote, and Alt-s for a centered line.
Alt-Shift-E prompts for the name of a LaTeX environment, then insertsnbeginfenvg and
nendfenvg lines.

For all these commands, you can highlight a block of text first and Epsilon will make the text
italic, slanted, etc. or you can use the command and then type the text to be italic, slanted, etc.

The keys ‘f’ and ‘$’ insert matched pairs of characters (eitherfg or $$), the keyshCommai and
hPeriodi remove a preceding italic correctionn/, the" key inserts the appropriate kind of
doublequote sequence like‘‘ or ’’, and Alt-" inserts an actual" character.

line-to-bottom Brief: Ctrl-B Scroll window to move this line to bottom.

This command tries to scroll the current window so that the line containing point becomes the
last line in the window.

line-to-top Brief: Ctrl-T Scroll the window to move this line to the top.

This command tries to scroll the current window so that the line containing point becomes the
first line in the window.

list-all Describe Epsilon’s state in text form.

This command puts a description of Epsilon’s state, including bindings, macros, variables, and
commands, in a buffer named list-all. It provides complete descriptions for bindings, macros,
and simple variables, but for commands and subroutines, it only records the fact that a function
with that name exists. You would use this command when updating to a new version of Epsilon.

list-bookmarks Pop up a list of all the bookmarks.

This command works likejump-to-named-bookmark, but pops up a list of bookmarks, as if
you had typed ‘?’ to that command. If you always want the pop up list, you can bind this
command to a key (perhaps replacing the default binding ofjump-to-named-bookmark on
Ctrl-X J).

list-changes List variables added or changed when updating.

You would use this command when updating to a new version of Epsilon. It asks for the names
of two files, then makes a list of all lines from the second that don’t appear in the first. It sorts
the second file, but not the first.

178 CHAPTER 5. ALPHABETICAL COMMAND LIST

list-colors Make a list of all color settings.

This command constructs a buffer with all of Epsilon’s current color settings, one to a line. The
export-colors command is usually a better way to save color selections in human-readable
form.

list-definitions Alt-’ List functions defined in this file.

This command displays a list of all functions and global variables defined in the current file. It
uses Epsilon’s tagging facility, so it works for any file type where tagging works.

You can move to a definition in the list and presshEnteri and Epsilon will go to that definition.
Or press Ctrl-G to remain at the starting point.

By default, it skips over external declarations. With a prefix numeric argument, it includes those
too. (If the buffer contains only external declarations and no definitions, a prefix argument is
unnecessary; Epsilon will automatically include them.)

list-files Create a buffer listing all files matching a pattern.

This command prompts for a file name pattern containing wildcards, then creates a list of all the
files matching the pattern in a buffer named “file-list”. Use this command when you need a plain
list of file names, without any of the extra information that the similardired command provides.

With a numeric argument, the command lists matching directory names, as well as file names.

list-make-preprocessor-conditionals Makefile mode: Alt-i Show conditionals
in effect for this line.

In makefile mode buffers, this command displays a list of all preprocessor conditionals that
affect the current line.

list-preprocessor-conditionals C mode: Alt-i Show conditionals in effect for this line.

In C mode buffers, this command displays a list of all preprocessor conditionals that affect the
current line.

list-svga-modes List or load additional SVGA video modes.

Under DOS, this command lists any Super VGA video modes available, putting the result in a
buffer named “svga-list”. You must set theextra-video-modes variable and restart for
this command to work.

Under OS/2, this command works differently. You must run this command before you can
access the additional video modes. (Under DOS, the modes are available immediately, and this
command is purely informational.) The command scans the fileSVGADATA.PMI for new
Super VGA video modes and adds them to Epsilon.SVGADATA.PMI is a text file describing
all the available modes for your video board. It normally resides in your mainnOS2 directory,
and is built by the SVGA program which comes with OS/2. See your OS/2 documentation for
information on this program.

179

list-undefined Which EEL functions are not defined anywhere?

This command makes a list of all EEL functions that are called from some other EEL function,
but have not been defined. Epsilon doesn’t report any error when you load an EEL function that
refers to an undefined function, but you’ll get an error message when the function runs. This
command helps to prevent such errors. The list also includes any variables or functions that
have been deleted.

load-buffer Interpret a buffer as a command file.

This command prompts you for the name of a buffer containing macro definitions and key
bindings in command file format, then executes the commands contained in that buffer. For
information on command file format, see the section of the manual entitled “Command Files”.

load-bytes F3 Load compiled EEL commands and variables.

This command prompts you for the name of a file produced by the EEL compiler, then loads
that file. You may omit the file name’s extension. The command changes any file name
extension you provide to “.b”.

load-changes Load the changes into Epsilon.

Theload-changes command prompts for a file name, then loads the changes described in that
file. Use this command when updating to a new version of Epsilon, to load the output of the
list-changes command.

load-file Read in a command file.

This command prompts you for the name of a command file containing macro definitions and
key bindings, then executes the commands contained in that file. For information on command
file format, see the section of the manual entitled “Command Files”.

locate-file Search for a file.

This command prompts you for a file name and then searches for that file. In Windows, DOS,
and OS/2, it searches for the file on all local hard drives, skipping over removable drives,
CD-ROM drives, and network drives. On Unix, it searches through particular parts of the
directory hierarchy specified by thelocate-path-unix variable.

lowercase-word Alt-L Make the current word lower case.

Point travels forward through the buffer as withforward-word. It turns all the letters it
encounters to lower case. If the current buffer contains a highlighted region, Epsilon instead
changes all the letters in the region to lower case, leaving point unchanged.

make Ctrl-X M Run a program, then look for errors.

Execute a program (by default “make”) as thepush command does. With a numeric argument,
the command prompts for the program to execute and sets the default for next time. Epsilon
captures the program’s output and parses it for error messages using thenext-error command.

180 CHAPTER 5. ALPHABETICAL COMMAND LIST

makefile-mode Set up for editing makefiles.

This command sets up syntax highlighting suitable for makefiles.

man Read Unix man pages.

This command prompts for a line of text, then runs the Unix “man” command, passing that text
as its command line argument, and displays the result in a buffer.

If you don’t use any flags or section names, Epsilon will provide completion on available topics.
For example, type “?” to see all man page topics available. Within man page output, you can
double-click on a reference to another man page, such asecho(1), or presshEnteri to follow
it, or press m to be prompted for another man page topic.

mark-c-paragraph C mode: Alt-h Set point and mark around a paragraph.

This command sets point and mark around the current paragraph in a block comment in C mode.

mark-inclusive-region Brief: Alt-M Begin marking a Brief-style inclusive region.

This command begins marking and highlighting a region of text, defining it as an inclusive
region. An inclusive region includes all the characters between point and mark, plus one
additional character at the end of the region. When you run this command, it sets the mark
equal to the value of point, so initially the highlighted region has one character, the character
just after point. This is Brief’s normal region type.

If Epsilon is already highlighting a region of another type, this command redefines the region as
an inclusive region. Ifmark-unhighlights is nonzero and Epsilon is already highlighting
an inclusive region, this command turns off the highlighting.

mark-line-region Brief: Alt-L Begin marking a line region.

This command begins marking and highlighting a region of text, defining it as a line region. A
line region includes complete lines of the buffer: the line containing point, the line containing
the mark and all the lines between them. When you run this command, it sets the mark equal to
the value of point, so initially the highlighted region contains just the current line.

If Epsilon is already highlighting a region of another type, this command redefines the region as
a line region. Ifmark-unhighlights is nonzero and Epsilon is already highlighting a line
region, this command turns off the highlighting.

mark-normal-region Brief: Alt-A Begin marking a normal region.

This command begins marking and highlighting a region of text, defining it as a normal
(non-inclusive) region. A normal region includes all the characters between point and mark.
When you run this command, it sets the mark equal to the value of point, so initially the
highlighted region is empty.

If Epsilon is already highlighting a region of another type, this command redefines the region as
a normal region. Ifmark-unhighlights is nonzero and Epsilon is already highlighting a
normal region, this command turns off the highlighting. Seeset-mark for a command that
always begins defining a new region, even when a region has already been highlighted.

181

mark-paragraph Alt-H Put point and mark around the paragraph.

This command positions mark before the first character in the current paragraph, and positions
point after the last character in the paragraph. You can use this command in conjunction with
thekill-region command to kill paragraphs and move them around.

For information on Epsilon’s notion of a paragraph, see the help entry for the
forward-paragraph command.

mark-rectangle Ctrl-x #, Brief: Alt-C Begin marking a rectangular region.

This command begins marking and highlighting a rectangular region of text, setting mark equal
to the value of point. A rectangular region consists of all columns between those of point and
mark, on all lines in the buffer between point and mark.

If Epsilon is already highlighting a region of another type, this command redefines the region as
a rectangular region. Ifmark-unhighlights is nonzero and Epsilon is already highlighting
a rectangular region, this command turns off the highlighting.

mark-whole-buffer Ctrl-X H Highlight the entire buffer.

This command sets point at the start of the current and mark at its end, and turns on
highlighting.

merge-diff Use #ifdef to mark buffer changes.

This command is another variation ondiff that’s useful with buffers in C mode. It marks
differences by surrounding them with #ifdef preprocessor lines, first prompting for the #ifdef
variable name to use. The resulting buffer receives the mode and settings of the first of the
original buffers.

mouse-center M-hCenteri Pan or yank, as appropriate.

This command runsmouse-yank under Unix, andmouse-pan otherwise. See the variable
mouse-center-yanks to customize this behavior.

mouse-move M-hMovei Pop up a scroll bar or menu bar as needed.

Epsilon runs this command when you move the mouse. It pops up a scroll bar or menu bar, or
changes the mouse cursor’s shape, based on the mouse’s current position on the screen.

mouse-pan M-hCenteri Autoscroll or pan the current buffer.

This command is bound to the middle mouse button on three button (or wheeled) mice. It
provides autoscrolling and panning when you click that button.

mouse-select M-hLefti Select text, move borders,
or run menu command.

Press and release this mouse button to position point to wherever the mouse cursor indicates,
switching windows if needed. Hold down the mouse button and drag to select and highlight
text. Double-clicking selects full words. (When a pop-up list of choices appears on the screen,

182 CHAPTER 5. ALPHABETICAL COMMAND LIST

double-clicking on a choice selects it.) Shift-clicking extends the current selection. Holding
down the Alt key while selecting produces a rectangle selection.

Drag selected text to move it someplace else. Hold down the Control key to copy the text
someplace else.

On scroll bars, this button scrolls the window. You can drag the central scroll box up and down,
click on the arrows at the top and bottom of the scroll bar to scroll by lines, or click between the
arrows and the box to scroll by pages.

On other window borders and corners, dragging resizes windows. For pop-up windows only,
dragging the title bar moves the window.

mouse-to-tag M-hRighti Go to the definition of the indicated function.

In Epsilon for Windows, display the context menu by calling thecontext-menu command. In
other versions, behave like the left mouse button, with one exception:

In C files, double-clicking on the name of a subroutine jumps to that routine’s definition using
the tags system. Before jumping, it sets a bookmark at the current position like the
set-bookmark command.

mouse-yank Unix: M-hCenteri Yank from the clipboard or kill buffer.

This command yanks text from the clipboard or a kill buffer, like theyank command, at the
mouse’s current location.

move-to-window Ctrl-X hArrowsi Move to a different window.

This command changes the current window to the window in the direction of the arrow key
from the cursor. For example, typing Ctrl-XhRighti moves to the window to the right of the
cursor; Ctrl-XhLefti moves to the left. Ctrl-XhUpi and Ctrl-XhDowni move up and down,
respectively.

name-kbd-macro Ctrl-X Alt-N Name the last keyboard macro defined.

Use this command to give a name to a keyboard macro that you defined withstart-kbd-macro
andend-kbd-macro. The command prompts you for the name. Thereafter, you may invoke
that macro by name usingnamed-command, or bind it to a key usingbind-to-key.

named-command Alt-X Invoke the given command by name.

This command prompts for the name of a command or keyboard macro, with completion, then
executes it.

narrow-to-region Temporarily restrict editing to between
point and mark.

This command temporarily restricts your access to the current buffer. Point can only vary
between the values point and mark had when you invokednarrow-to-region. The commands
that go to the beginning and end of the buffer will instead go to the beginning and end of this
region. Searches will only operate within the region. However, the commands that write the
buffer to a file will write the entire buffer, not just the constricted region. See also the
widen-buffer command.

183

new-file Create an empty buffer.

This command creates a new, empty buffer and marks it so that Epsilon will prompt for a file
name when you try to save it. You can customize the behavior of thenew-file command by
setting the variablesnew-file-mode andnew-file-ext.

next-buffer F12 Select the next buffer.

This command selects the next buffer and connects it to the current window. You can cycle
through all the buffers by repeating this command. To cycle in the other direction, use the
previous-buffer command.

next-difference Vdiff: Alt- hDowni or Alt-] Move to the next change.

Use this command in a buffer created by thevisual-diff command to move to the next group of
changed lines, or the next group of common lines. Added lines are shown in yellow, deleted
lines in red, and common lines are colored as in the original buffers.

next-error Find a compiler error message, then
jump to the offending line.

This command searches in the process buffer for a line containing a compiler error message.
Epsilon uses a regular expression search to recognize these messages.

If a window displays the file containing the error, Epsilon switches to that window. Otherwise,
it uses thefind-file command to display the file in the current window. It then goes to the
indicated line of the file using thegoto-line command, then displays the error message in the
echo area. A positive numeric argument ofn moves to thenth next error message. A negative
numeric argument of�n moves to thenth previous error message. A numeric argument of zero
repeats the last message.

next-match Go to the next matching line.

This command moves to the next match that the last grep command found.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,
it uses thefind-file command to display the file in the current window. It then goes to the
matching line. A positive numeric argument ofn moves to thenth next match. A negative
numeric argument of�n moves to thenth previous match. A numeric argument of zero goes to
the same match as last time.

next-page Ctrl-V Display the next window full of text.

This command scrolls the current window up so that the last few lines appear at the top of the
window. It moves point so that it appears centered vertically in the window.

next-position Ctrl-X Ctrl-N Go to the next matching line.

This command moves to the next compiler error message by callingnext-error, or to the next
match found by thegrep command by callingnext-match, depending on whether you’ve run a
process or compilation command, or agrep command, most recently.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,
it uses thefind-file command to display the file in the current window. It then goes to the
appropriate line of the file. A positive numeric argument ofn moves to thenth next match. A
negative numeric argument of�n moves to thenth previous match. A numeric argument of
zero goes to the same place as last time.

184 CHAPTER 5. ALPHABETICAL COMMAND LIST

next-tag Ctrl-hNumPlusi Go to the next tag with this name.

After you use thegoto-tag or pluck-tag commands to go to a tag that occurs in multiple places,
you can use this command to go to the next instance of the tag.

next-video Ctrl-F5 Change the number of lines or columns.

This command tries to put the display device in a mode that displays a different number of lines
or columns. This command cycles through all the modes that Epsilon knows about. See also the
set-video command. (DOS, OS/2 only)

next-window Alt- hEndi Move to the next window.

This command moves to the next window, wrapping around to the first window if invoked from
the last window.

You can think of the window order as the position of a window in a list of windows. Initially
only one window appears in the list. When you split a window, the two child windows replace it
in the list. The top or left window comes before the bottom or right window. When you delete a
window, that window leaves the list.

normal-character Insert the invoking key into the buffer.

When you type a character bound to thenormal-character command, Epsilon inserts the
character into the buffer, generally before point. See also theoverwrite-mode command.

Nothing happens if the key that invokesnormal-character does not represent a valid 8-bit
ASCII character.

During auto fill mode, when you type a key bound to this command, the line breaks if
appropriate. In particular, if point’s column equals the fill column, the command breaks the line.
If the value of point’s column exceeds the fill column, the command breaks the line at the
closest whitespace to the left of the fill column, and uses thenormal-character command to
insert a space. Otherwise, this command just invokes thenormal-character command to insert
the key into the buffer. See theauto-fill-mode command.

oem-to-ansi Convert buffer’s DOS character set to Windows.

Windows programs typically use a different character set than do DOS programs. The DOS
character set is known as the DOS/OEM character set, and includes various line drawing
characters and miscellaneous characters not in the Windows/ANSI set. The Windows/ANSI
character set includes many accented characters not in the DOS/OEM character set. Epsilon for
Windows uses the Windows/ANSI character set (with most fonts).

Theoem-to-ansi command converts the current buffer from the DOS/OEM character set to the
Windows/ANSI character set. If any character in the buffer doesn’t have a unique translation,
the command warns first, and moves to the first character without a unique translation.

This command ignores any narrowing established by thenarrow-to-region command. It’s only
available in Epsilon for Windows.

one-window Ctrl-X 1 Display only one window.

The current window becomes the only window displayed. The buffers associated with other
windows, if any, remain unaffected. See also thezoom-window command.

185

open-line Ctrl-O Open up some vertical space.

This command inserts a newline after point, instead of before point as the other inserting
commands do. Use this command to open up some vertical space in the file.

overwrite-mode hInsi Enter/Exit overwrite mode.

This command changes the behavior of thenormal-character command, causing it to insert
characters into the buffer destructively, replacing the character after point. However, Epsilon
will never overwrite a newline character, or overwrite another character with a newline
character. This ensures proper behavior with respect to the ends of lines.

Without a numeric argument, the command toggles the state of overwrite mode. With a numeric
argument of zero, the command disables overwrite mode. With a nonzero numeric argument, it
turns overwrite mode on.

page-left Alt- hPageUpi Show more text to the left.

This command moves left on the current line by half the window’s width. In horizontal
scrolling mode, it then horizontally centers the window on that column (or, if possible, positions
the window so that the start of the line is also visible).

page-right Alt- hPageDowni Show more text to the right.

This command moves right on the current line by half the window’s width. In horizontal
scrolling mode, it then horizontally centers the window on that column (or, if possible, positions
the window so that the start of the line is also visible).

pause-macro Shift-F4 Suspend/resume recording or running a macro.

When defining a keyboard macro, pressing this key temporarily stops recording the macro.
Press the same key again to resume recording. Epsilon won’t record any of your keystrokes
while recording is suspended.

When Epsilon runs the resulting keyboard macro, it will pause at the same place in the macro
and let you enter commands. To resume the macro, press this same key.

Use this command to write macros that pause in the middle for a file name, or to let you do
some custom editing, before continuing their work.

perl-mode Set up for editing Perl.

This command puts the current buffer in a mode suitable for editing Perl. Syntax highlighting,
indenting, tagging, comment filling, delimiter highlighting and commenting commands are all
provided.

pluck-tag Ctrl-X , Go to the definition of the function at point.

This command first retrieves the routine name adjacent to or to the right of point, then jumps to
that routine’s definition. Before jumping, it sets a bookmark at the current position like
set-bookmark.

186 CHAPTER 5. ALPHABETICAL COMMAND LIST

postscript-mode Set up for editing PostScript files.

This command sets up syntax highlighting suitable for PostScript documents.

previous-buffer F11 Select the previous buffer.

This command selects the previous buffer and connects it to the current window. You can cycle
through all the buffers by repeating this command. To cycle in the other direction, use the
next-buffer command.

previous-difference Vdiff: Alt- hUpi or Alt-[Move to the previous change.

Use this command in a buffer created by thevisual-diff command to move to the start of the
previous group of changed lines, or the previous group of common lines. Added lines are shown
in yellow, deleted lines in red, and common lines are colored as in the original buffers.

previous-error Find a compiler error message, then
jump to the offending line.

This command works likenext-error, except that it searches backwards instead of forwards.

previous-match Go to the previous matching line.

This command moves to the previous match from the last grep command.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,
it uses thefind-file command to display the file in the current window. It then goes to the
matching line. A positive numeric argument ofn moves to thenth previous match. A negative
numeric argument of�n moves to thenth next match. A numeric argument of zero goes to the
same match as last time.

previous-page Alt-V Display the previous window full of text.

This command scrolls the contents of the current window down so that the first few lines appear
at the bottom of the window. It moves point so that it appears centered vertically in the window.

previous-position Ctrl-X Ctrl-P Go to the previous matching line.

This command moves to the previous compiler error message by callingprevious-error, or to
the previous match found by thegrep command by callingprevious-match, depending on
whether you’ve run a process or compilation command, or agrep command, most recently.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,
it uses thefind-file command to display the file in the current window. It then goes to the
appropriate line of the file. A positive numeric argument ofn moves to thenth previous match.
A negative numeric argument of�n moves to thenth next match. A numeric argument of zero
goes to the same place as last time.

previous-tag Ctrl-hNumMinusi Go to the previous tag with this name.

After you use thegoto-tag or pluck-tag commands to go to a tag that occurs in multiple places,
you can use this command to go to the previous instance of the tag.

187

previous-window Alt- hHomei Move to the previous window.

This command moves to the previous window, wrapping around to the last window if invoked
from the first window.

You can think of the window order as the position of a window in a list of windows. Initially
only one window appears in the list. When you split a window, the two child windows replace it
in the list. The top or left window comes before the bottom or right window. When you delete a
window, that window leaves the list.

print-buffer Alt-F9 Print the current buffer.

This command prints the current buffer. Under Windows, it displays the standard Windows
printing dialog. You can choose to print the current selection, the entire buffer, or just certain
pages.

Under other environments, this command prints the current highlighted region. If no region in
the buffer is highlighted, the command prints the entire buffer. It prompts for the device name
of your printer, storing your response in the variableprint-destination (or, under Unix,
print-destination-unix), and then writes a copy of the buffer to that device. For DOS
or OS/2, the printer device name is typically something like LPT1 or COM2.

If the printer name begins with the! character, Epsilon interprets the remainder of the name as
a command line to execute in order to print a file. Epsilon substitutes the file to be printed for
any%f sequence in the command line. For example, if your system requires you to type
“netprint filename” to print a file, enter!netprint %f as the device name and Epsilon will
run that command, passing it the file name of the temporary file it generates holding the text to
print. The device name can include any of the file name template sequences, such as%p for the
path to the file to print.

If the variableprint-tabs is zero, Epsilon will make a copy of the text to print and convert
any tabs into spaces before sending it to the printer.

print-buffer-no-prompt Print the current buffer without prompting.

This command prints the current buffer, exactly likeprint-buffer, but doesn’t prompt. It uses
default settings.

print-region Shift-F9 Print the current region.

Under Windows, this command displays the standard Windows printing dialog. You can choose
to print the current selection, the entire buffer, or just certain pages.

Under other environments, this command always prints the current region. It prompts for the
device name of your printer, storing your response in the variableprint-destination (or,
under Unix,print-destination-unix), and then writes a copy of the region to that
device. For DOS or OS/2, the printer device name is typically something like LPT1 or COM2.

If the printer name begins with the! character, Epsilon interprets the remainder of the name as
a command line to execute in order to print a file. Epsilon substitutes the file to be printed for
any%f sequence in the command line. For example, if your system requires you to type
“netprint filename” to print a file, enter!netprint %f as the device name and Epsilon will
run that command, passing it the file name of the temporary file it generates holding the text to
print. The device name can include any of the file name template sequences, such as%p for the
path to the file to print.

If the variableprint-tabs is zero, Epsilon will make a copy of the text to print and convert
any tabs into spaces before sending it to the printer.

188 CHAPTER 5. ALPHABETICAL COMMAND LIST

print-setup Display the Print Setup dialog.

Under Windows, this command displays the standard Print Setup dialog. You can choose a
printer and select other options. In other environments, this command does nothing.

process-backward-kill-word Process mode: Ctrl-Alt-H Kill the word before point.

The command moves point as inbackward-word, killing the characters it passes over. But it
stops before deleting any part of the prompt, treating that as a word boundary.

process-complete Process mode:hTabi Finish typing a file name.

In a process buffer,hTabi performs completion on file names. If no more completion is
possible, it displays all the matches in the echo area, if they fit. If not, presshTabi again to see
them listed in the buffer.

The command uses different rules for the first word on the command line, searching for a
command along the PATH in a manner appropriate to the operating system. (It won’t know
about any commands that may be built into the current shell command processor, though.)

process-enter Process mode:hEnteri Send a line to the
concurrent process.

Pressing thehEnteri key in process mode moves the error spot backwards to point, so that
Epsilon searches for error messages from this new location. If the
process-enter-whole-line variable is nonzero, Epsilon moves to the end of the current
line before sending it to the process, but only when in a line that has not yet been sent to the
process. If theprocess-enter-whole-line variable is two, Epsilon copies the current
line to the end of the buffer, making it easier to repeat a command.

process-mode Interact with a concurrent process.

Epsilon puts its process buffer in this mode. Pressing thehEnteri key in process mode moves
the error spot backwards to point, so that Epsilon searches for error messages from this new
location. Process mode also includes commands for completing on file names and command
names and retrieving previous command lines.

process-next-cmd Process: Alt-N Retrieve the next command
from the history list.

Epsilon’s concurrent process buffer maintains a command history. This command retrieves the
next command from the history. Use it following aprocess-previous-cmd command. With a
numeric prefix argument, the command shows a menu of previous commands and you can
select one to repeat.

process-previous-cmd Process: Alt-P Retrieve the previous command
from the history list.

Epsilon’s concurrent process buffer maintains a command history. This command retrieves the
previous command from the history. Also seeprocess-next-cmd command. With a numeric
prefix argument, the command shows a menu of previous commands and you can select one to
repeat.

189

process-yank Process mode: Ctrl-Y Insert the contents of a kill buffer.

This command behaves just like theyank command, but if more than one line would be yanked
(and then immediately executed by the running shell command processor), it first prompts for
confirmation. When a keyboard macro is running or being defined, this prompting is disabled.

profile Collect timing information on EEL commands.

This command starts a recursive edit and begins collecting timing data. Many times per second,
Epsilon makes a note of the currently executing EEL source line. When you exit withexit-level,
it fills a buffer named “profile” with this timing data. Epsilon doesn’t collect any profiling
information on commands or subroutines that you compile with the-s option. This command
isn’t available in Epsilon for Windows 3.1.

program-keys Change low-level key mapping.

This command presents a menu of choices that make changes to the keys Epsilon can use
(useful mainly under DOS).

pull-word F3, Ctrl-hUpi Complete this word by scanning the buffer.

This command scans the buffer before point, and copies the previous word to the location at
point. If you type the key again, it pulls in the word before that, etc. Whenever Epsilon pulls in
a word, it replaces any previously pulled-in word. If you like the word that has been pulled in,
you do not need to do anything special to accept it–Epsilon resumes normal editing when you
type any key except for the few special keys reserved by this command. Type Ctrl-G to erase
the pulled-in word and abort this command.

If a portion of a word immediately precedes point, that subword becomes a filter for pulled-in
words. For example, suppose you start to type a word that beginsWM, then you notice that the
wordWM_QUERYENDSESSION appears a few lines above. Just type Ctrl-hUpi and Epsilon
fills in the rest of this word.

pull-word-fwd Ctrl-hDowni Complete this word by scanning the buffer.

This command scans the buffer after point, and copies the next word to the location at point. If
you type the key again, it pulls in the word after that, etc. Whenever Epsilon pulls in a word, it
replaces any previously pulled-in word. If you like the word that has been pulled in, you do not
need to do anything special to accept it–Epsilon resumes normal editing when you type any key
except for the few special keys reserved by this command. Type Ctrl-G to erase the pulled-in
word and abort this command.

If a portion of a word immediately precedes point, that subword becomes a filter for pulled-in
words. For example, suppose you start to type a word that beginsWM, then you notice that the
wordWM_QUERYENDSESSION appears a few lines below. Just type Ctrl-hUpi and Epsilon
fills in the rest of this word.

python-mode Set up for editing programs in the Python language.

This command puts the current buffer in a mode suitable for editing programs in the Python
language. Syntax highlighting, indenting, tagging, comment filling, delimiter highlighting and
commenting commands are all provided.

190 CHAPTER 5. ALPHABETICAL COMMAND LIST

push Ctrl-X Ctrl-E Invoke an inferior command processor.

This command invokes a command processor, or shell. While in the command processor, you
can do whatever you normally do outside of Epsilon. If you prefix a numeric argument, the
command prompts you for a line to pass to the command processor. After the command
finishes, a message telling you to type any key to continue appears. This allows you to look at
your output before Epsilon again claims the screen. After you have passed a command to the
command processor, that command becomes the default command until you type in another
one.

Unlike start-process, this command will work with all but the most extremely misbehaved
programs.

query-replace Alt-% Interactively replace strings.

This command behaves likereplace-string. Instead of replacing everything automatically, it
positions point after each occurrence of the old string, and you may select whether or not to
replace it. With a numeric argument, the command will match only complete words.

Y or hSpacei replaces and goes to the next match.

N or hBackspacei doesn’t replace, but goes to the next match.

hEsci exits immediately.

. replaces and then exits.

ˆ backs up to the previous match.

! replaces all remaining occurrences.

, replaces the current match but doesn’t go to the next match.

Ctrl-R enters a recursive edit, allowing you to modify the buffer arbitrarily. When
you exit the recursive edit with exit-level, the query-replace continues.

Ctrl-G exits and returns point to its original location.

Ctrl-W toggles the state of word mode.

Ctrl-T toggles the state of regular expression mode (see the description of
regex-replace).

Ctrl-C toggles the state of case-folding.

Any other key causesquery-replace to exit and any command bound to that key to
execute.

quick-dired-command Alt-o Perform operations on the current file.

This command provides a convenient way to perform various operations on the file associated
with the current buffer. It prompts for another key, with choices as listed below. Many of them
are similar to the corresponding commands in a dired buffer.

D deletes the file associated with the current buffer, after prompting for
confirmation.

C copies the file associated with the current buffer, prompting for a destination. If
the buffer contains unsaved changes, they won’t be in the copy; this command
affects the file on disk only.

M renames or moves the file associated with the current buffer, prompting for a
destination. It doesn’t change the file name associated with the current buffer,
which will still refer to the original file.

191

hPeriodi runs the dired command on the current file.
G changes the current directory to the one containing the current file.
+ prompts for a subdirectory name, then creates a new subdirectory in the directory

containing the current file.
! prompts for a command line, then runs that command, appending the current file

name to it.
V runs the “viewer” for the current file; the program assigned to it according to

Windows file association. For executable files, it runs the program. For
document files, it typically runs the Windows program assigned to that file
extension. (Epsilon for Windows only.)

T displays the Windows property page for the file. (Epsilon for Windows only.)
F opens the folder containing this file in Explorer. (Epsilon for Windows only.)
? displays this list of subcommands.

quoted-insert Ctrl-Q Take the next character literally.

The command reads another key and inserts it into the buffer, even if that key would not
normally runnormal-character. Nothing happens if the key does not represent an 8-bit ASCII
character. Use this command to insert control characters, meta characters, or graphics
characters into the buffer.

read-session Restore files from the last session.

By default, Epsilon automatically restores the previous session (the files you were editing, the
window configuration, bookmarks, search strings, and so forth) only when you start it without
specifying a file name on the command line. This command restores the previous session
manually. Reading in a session file rereads any files mentioned in the session file, as well as
replacing search strings, all bookmarks, and the window configuration. (If there are unsaved
files, Epsilon asks if you want to save them first.) Any files not mentioned in the session file
will remain, as will keyboard macros, key bindings, and most variable settings.

rebuild-menu Put modified bindings into menu.

This command makes Epsilon reconstruct its menus, adding current key bindings.

record-kbd-macro Brief: F7 Start or stop recording a macro.

This command begins recording a keyboard macro. Keys you press execute normally, but also
become part of an accumulating keyboard macro. Run this command again to finish defining
the macro.

redisplay Rewrite the entire screen.

Normally Epsilon does not write to the screen during the execution of a keyboard macro. This
command forces a complete rewrite of the screen. Use it if you need to create a keyboard macro
that updates the screen in the middle of execution.

redo F10 Redo the last buffer change or movement.

This command reverses the effect of the lastundo command. If repeated, it restores earlier
changes. You may remove the changes again withundo.

192 CHAPTER 5. ALPHABETICAL COMMAND LIST

redo-changes Ctrl-F10 Redo, skipping over movement redo’s.

This command operates likeredo, except that it will automatically redo all changes to the
buffer that involve only movements of point, and stop just before a change of actual buffer
contents. When you invokeredo-changes, it performs aredo, then continues to redo changes
that consist only of movements of point.

refresh-files Check to see which files have changed on disk.

This command makes Epsilon check each buffer to see if its associated file has been modified
on disk. It rereads the modified file automatically, or asks permission to do so, just as if you had
switched to every buffer one by one.

regex-replace Alt-* Substitute for replace expressions.

This command functions likequery-replace, but starts in regular expression mode.

pat1|pat2 matches eitherpat1or pat2.

pat* matches zero or more matches ofpat.

pat+ matches one or more matches ofpat.

pat? matches zero or one matches ofpat.

[abx] matches any of the characters a, b, or x.

[ˆabx] matches any but a, b, or x.

[a-z3] matches a, b, c, ... z, or 3.

. matches any character except newline.

() group patterns for+, *, ?, and|.

ˆ only matches at the beginning of a line.

$ only matches at the end of a line.

<#50> means the character with ASCII code 50.
% removes the special meaning from the following character, so that %$ matches

only $.

! marks the end of the match. The command does not change any characters that
match the pattern after the exclamation point.

In the replacement text, #1 means substitute the part of the text that matched the first
parenthesized pattern piece. For example, usingregex-replace to replace
“([A-Z][a-z]+)([.!?])” with “ #2 ends #1” changes the text “Howard!” to “! ends
Howard”. #0 means to substitute the whole match.

regex-search Ctrl-Alt-S Search for a string after point.

The command prompts for a regular expression, then positions point after the next match of that
pattern. If no such match exists, a message appears in the echo area.

pat1|pat2 matches eitherpat1or pat2.

pat* matches zero or more matches ofpat.

pat+ matches one or more matches ofpat.

pat? matches zero or one matches ofpat.

[abx] matches any of the characters a, b, or x.

193

[ˆabx] matches any but a, b, or x.
[a-z3] matches a, b, c, ... z, or 3.
. matches any character except newline.
() group patterns for+, *, ?, and|.
ˆ only matches at the beginning of a line.
$ only matches at the end of a line.
<#50> means the character with ASCII code 50.
% removes the special meaning from the following character, so that %$ matches

only $.
! marks the end of the match.

release-notes Display the release notes.

Epsilon searches for the file readme.txt and loads it.

rename-buffer Change the name of the current buffer.

Epsilon prompts for a buffer name, then renames the current buffer.

replace-again Brief: Shift-F6 Do the last replacement again.

This command repeats the last replace command you did, using the same text to search for, and
the same replacement text.

replace-string Alt-& Replace one string with another.

The command asks you for the old and new strings. From point to the end of the buffer, it
replaces occurrences of the old string with the new string. If you prefix a numeric argument, it
will only replace matches that consist of complete words. See alsoquery-replace.

reset-mode Pick the appropriate mode for this buffer.

When you first load a file, Epsilon auto-detects the correct mode for it, by examining the file’s
extension and sometimes the contents of the file. This command makes Epsilon repeat that
process, setting the buffer to a different mode if appropriate. It can be handy after you’ve
temporarily switched to a different mode for any reason, or after you’ve started creating a new
file with no extension and have now typed the first few lines, enough for Epsilon to auto-detect
the proper mode.

For instance, if you’re creating a new file with no extension, there might not be enough
information for Epsilon to choose the right mode at the start. Once you’ve typed the usual first
line of a Perl, PostScript, shell script, or similar file, then Epsilon should have enough
information to pick the right mode.

resume-client Ctrl-C # Tell a waiting client you’ve finished editing.

You can set up Epsilon for Unix so an external program can run it as its editor. This is typically
done by setting the EDITOR environment variable. The external program will invoke the editor
program, and then wait for it to exit before continuing with its work.

You may have an existing session of Epsilon running, and want all editing requests from other
programs to be routed to the existing session. You can set that up with Epsilon by setting

194 CHAPTER 5. ALPHABETICAL COMMAND LIST

EDITOR toepsilon -wait. The external program will run a second copy of Epsilon (the
client), which will pass the name of the file to be edited to the existing Epsilon session (the
server), and wait for the server before continuing.

When you’ve finished editing the passed file, save it, and then use theresume-client command
to notify the client instance of Epsilon that the editing job is done, and it should exit.

retag-files Tag all files again.

This command retags all files in mentioned in the current tag file.

reverse-incremental-search Ctrl-R Incremental search backwards.

This command startsincremental-search in reverse.

reverse-regex-search Ctrl-Alt-R Search for a string before point.

This command prompts for a regular expression, then positions point before the first match of
that string before point. If no such match exists, a message appears in the echo area.

reverse-replace Interactively replace strings, moving backward.

This command behaves likequery-replace, but searches backward through the buffer for text
to replace, instead of forward. It positions point before each occurrence of the old string, and
you may select whether or not to replace it. With a numeric argument, the command will match
only complete words.

reverse-search-again Search backward for the same search string.

reverse-sort-buffer Reverse sort the current buffer.

This command asks for the name of a buffer and fills it with a copy of the current buffer reverse
sorted by lines. If you specify a numeric argument ofn, the command will ignore the firstn
columns on each line when comparing lines.

reverse-sort-region Reverse sort part of the buffer in place.

This command reverse sorts in place the lines of the current buffer appearing between point and
mark. If you specify a numeric argument ofn, the command will ignore the firstn columns on
each line when comparing lines.

reverse-string-search Reverse search in non-incremental mode.

This command starts a reverse search in non-incremental mode. It functions like starting a
reverse-incremental-search, then disabling incremental searching with Ctrl-O.

revert-file Read the current file into this buffer again.

Epsilon replaces the contents of the current buffer with the contents of the current file on disk.
If the current buffer has unsaved changes, Epsilon asks if you want to discard the changes by
reading the file.

195

save-all-buffers Ctrl-X S Save every buffer that contains a file.

This command will save all modified buffers except those that do not have files associated with
them. If it encounters some sort of error while saving the file, this command displays the error
message, and aborts any running keyboard macros.

save-file Ctrl-X Ctrl-S Save the buffer to its file.

This command writes the contents of the current buffer to its file. If the current buffer does not
have an associated file, Epsilon asks for a file name. If it encounters some sort of problem (like
no more disk space), an appropriate error message appears in the echo area. Otherwise, Epsilon
displays the file name in the echo area. To explicitly write the contents of the buffer to a file
whose name you specify, use thewrite-file command.

scroll-down Alt-Z Scroll the buffer contents down.

This command scrolls the contents of the current window down one line, and adjusts point if
necessary to keep it in the window.

scroll-left Alt-f Stop wrapping, then scroll the buffer
contents to the left.

This command first causes Epsilon to scroll long lines. Subsequently, it scrolls the buffer
contents to the left by one column. If you prefix the command with a numeric argument, the
command enables scrolling, then scrolls the buffer contents that many columns to the left. The
command adjusts point if necessary to stay within the displayed section of the buffer.

scroll-right Alt-g Scroll the buffer contents to the right, or wrap lines.

This command scrolls the buffer contents to the right by one column, if possible. If not
possible, this command causes Epsilon to switch to wrapping long lines. This command adjusts
point if necessary to stay within the displayed section of the buffer.

scroll-up Ctrl-Z Scroll the buffer contents up.

This command scrolls the contents of the current window up by one line, then adjusts point if
necessary to keep it in the window.

search-again Brief: Shift-F5 Repeat the last search in the same direction.

This command searches again for the last text you searched for, in the same direction as before.

search-all-help-files Look for a keyword in a list of help files.

This command searches for a keyword in any one of a list of help files. If you highlight a
keyword first, Epsilon will look for help on the highlighted text. Otherwise, Epsilon will display
a list of possible keywords.

Before you can use this command, you should use theselect-help-files command to tell Epsilon
which help files it should search. You can also edit the file epswhlp.cnt to modify the list of help
files.

This command is only available in 32-bit Windows versions.

196 CHAPTER 5. ALPHABETICAL COMMAND LIST

select-buffer Ctrl-X B Display a buffer in the current window.

This command prompts for a buffer name. If a buffer with that name exists, the command
connects it to the current window. Otherwise, it creates a buffer with the indicated name, and
connects that to the current window. If you just presshEnteri to the prompt for a buffer, it
defaults to the last buffer associated with the current window. So, repeated Ctrl-X B’s will
generally switch back and forth between two buffers.

select-help-files Add installed help files to Epsilon’s menu.

You can set up Epsilon for Windows to search for help on a programming language construct
(like an API function or a C++ keyword) in a series of help files. First use this command to look
for some common help files that may be on your disk. It will prompt for a list of drive letters,
then show you the help files it found.

After you have an opportunity to edit the list of help files, the command then adds the help files
to Epsilon’s Help menu, to the context menu that the secondary mouse button displays, and to
the list of files searched by thesearch-all-help-files command on the Help menu. Edit the file
gui.mnu to further modify the contents of Epsilon’s menus.

When you select a help file from the menu after running this command, Epsilon will open that
help file. If you highlight a keyword first, Epsilon will look for help on the highlighted text.
Otherwise, Epsilon will display the help file’s table of contents or a list of keywords. (See the
winhelp-display-contents variable for details.)

select-tag-file Ctrl-X Alt-, Change to a different tag file.

This command prompts for a file name, then starts using the tags in that file instead of the ones
in the current tag file.

send-invisible Type a password in a telnet or process buffer.

This command prompts for a line of text, hiding what you type with*’s, and then sends it to the
telnet or concurrent process running in the current buffer. It arranges things so the password
isn’t recorded forshow-last-keys or in a command history. A numeric prefix argument makes
the command omit the newline sequence it includes by default after the line of text you enter.

set-abort-key Specify the key which interrupts commands.

You can set the abort key with theset-abort-key command. Pressing the abort key cancels any
currently executing keyboard macros. If you interrupt Epsilon while reading a file from disk or
writing a file to disk, it will ask you whether you want to abort or continue. You must set the
abort key to an unprefixed key.

set-any-variable Set even dangerous variables.

Like set-variable, this command prompts for the name of a variable, then for a new value.
Unlikeset-variable, however, this command lets you set even those internal variables that
may produce unexpected or undesired side-effects if you set them.

197

set-bookmark Alt-/ Remember the current editing position.

This command remembers the current buffer and position, so that you can easily return to it
later withjump-to-last-bookmark. Epsilon stores the last 10 bookmarks that you set with this
command. See alsoset-named-bookmark andjump-to-named-bookmark.

set-color Select new screen colors.

This command displays a map of possible screen color combinations. By moving the cursor,
you may select a color for each element on the screen, called a color class. The N and P keys
change from one color class to the next (or previous), and the arrow keys change the color of the
currently-selected color class.

Epsilon has several pre-configured sets of color classes. These are known as color schemes. Use
the F and B keys to select a color scheme. You can then fine-tune it using the above commands.
Or you can press D to define a brand-new color scheme based on the current one.

Once you’ve selected colors, you can make them permanent for the current editing session by
pressing the S key. (Use thewrite-state command to save the changes for future editing
sessions.) Or you can press T to try out the colors in a recursive editing session. Run the
exit-level command on Ctrl-x Ctrl-z to return to setting colors. If you decide you don’t like the
colors, you can cancel all your changes by pressing C.

You can use the mouse to select colors, too. Click on a name to select a color scheme or color
class. Click on a color to select it. Click on the capital letters in the help window to run those
commands (like S to set).

In Epsilon for Unix, when running as an X window manager program, theset-color command
is not used for setting colors, only for selecting a particular color scheme. To set colors in this
version, edit an EEL file like mycolors.e. Epsilon’s default color schemes are defined in the file
stdcolor.e.

Epsilon lets you choose one color scheme for non-GUI color displays, one for non-GUI mono
displays, and one for the GUI version, and remembers each choice separately. Using set-color
to pick a different color scheme only affects one of the three.

set-comment-column Ctrl-X ; Specify where comments go.

This command set the value of thecomment-column variable to the current column. With a
positive argument, it sets the variable based on the indentation of the previous comment in the
buffer. In that case, it also reindents any comment on the line.

With a negative argument, it doesn’t change the comment column, but runs thekill-comment
command to remove the line’s comment.

set-debug Enable or disable single-stepping
for a command or subroutine.

This command prompts you for the name of a command or subroutine, with completion. With
no numeric argument, this command toggles the debugging status for that function. With a
non-zero numeric argument, the command enables the debugging status. With a zero numeric
argument, it disables the debugging status.

Whenever Epsilon calls a function with debugging enabled, the Epsilon debugger starts, and
displays the function’s source code at the bottom of the screen. AhSpacei executes the next line
of the function, a G turns off debugging until the function returns, and ? shows all the
debugger’s commands. If you compile a function with the system switch (eel-sfilename), you
cannot use the debugger on it.

198 CHAPTER 5. ALPHABETICAL COMMAND LIST

set-dialog-font Select the font to use in Epsilon dialogs.

Use this command to select the font Epsilon uses in dialog windows (like the onebufed
displays). It sets the variablefont-dialog.

set-display-characters Select new screen characters.

Theset-display-characters command lets you alter the various characters that Epsilon uses to
construct its display. The command displays a matrix of possible characters, and guides you
through the selection process.

The first group specifies which graphic characters Epsilon should use to draw window borders.
It defines all the line-drawing characters needed for drawing four different styles of borders, and
all possible intersections of these.

The next group specifies which characters Epsilon uses to display various special characters like
hTabi or Control-E. For example, Epsilon usually displays a control character with theˆ
symbol. Set the appropriate character in this group to make Epsilon use a different character.
You can also make Epsilon display a special character at the end of each line, or change the
continuation character.

The following group defines the characters Epsilon uses to display window scroll bars. Epsilon
replaces the window’s selected border characters with characters from this group.

Epsilon uses the last group for its graphical mouse cursor. When Epsilon for DOS uses a
graphical mouse cursor, it must redefine the appearance of nine characters. By default, Epsilon
uses nine non-ASCII graphic characters, including some math symbols and some block graphic
characters. Set the characters in this group to alter the reserved characters Epsilon uses. As you
move the mouse around, the appearance of these characters will change. If you edit a binary file
with these characters in single-character graphic mode (where Epsilon displays the IBM
graphic characters for control and meta characters), you may wish to use a block mouse cursor
by settingmouse-graphic-cursor to 0, or starting with the-kc1 flag.

set-display-look Make the screen look like another editor.

This command makes Epsilon’s window decoration and screen appearance resemble that of
some other editor. It displays a menu of choices. You can select Epsilon’s original look, Brief’s
look, the look of the DOS Edit program (which is the same as the QBasic program), or the look
of Borland’s IDE.

set-file-name Brief: Alt-O Change the file name associated
with this buffer.

This command prompts for a new file name for the current buffer, and changes the file name
associated with the buffer. The next time you save the file, Epsilon will save it under the new
name.

set-fill-column Ctrl-X F Set the column at which filling occurs.

If you provide a numeric argument, the command sets the fill column for the current buffer to
that value. Otherwise, the command prompts you for a new fill column, with the point’s column
offered as a default. The fill column controls what auto fill mode and the filling commands
consider the right margin.

To set the default value for new buffers you create, use theset-variable command on F8 to set
the default value of themargin-right variable. (Or for C mode buffers, set the
c-fill-column variable.)

199

set-font Select a different font.

This command changes the font Epsilon uses, by displaying a font dialog box and letting you
pick a new font. It’s available under Windows and X.

set-line-translate Specify Epsilon’s line translation scheme.

The operating system uses the sequence of characters Return Newline to indicate the end of a
line. Epsilon normally changes this sequence to a single Newline when it reads in a file (by
removing all the Return characters). When it writes a file, it adds a Return before each Newline
character.

Epsilon automatically selects one of several other translation types when appropriate, based on
the contents of the file you edit (regular text, binary, Unix, or Macintosh). You can explicitly
override this if Epsilon guesses wrong by providing a numeric argument to a file reading
command likefind-file. Epsilon will then prompt for which translation scheme to use.

This command sets the desired translation method for the current buffer. It prompts for the
desired type of translation, and makes future file reads and writes in this buffer use that
translation. Epsilon will display “Binary”, “Unix”, “DOS”, or “Mac” in the mode line to
indicate any special translation in effect.

set-mark Ctrl-@ Set the mark to the current position.

Commands that operate on a region of the buffer use the mark and point to delimit the region.
This command sets the mark to the current value of point.

set-named-bookmark Ctrl-X / Name the current editing position.

This command prompts you for a letter, then associates that letter with a bookmark at the
current location. Subsequently, you can return to that location with the
jump-to-named-bookmark command. If you provide a digit instead of a letter, Epsilon sets
the appropriate temporary bookmark (0 refers to the last one, 1 to the one before that, and so
on). You can press ‘?’ to get a list of the currently defined bookmarks, along with the text that
contains the bookmarks. To select one, simply move to the desired bookmark and presshEnteri.

See alsoset-bookmark andjump-to-last-bookmark.

set-printer-font Select the font to use when printing.

Use this command to select the font Epsilon uses when printing. It sets the variable
font-printer.

set-show-graphic Enable or disable use of IBM
graphic characters.

By default, Epsilon displays most control characters by prefixing to them a caret, e.g., Control
C appears as “̂C”. It displays other characters, including national characters, with their graphic
symbol. Epsilon has four different modes for displaying all these characters.

In mode 0, Epsilon displays Meta characters (characters with the 8th bit on) by prefixing to
them a “M-”, e.g., Meta C appears as “M-C”. Epsilon display Control-meta characters by
prefixing to them “M-̂ ”, e.g., “M-ˆC”. Epsilon displays most control characters by prefixing to
them a caret, e.g., Control C appears as “ˆC”.

200 CHAPTER 5. ALPHABETICAL COMMAND LIST

In mode 1, all-graphic mode, Epsilon uses graphic characters to display all control characters
and meta characters (except for the few that have a special meaning, likehTabi or hNewlinei).

In mode 2, hex mode, Epsilon displays control and meta characters by their hexadecimal ASCII
values, with an “x” before them to indicate hex.

In mode 3, which is the default, Epsilon displays control characters as “ˆC”, and uses the
graphic symbol for other characters, as described above.

If you provide no numeric argument, this command cycles to the next mode in the above list. A
numeric argument of 0, 1, 2, or 3 selects the corresponding mode.

set-tab-size Set how many columns are between tab settings.

This command sets the number of spaces between tab stops for the current buffer. If given a
numeric argument, Epsilon sets the tab size to that number. Otherwise the command prompts
for the tab size. By default, Epsilon puts tab settings every 8 columns. Some language modes
like C mode default to a different setting; seec-tab-override and similarly-named
variables. This command will offer to set one of those too if appropriate.

set-unicode-encoding Make Epsilon use a different encoding when writing.

When you read a file encoded in Unicode UTF-16, Epsilon converts it to an 8-bit format as it’s
read. It performs the reverse conversion when you write the file. This command forces Epsilon
to use a particular encoding when saving the file. If you select a UTF-16 encoding, Epsilon
converts the 8-bit buffer to UTF-16 when writing. If you select raw/UTF-8, Epsilon does no
conversion when you save the file.

set-variable F8 Set any EEL variable.

This command prompts for the name of a variable and a new value for that variable. This
command cannot set variables with complicated types involving structures or pointers. After
setting the variable, Epsilon shows the new value usingshow-variable.

If you specify a buffer-specific or window-specific variable, Epsilon uses the numeric argument
to determine whether to set the value for the current buffer or window (zero numeric argument),
the default value (negative numeric argument), or both (positive numeric argument). If you
provide no numeric argument, Epsilon asks which of these values to set.

set-video Alt-F5 Change to a particular number of lines or columns.

This command asks for a screen mode of the form 80x25, then tries to put the display in that
mode. Typing? shows the available modes. (DOS, OS/2 only)

set-want-backup-file Brief: Ctrl-W Turn backup files on or off in this buffer.

This command toggles whether or not Epsilon makes a backup file each time you save the
current buffer.

shell-mode Set up for editing shell scripts.

This command puts the current buffer in a mode suitable for editing Unix shell scripts and
similar files.

201

show-bindings F5, F1 B Find a key bound to a command.

The command prompts for a command name, then displays a message telling which keys, if
any, run that command.

show-connections Ctrl-Alt-C Show all Internet connection buffers.

This command lists all active Telnet, FTP, and similar Internet activities and buffers. You can
select a buffer and presshEnteri to switch to it, or presshEscapei to remain in the current buffer.

show-last-keys F1 L Display recently typed keys.

This command pops up a window that displays the last 60 keystrokes you typed.

show-matching-delimiter Insert character and show match.

This command first invokesnormal-character to insert the key that invoked it, then shows the
delimiter character matching this one usingfind-delimiter. Some people like to bind this
command to keys such as “)” or “g”.

show-menu Alt-F2 Display a menu of commands.

This command displays a menu of commands and lets you choose one. Use the arrow keys to
navigate through the menu. Letter keys move to the next command in the current column
beginning with that letter. PresshEnteri to execute the highlighted command, or click on a
command with the mouse. Press Ctrl-G orhEsci to exit from the menu.

show-point Ctrl-X = Show information about point.

This command displays the column number, value of point, and size of the buffer, as well as the
ASCII, decimal, and hex codes of the character after point. In Unicode UTF-8 buffers, it
displays the numeric code of the Unicode character at or around point.

The file may occupy more space on disk than the buffer size indicates, due to the line translation
scheme that Epsilon uses when reading and writing files, or other translations. Use the
count-lines command, bound to Ctrl-X L, to get the exact number of bytes the buffer would
occupy on disk.

show-standard-bitmaps Display available icons for the tool bar.

You can use this function to see some of the icons that may appear on Epsilon’s tool bar (32-bit
Windows GUI version only). It’s useful when modifying the contents of the tool bar.

show-variable Ctrl-F8 Display the value of an EEL variable.

This command prompts for the name of a variable and displays its value in the echo area. This
command cannot show variables with complicated types involving structures or pointers. If the
variable can have a different value for each buffer or window (buffer-specific or
window-specific), this command uses its numeric argument or asks the user in the same fashion
asset-variable.

202 CHAPTER 5. ALPHABETICAL COMMAND LIST

show-version F1 V Display Epsilon’s version number.

This command displays Epsilon’s version number in the echo area. Epsilon automatically
invokes this command at startup.

show-view-bitmaps Display available icons for the tool bar.

You can use this function to see some of the icons that may appear on Epsilon’s tool bar (32-bit
Windows GUI version only). It’s useful when modifying the contents of the tool bar.

shrink-window Ctrl-hPgDni Shrink the current window by one line.

If possible, the mode line of the window on top of the current window moves down. Otherwise,
the current window’s mode line moves up. This command has no effect if it would make the
current window smaller than two lines, counting the mode line.

shrink-window-horizontally Alt- hPgDni Shrink the current window by one column.

If possible, the left boundary of the current window moves to the right by one column.
Otherwise, the right boundary moves to the left by one column. This command has no effect if
it would make the window smaller than one character wide.

shrink-window-interactively Ctrl-X – Use arrow keys to resize a window.

This command lets you interactively change the size of the current window. After you invoke
the command, use the arrow keys to point to a window border. The indicated border moves in a
direction so as to make the current window smaller. Keep pressing arrow keys to move window
borders. To switch from shrinking to enlarging, press the minus key. Thereafter, the arrow keys
cause the window border to move in a direction so as to enlarge the window. When the window
looks right, presshEnteri to leave the command.

sort-buffer Sort the current buffer.

This command asks for the name of a buffer and fills it with a copy of the current buffer sorted
by lines. If you specify a numeric argument ofn, the command will compare lines starting at
columnn.

sort-region Sort part of the buffer in place.

This command sorts in place the lines of the current buffer appearing between point and mark.
If you specify a numeric argument ofn, the command will ignore the firstn columns on each
line when comparing lines.

sort-tags Sort the list of tags manually.

By default, Epsilon sorts the tag list whenever it needs to display a list of tag names for you to
choose from. Instead, you can set thewant-sorted-tags variable to 0, and sort the tags
manually, whenever you want, using this command.

203

split-window Ctrl-X 2 Split the current window in two.

This command splits the current window into two windows, one on top of the other, occupying
the same total space. Nothing happens if either resulting window would have fewer than two
lines of height (counting the mode line).

split-window-vertically Ctrl-X 5 Split the current window in two.

This command splits the current window into two windows, one beside the other, occupying the
same total space. Nothing happens if either resulting window would have fewer than one
character of width.

standard-toolbar Display Epsilon’s normal tool bar.

Epsilon calls this function to display its tool bar (32-bit Windows GUI version only). By
redefining the function, you can change what appears on the tool bar.

start-kbd-macro Ctrl-X (Start defining a keyboard macro.

After you invoke this command, everything you type executes normally, but it also becomes
part of an accumulating keyboard macro. The macro definition ends when you invoke the
end-kbd-macro command.

start-process Ctrl-X Ctrl-M Invoke a concurrent command processor.

You can create a concurrent subprocess with Epsilon. Thestart-process command shows the
“Process” buffer in the current window, and starts a command processor running in it. Epsilon
will capture the output of commands that you run in the window, and insert that output into the
process buffer. When the process reads input from its standard input, Epsilon will give it the
characters that you insert at the end of the buffer. You can move to other windows or buffers
and issue Epsilon commands during the execution of a concurrent process.

With a numeric argument, thestart-process command will create an additional concurrent
process (in versions of Epsilon that support this). Thestop-process command on Ctrl-C Ctrl-C
will stop a running program, just as Ctrl-C would outside of Epsilon. Under DOS, the
stop-process command will not take effect until the program’s next DOS call, exclusive of
console input or output. You may generate an end-of-file for a program reading from the
standard input by inserting a Control-Z character (quoted with Ctrl-Q) on a line by itself, at the
end of the buffer. (Use Ctrl-Q Ctrl-DhEnteri for Unix.)

Programs invoked with this command should not do any cursor positioning or graphics. We
provide the concurrent process facility primarily to let you run programs like compilers, linkers,
assemblers, filters, etc.

On some operating systems, Epsilon will let you run only one other program at a time. If you
exit Epsilon with a concurrent process running, Epsilon kills the concurrent process, except
under DOS. In the DOS version, you cannot have a program running concurrently when you
exit Epsilon. To stop a command processor, use the command “exit”. Epsilon will then say
“Exited”, and you can leave Epsilon, or start another process.

204 CHAPTER 5. ALPHABETICAL COMMAND LIST

stop-process Ctrl-C Ctrl-C Abort the concurrent process.

For DOS, this command makes a concurrent process (seestart-process) believe that you typed
Control-Break. You cannot stop in this manner programs which do no DOS calls other than
console input or output. With a numeric argument, however, the command stops the process in a
different way, and can stop any program but causes some (including early versions of the
command processor) to crash the system. Use this command with a numeric argument only
after you’ve tried it without one.

In other environments, this command makes a concurrent process believe you typed
Control-Break (or, for Unix, the interrupt key), as in DOS, but without the restrictions and
complications described above.

string-search Start a search in non-incremental mode.

This command starts a search in non-incremental mode. It works like starting an incremental
search with theincremental-search command, then disabling incremental mode with Ctrl-O.

suspend-epsilon Suspend or minimize Epsilon for Unix.

This command suspends Epsilon for Unix, returning control to the shell that launched it. Use
the shell’s fg command to resume Epsilon. When Epsilon runs as an X program, it instead
minimizes Epsilon’s window.

switch-buffers Ctrl-hTabi Switch to another buffer.

This command switches to the buffer you last used. If you presshTabi again while still holding
down Ctrl, you can switch to still older buffers. Hold down Shift as well as Ctrl to move in the
reverse order. You can press Ctrl-G to abort and return to the original buffer.

switch-windows Switch to the next or previous window.

This command switches to the next window. Hold down shift while pressing its key, and it will
switch to the previous window.

tabify-buffer Replace spaces in buffer with the right number of tabs.

This command removes all sequences of spaces and tabs throughout the buffer. In their place, it
inserts a sequence of tabs followed by a sequence of spaces to reach the same column that the
prior whitespace did.

tabify-region Ctrl-X Ctrl-Alt-I Convert whitespace to tabs.

Between point and mark, this command removes all sequences of spaces and tabs. In their
place, it inserts a sequence of tabs followed by a sequence of spaces to reach the same column
that the prior whitespace did.

tag-files Ctrl-X Alt-. Locate all tags in the given files.

This command prompts for a file name or file pattern. In each file, it locates each subroutine or
function and makes a tag for it, so commands likegoto-tag can find it later. You can use
extended file patterns to tag files in multiple directories.

With a prefix numeric argument, this command tags function declarations as well as function
definitions, and external variable declarations as well as variable definitions. Use a numeric
argument if you have an#include file for a package but no source file, and you want tag
references to a function in the package to go to the#include file.

205

telnet Connect to a remote computer and run a shell.

Thetelnet command lets you connect to a command shell on a remote computer. It puts you in
a buffer that works much like the Epsilon process buffer, except the commands you type are
executed on the remote machine. Provide a numeric prefix argument, or use the syntax
hostname:port for the host name, and telnet will connect on the specified port instead of
the default port. You can either use thetelnet command directly, or specify a telnet: URL to
find-file. (Epsilon ignores any username or password included in the URL.)

telnet-mode Connect to a remote computer and send commands.

In Telnet mode, the key Ctrl-C Ctrl-C immediately sends an interrupt signal to the remote
machine, and Ctrl-O immediately sends a Ctrl-O character (which typically makes the remote
machine discard pending output).

tex-boldface TeX mode: Alt-Shift-B Make boldface text in TeX mode.

This command inserts the TeX command to make a section of text bold. You can highlight a
block of text first and Epsilon will make the text bold, or you can use the command and then
type the text to be bold.

tex-center-line TeX mode: Alt-S Create a centered line of text
in TeX mode.

This command inserts the TeX or LaTeX command to center a line of text. (See the variable
tex-force-latex.)

tex-close-environment TeX mode: Alt-Shift-Z Insert annend for the lastnbegin.

This command searches backwards for the lastnbeginfenvg directive without a matching
nendfenvg directive. Then it inserts the correctnendfenvg directive at point.

tex-display-math TeX mode:n[Insertn] when you typen[.

When you typen[, this command insertsn] for you.

tex-environment TeX mode: Alt-Shift-E Create the specified
LaTeX environment.

This command prompts for the name of a LaTeX environment, then inserts LaTeXnbeginfenvg
andnendfenvg commands for that environment. You can highlight a block of text first and
Epsilon will put the environment commands around it, or you can run this command and then
type the text to go in that environment. Press ? to select an environment from a list. (The list of
environments comes from the filelatex.env, which you can edit.)

tex-footnote TeX mode: Alt-Shift-F Make a footnote in TeX mode.

This command inserts the TeX command to mark a section of text as a footnote. You can
highlight a block of text first and Epsilon will make it a footnote, or you can use the command
and then type the footnote.

206 CHAPTER 5. ALPHABETICAL COMMAND LIST

tex-force-quote TeX mode: Alt-” Insert a" character.

This command inserts a true" character. Normally typing" itself inserts either a‘‘ or a’’
sequence.

tex-inline-math TeX mode:n(Insertn) when you typen(.

When you typen(, this command insertsn) for you.

tex-italic TeX mode: Alt-i Make italic text in TeX mode.

This command inserts the TeX command to make a section of text italic. You can highlight a
block of text first and Epsilon will make the text italic, or you can use the command and then
type the italic text.

tex-left-brace TeX mode:f Insertg when you typef.

This command inserts a matched pair of braces. After an character, it inserts an before the
closing brace. But if you type this key just before a non-whitespace character, it inserts only af.
This makes it easier to surround existing text with braces.

tex-math-escape TeX mode: $ Insert $ when you type $.

This command inserts a matched pair of $ characters (except after an character).

tex-mode Set up for editing TeX or LaTeX documents.

This command sets up Epsilon for editing TeX or LaTeX documents. Keys in TeX mode
include Alt-i for italic text, Alt-Shift-I for slanted text, Alt-Shift-T for typewriter, Alt-Shift-B
for boldface, Alt-Shift-C for small caps, Alt-Shift-F for a footnote, and Alt-s for a centered line.
Alt-Shift-E prompts for the name of a LaTeX environment, then insertsnbeginfenvg and
nendfenvg lines.

For all these commands, you can highlight a block of text first and Epsilon will make the text
italic, slanted, etc. or you can use the command and then type the text to be italic, slanted, etc.

The keys ‘f’ and ‘$’ insert matched pairs of characters (eitherfg or $$), the keyshCommai and
hPeriodi remove a preceding italic correctionn/, the" key inserts the appropriate kind of
doublequote sequence like‘‘ or ’’, and Alt-" inserts an actual" character.

tex-quote TeX mode: ” Insert the right TeX doublequote sequence.

This command inserts the appropriate doublequote sequence like‘‘ or ’’, based on the
preceding characters. Alt-" inserts an actual" character.

tex-rm-correction TeX mode:hCommai, hDoti Remove an italic correction.

This command removes any nearby italic correctionn/ when appropriate.

tex-slant TeX mode: Alt-Shift-I Make slanted text in TeX mode.

This command inserts the TeX command to make a section of text slanted. You can highlight a
block of text first and Epsilon will make the text slanted, or you can use the command and then
type the text to be slanted.

207

tex-small-caps TeX mode: Alt-Shift-C Make small caps text in TeX mode.

This command inserts the TeX command to set a section of text in small caps. You can
highlight a block of text first and Epsilon will put the text in small caps, or you can use the
command and then type the text.

tex-typewriter TeX mode: Alt-Shift-T Use a typewriter font in TeX mode.

This command inserts the TeX command to set a section of text in a typewriter font. You can
highlight a block of text first and Epsilon will set that text in a typewriter font, or you can use
the command and then type the text.

to-indentation Alt-M Move point to the end of the indentation.

This command positions point before the first non-whitespace character in the line.

to-left-edge Brief: Shift-hHomei Move to the left edge of the window.

This command moves point to the left edge of the current window.

to-right-edge Brief: Shift-hEndi Move to the right edge of the window.

This command moves point to the right edge of the current window.

toggle-borders Brief: Alt-F1 Remove borders around windows,
use color to distinguish them.

This command removes the borders around ordinary tiled windows, letting the text regions
occupy more of the screen. If the windows have no borders already, this command restores
them. When this command reenables borders, it does so according to the settings of the
variablesborder-left, border-top, and so forth. Epsilon displays a border only if the
appropriate variable has been set, andtoggle-borders hasn’t disabled all borders.

When there are no window borders, Epsilon provides each window with its own separate color
scheme, in place of the single one selected byset-color. (You can still useset-color to set the
individual colors in a color scheme, but Epsilon doesn’t care which particular color scheme you
select when it displays the contents of individual windows. It does use the selected color
scheme for other parts of the screen like the echo area or screen border.)

The color schemes Epsilon uses for borderless windows have names like “window-black”,
“window-blue” and so forth. Epsilon assigns them to windows in the same order they appear in
set-color. You can remove one from consideration using thedelete-name command, or create a
new one usingset-color (give it a name starting with “window-”).

toggle-menu-bar Toggle whether a permanent menu bar appears.

Add a menu bar at the top of the screen, moving windows down one line. If Epsilon already
displays a menu bar, remove it.

toggle-scroll-bar Toggle whether tiled windows have permanent scroll bars.

Put a scroll bar on the right edge of all tiled windows. If tiled windows already have scroll bars,
remove them.

208 CHAPTER 5. ALPHABETICAL COMMAND LIST

toggle-toolbar Turn the tool bar on or off.

The 32-bit Windows GUI versions of Epsilon can display a tool bar. Position the mouse over a
tool bar button for a moment and Epsilon will describe what it does. This command hides or
displays the tool bar.

transpose-characters Ctrl-T Swap the characters around point.

At the end of a line, the command switches the two previous characters. At the beginning of a
line, it switches the following two characters. Otherwise, it switches the characters before and
after point. If the current line has less than two characters, however, nothing happens. Point
never changes.

transpose-lines Ctrl-X Ctrl-T Swap the current and previous lines.

After the exchange, the command positions point between the two lines.

transpose-words Alt-T Swap the current and previous words.

The command leaves untouched the text between the words. After the exchange, the command
positions point between the two words.

tutorial This command shows Epsilon’s tutorial.

unbind-key Remove the binding from a key.

Theunbind-key command prompts for a key and then offers to rebind the key to the
normal-character command, or to remove any binding it may have. A key bound to
normal-character will self-insert; that’s how keys like ‘j’ are bound. A key with no binding at
all simply displays an error message.

undo F9 Undo the last buffer change or movement.

This command undoes the last change you made to the buffer. If repeated, it undoes earlier
changes. You may reinstate the changes withredo.

undo-changes Ctrl-F9 Undo, skipping over movement redo’s.

This command operates likeundo, except that it will automatically undo all changes to the
buffer that involve only movements of point, and stop just before a change of actual buffer
contents. When you invokeundo-changes, it performs anundo, then continues to undo
changes that consist only of movements to point.

unicode-convert-encoding Convert buffer to another Unicode encoding.

This command converts a buffer between various Unicode 8-bit and 16-bit encodings.

In the UTF-8 8-bit encoding, characters in the range 0–127 represent themselves. Sequences of
two to four bytes in the range 128–255 represent each character outside the range 0–127. In the
Latin 1 encoding, characters in the range 0–255 represent themselves, and no characters outside
that range may be represented.

209

In the 16-bit UTF-16 encoding, a two or four byte sequence represents each character, no matter
its range. (There are two variations, UTF-16 LE and UTF-16 BE, identical but for byte order.)

The command prompts for the type of conversion desired. It warns if any characters in the
buffer cannot be represented in the new format (or if the buffer contains encoding errors), and
positions to the first such problem if you choose not to perform the conversion.

Under Windows, Epsilon first performs DOS/Windows line translation before conversion to
UTF-16, unless the buffer contains non-text binary data (nulls or Return characters). Each
Newline character will be converted to a Return, Newline sequence. It performs the opposite
line translation when converting from UTF-16. Under Unix, Epsilon doesn’t perform any
translation by default. Provide a zero prefix argument to disable line terminator conversion;
provide a nonzero prefix argument to force it.

uniq Remove extra copies of duplicate lines.

The command goes through the current buffer and looks for adjacent identical lines, deleting
the duplicate copies of each repeated line and leaving just one. It doesn’t modify any lines that
only occur once. If thecase-fold variable is nonzero, lines that only differ by case will be
considered identical. Also see thekeep-unique-lines andkeep-duplicate-lines command.

untabify-buffer Replace tabs in the buffer with spaces.

This command replaces each tab in the buffer by the number of spaces required to fill the same
number of columns.

untabify-region Ctrl-X Alt-I Convert tabs to spaces
between point and mark.

This command replaces each tab between point and mark by the number of spaces required to
fill the same number of columns.

untag-files Discard tags for one or more files.

This command constructs a list of all files represented in the current tag file. You can edit the
list in a recursive edit. When you exit the recursive edit with theexit-level command on Ctrl-X
Ctrl-Z, any files you’ve removed from the list will be untagged.

up-line Ctrl-P Point moves to the previous line.

The command tries to keep point near the same horizontal position.

uppercase-word Alt-U Make the current word upper case.

Point travels forward through the buffer as withforward-word, changing all the letters it
encounters to upper case. If the current buffer contains a highlighted region, Epsilon instead
changes all the letters in the region to upper case, leaving point unchanged.

vbasic-mode Set up for editing Visual Basic.

This command puts the current buffer in a mode suitable for editing Visual Basic or similar
languages (like VBscript or VBA). Syntax highlighting, indenting, tagging, delimiter
highlighting and commenting commands are all provided.

210 CHAPTER 5. ALPHABETICAL COMMAND LIST

view-lugaru-web-site Connect to Lugaru’s web site.

This command starts your web browser and points it to Lugaru’s web site. It only works under
Epsilon for Windows on systems with more recent web browsers, and in Epsilon for Unix under
X.

view-process Shift-F3 Pop up a window of process output;
pick an error msg.

This command pops up a window showing the process buffer, including all compiler command
lines and any resulting error messages. You can move to any line and presshEnteri, and Epsilon
will immediately locate the error message on the current line (or a following line) and move to
the file and line number in error.

view-web-site Pass a URL to a browser.

This command prompts for a URL, scanning the current buffer for a suitable default. Then it
starts your web browser and passes the URL to it. It only works under Epsilon for Windows on
systems with more recent web browsers, and in Epsilon for Unix under X.

visit-file Ctrl-X Ctrl-V Read a file into the current buffer.

This command prompts for a file name, then reads that file into the current buffer, and positions
point to the beginning. If no file with the given name exists, it creates a blank buffer. In either
case, the command discards the old buffer contents.

Before discarding modified buffers, the command asks if you want to save the current buffer
contents. With a numeric argument, it asks no questions. This comes in handy for reverting the
buffer to the contents of its file.

visual-diff Use color-coding to compare two buffers.

Thevisual-diff command is like thediff command but uses colors to show differences. It
compares the current buffer with the one shown in the next window on the screen, and
constructs a new buffer that contains all the lines of the two buffers. Lines from the first buffer
that don’t appear in the second are displayed with a red background. Lines in the second buffer
that don’t appear in the first have a yellow background. Lines that are the same in both buffers
are colored normally.

visual-diff-mode Use color-coding to compare two buffers.

Thevisual-diff command creates a buffer in visual diff mode that shows the changes between
one buffer and another. Added lines are shown with a yellow background, deleted lines are
shown with a red background, and common lines are colored as in the original buffers.

In a visual-diff buffer, the keys Alt-hDowni and Alt-] move to the start of the next changed or
common section. The keys Alt-hUpi and Alt-[move to the previous one.

wall-chart Make a chart of the current key bindings.

This command creates a wall chart consisting of all bound keys and their current bindings. You
can print it using theprint-buffer command.

211

what-is F6, F1 Q Find a command bound to a key.

The command prompts for a key, then displays a message telling what command runs when you
press that key.

widen-buffer Restore normal access to the current buffer.

This command gives you normal access to the buffer. Use it after anarrow-to-region
command to cancel the effect of that command.

write-file Ctrl-X Ctrl-W Write the buffer to a file.

This command prompts for a file name, then writes the buffer to a file with that name. The file
associated with the current buffer becomes that file, so subsequent uses of thesave-file
command will write the buffer to that file without asking for a file name. See alsocopy-to-file
andsave-file.

write-files-and-exit Brief: Ctrl-X Save modified files, then leave Epsilon.

This command saves all modified buffers except those that do not have files associated with
them. If there are no errors, it then exits Epsilon.

write-region Ctrl-X W Write the region to the specified file.

The command prompts for a file name, then writes the characters between point and mark to
that file.

write-session Record the current file & window configuration.

The newwrite-session command writes a session file, detailing the files you’re currently
editing, the window configuration, default search strings, and so forth. By default, Epsilon
writes a session file automatically whenever you exit, but you can use this command if you
prefer to save and restore sessions manually.

write-state Ctrl-F3 Save all commands and variables
for later automatic loading.

This command prompts for a file name. It alters any extension to “.sta”, and then loads the
documentation file and records the position of each of the definitions in it (to speed up the help
system). Epsilon then writes all its commands, variables, and bindings to the named file.
Restarting Epsilon with the command “epsilon-sfilename”, where “filename” denotes the
name of the state file, makes Epsilon use the commands in that file. Epsilon normally uses the
state file “epsilon.sta”.

yank Ctrl-Y Insert the contents of a kill buffer.

This command inserts the contents of the last kill buffer at point, then positions point after the
insertion, and the mark before it. In some modes this command then reindents the inserted text.
See thereindent-after-yank variable. If another program has placed text on the system
clipboard, this command will use it instead of the kill buffer, except in keyboard macros. See
theclipboard-access variable for more information.

If the kill buffer contains a rectangle, the command inserts it at the current column, on the
current and successive lines. It shifts existing text to the right, unless you’ve enabled overwrite
mode, in which case the block replaces any existing text in those columns.

212 CHAPTER 5. ALPHABETICAL COMMAND LIST

yank-pop Alt-Y Cycle through previous kill buffers.

This command replaces the just-yanked kill buffer with the contents of the previous kill buffer.
It only works after ayank or yank-pop command.

zoom-window Ctrl-X Z Zoom in on the current window.

This command, like theone-window command, makes the current window occupy the entire
screen. But it also saves away the old window configuration. Later, when you invoke
zoom-window again, it restores the old window configuration.

213

Chapter 6

Variables

215

This chapter lists all of Epsilon’s user-settable variables, with the exception of some variables used only
within a particular subsystem, and not meant to be set by the user.

The variables typically modified to customize Epsilon are marked “Preference”. Be careful when
setting variables marked “System”. They should generally be set only via the appropriate EEL commands,
not directly by the user. By default, theset-variable andedit-variables commands omit system variables.

abort-file-matching Default:0

Epsilon’s file matching primitives respond to the abort key based on the value of this variable. If
0, they ignore the abort key. If1, they abort out of the calling function. If2, they return an error
code. EEL functions that are prepared to handle aborting should set this variable.

abort-key System Default:7 (Ctrl-G)

Epsilon aborts the current command when you press the key whose value isabort-key. To
disable the abort key, setabort-key to -1. By default, theabort-key variable is set to
Control-G. For correct behavior, use theset-abort-key command to set this variable.

abort-searching Default:-1

If the user presses the abort key during searching, Epsilon’s behavior depends upon the value of
theabort-searching variable. If it’s0, the key is ignored and the search continues. If it’s
ABORT_JUMP (-1, the default), Epsilon aborts the search and jumps by calling the
check_abort() primitive. If it’s ABORT_ERROR (-2), Epsilon aborts the search and returns
the valueABORT_ERROR. Thesearch(), re_search(), re_match(), and
buffer_sort() primitives all use theabort-searching variable to control aborting.

all-must-build-mode Default:0

Epsilon “precomputes” most of the text of each mode line, so it doesn’t have to figure out what
to write each time it updates the screen. Setting theall-must-build-mode variable
nonzero warns Epsilon that all mode lines must be rebuilt. Epsilon resets the variable to zero
after every screen update.

already-made-backup System Buffer-specific Default:0

Epsilon sets this buffer-specific variable nonzero whenever it saves a file and makes a backup.

alt-invokes-menu Preference Default:0

In a typical Windows program, pressing and releasing the Alt key without pressing any other
key moves to the menu bar, highlighting its first entry. Set this variable to1 if you want Epsilon
to do this. The variable has no effect on what happens when you press Alt and then press
another key before releasing Alt: this will run whatever command is bound to that key. If you
want Alt-E, for example, to display the Edit menu, you can bind the command
invoke-windows-menu to it.

anon-ftp-password Preference Default:
"-EpsilonUser@unknown.host"

When Epsilon uses FTP to read or write files to a computer on the Internet, and logs in
anonymously, it provides the contents of this variable as a password. (Anonymous FTP sites ask
that you provide your email address as a password when you log in anonymously.) You can set
this to your email address.

216 CHAPTER 6. VARIABLES

argc System Default: varies

Theargc variable contains the number of words on Epsilon’s command line, after Epsilon
removes several flags it processes internally. The count includes the command name “epsilon”
at the start of the command line.

auto-fill-indents Preference Buffer-specific Default:1

When Epsilon automatically inserts new lines for you in auto fill mode, it indents new lines (by
calling the indenter function for the current buffer) only if the buffer-specific variable
auto-fill-indents has a nonzero value.

auto-indent Preference Buffer-specific Default:0

Epsilon can automatically indent for you when you presshEnteri. Setting the buffer-specific
variableauto-indent nonzero makes Epsilon do this. The way Epsilon indents depends on
the current mode. For example, C mode knows how to indent for C programs. In Epsilon’s
default mode, fundamental mode, Epsilon indents likeindent-previous if you set
auto-indent nonzero.

auto-menu-bar Preference Default:1

If nonzero, moving the mouse past the top edge of the screen makes Epsilon display the menu
bar. (DOS, OS/2 only)

auto-read-changed-file Preference Buffer-specific Default:0

If nonzero, when Epsilon notices that a file on disk has a different timestamp than the file in
memory, it automatically reads the new version of the file and displays a message to that effect.
Epsilon won’t do this if you’ve edited the copy of the file in memory, or if the file’s disk size is
substantially smaller than it was. In those cases, Epsilon asks what to do. Also see the variable
want-warn.

auto-save-count Preference Default:500

Whenwant-auto-save is nonzero, Epsilon automatically saves a copy of each unsaved file
everyauto-save-count keystrokes.

auto-save-name Preference Default:"%p%b.asv"

Whenwant-auto-save is nonzero, Epsilon regularly saves a copy of each unsaved file.
This variable contains a template which determines how Epsilon chooses the file name for the
autosaved file. Epsilon substitutes pieces of the original file name for codes in the template, as
follows (examples are for the file c:ndosnread.me):

%p The original file’s path (c:ndosn).
%b The base part of the original file name (read).
%e The extension of the original file name (.me).
%f The full name of the original file (c:ndosnread.me).
%r The name of the file relative to the current directory. (read.me if the current

directory is c:ndos, dosnread.me if the current directory is c:n, otherwise
c:ndosnread.me).

217

%x The full pathname of the directory containing the Epsilon executable.
%X The full pathname of the directory containing the Epsilon executable, after

converting all Windows long file names to their equivalent short name aliases.

By default, Epsilon writes to a file with the same name and directory but extension “.asv”.

auto-show-adjacent-delimiter Preference Default:3

When the cursor is on a delimiter character in various language modes, Epsilon highlights the
character and its match. Epsilon can also highlight both characters when the cursor is adjacent.
If this variable is 1, Epsilon highlights if the cursor is just past a right-hand delimiter. If 2,
Epsilon highlights if the cursor is just past a left-hand delimiter. If 3, Epsilon does both, and if
0, Epsilon does neither.

auto-show-c-delimiters Preference Default:1

When the cursor is on a brace, bracket, or parenthesis in C mode, Epsilon will try to locate its
matching brace, bracket, or parenthesis, and highlight them both. If the current character has no
match, Epsilon will not highlight it. Set this variable to zero to disable this feature.

auto-show-delimiter-delay System Default:5

Epsilon uses this variable internally to decide how long to wait before searching and
highlighting matching delimiters.

auto-show-gams-delimiters Preference Default:1

When the cursor is on a bracket or parenthesis in GAMS mode, Epsilon will try to locate its
matching bracket or parenthesis, and highlight them both. If the current character has no match,
Epsilon will not highlight it. Set this variable to zero to disable this feature.

auto-show-html-delimiters Preference Default:1

When the cursor is on a< or > character in HTML mode, Epsilon will try to locate its matching
> or < and highlight them both. If the current character has no match, Epsilon will not highlight
it. Set this variable to zero to disable this feature.

auto-show-matching-characters System Buffer-specific Default: none

Epsilon’s auto-show-delimiters feature stores the set of delimiter characters for the current
mode in this variable.

auto-show-perl-delimiters Preference Default:1

When the cursor is on a brace, bracket, or parenthesis in Perl mode, Epsilon will try to locate its
matching brace, bracket, or parenthesis, and highlight them both. If the current character has no
match, Epsilon will not highlight it. Set this variable to zero to disable this feature.

auto-show-postscript-delimiters Preference Default:1

When the cursor is on a bracket or parenthesis in PostScript mode, Epsilon will try to locate its
matching brace, bracket or parenthesis, and highlight them both. If the current character has no
match, Epsilon will not highlight it. Set this variable to zero to disable this feature.

218 CHAPTER 6. VARIABLES

auto-show-python-delimiters Preference Default:1

When the cursor is on a brace, bracket, or parenthesis in Python mode, Epsilon will try to locate
its matching brace, bracket or parenthesis, and highlight them both. If the current character has
no match, Epsilon will not highlight it. Set this variable to zero to disable this feature.

auto-show-shell-delimiters Preference Default:1

When the cursor is on a brace, bracket, or parenthesis in Shell mode, Epsilon will try to locate
its matching brace, bracket, or parenthesis, and highlight them both. If the current character has
no match, Epsilon will not highlight it. Set this variable to zero to disable this feature.

auto-show-tex-delimiters Preference Default:1

When the cursor is on a curly brace or square bracket character likef, g, [, or] in TeX mode,
Epsilon will try to locate its matching character and highlight them both. If the current character
has no match, Epsilon will not highlight it. Set this variable to zero to disable this feature.

auto-show-vbasic-delimiters Preference Default:1

When the cursor is on a brace, bracket, or parenthesis in Visual Basic mode, Epsilon will try to
locate its matching brace, bracket or parenthesis, and highlight them both. If the current
character has no match, Epsilon will not highlight it. Set this variable to zero to disable this
feature.

availmem Default: varies

For DOS, this variable holds the total amount of memory available to Epsilon. This includes the
space for a process. Under other operating systems, this value is simply a meaningless big
number.

avoid-bottom-lines Preference Default:1

This variable tells Epsilon how many screen lines at the bottom of the screen are reserved, and
may not contain tiled windows. By default, this variable is one, to make room for the echo area.

avoid-top-lines Preference Default:0

This variable tells Epsilon how many screen lines at the top of the screen are reserved, and may
not contain tiled windows. By default, this variable is zero, indicating that tiled windows reach
to the top of the screen. If you create a permanent menu bar, Epsilon sets this variable to one.

backup-name Preference Default:"%p%b.bak"

If you’ve setwant-backups nonzero, telling Epsilon to make a backup whenever it saves a
file, Epsilon uses this variable to construct the name of the backup file. The variable contains a
template, which Epsilon copies, substituting pieces of the original file for codes in the template,
as follows (examples are for the file c:ndosnread.me):

%p The original file’s path (c:ndosn).

%b The base part of the original file name (read).

219

%e The extension of the original file name (.me).
%f The full name of the original file (c:ndosnread.me).
%r The name of the file relative to the current directory. (read.me if the current

directory is c:ndos, dosnread.me if the current directory is c:n, otherwise
c:ndosnread.me).

%x The full pathname of the directory containing the Epsilon executable.
%X The full pathname of the directory containing the Epsilon executable, after

converting all Windows long file names to their equivalent short name aliases.

By default, Epsilon renames the old file so it has extension “.bak”.

beep-duration Preference Default:5

This variable specifies the duration of Epsilon’s warning beep, in hundredths of a second. If
zero, Epsilon uses a default beeping sound. Under Windows and Unix, setting the variable has
no effect.

beep-frequency Preference Default:370

This variable specifies the frequency of Epsilon’s warning beep in hertz. If zero, Epsilon instead
flashes the mode line of each window for a moment. Under Windows, setting the variable has
no effect. Under Unix, Epsilon will flash if the variable is zero, but won’t change the frequency.

bell-on-abort Preference Default:0

If nonzero, Epsilon will beep when you abort a command or press an unbound key.

bell-on-autosave-error Preference Default:1

If nonzero, Epsilon will beep when it can’t autosave a file.

bell-on-bad-key Preference Default:1

If nonzero, Epsilon will beep when you press an illegal option at a prompt.

bell-on-completion Preference Default:1

If nonzero, Epsilon will beep when it’s completing on command names, file names, or similar
things, and it can’t find any matches.

bell-on-date-warning Preference Default:1

If nonzero, Epsilon will beep when it puts up its warning that a file has been changed on disk.

bell-on-read-error Preference Default:1

If nonzero, Epsilon will beep when it gets an error reading a file.

bell-on-search Preference Default:1

If nonzero, Epsilon will beep when it can’t find the text you’re searching for.

220 CHAPTER 6. VARIABLES

bell-on-write-error Preference Default:1

If nonzero, Epsilon will beep when it gets an error writing a file.

border-bottom Preference Default:0

If nonzero, Epsilon puts a border on the bottom edges of tiled windows that touch the bottom of
the screen (or the echo area, if it’s at the bottom of the screen). If Epsilon is set to display a
mode line below each tiled window, it puts a border there too, regardless of this variable’s
setting. If you’ve run thetoggle-borders command to suppress borders entirely, you must run
that command again to reenable the borders.

border-inside Preference Default:1

If nonzero, Epsilon puts a vertical border between two side-by-side tiled windows. If you’ve run
thetoggle-borders command to suppress borders entirely, you must run that command again to
reenable the borders.

border-left Preference Default:0

If nonzero, Epsilon puts a border on the left edges of tiled windows that touch the left edge of
the screen. If you’ve run thetoggle-borders command to suppress borders entirely, you must
run that command again to reenable the borders.

border-right Preference Default:0

If nonzero, Epsilon puts a border on the right edges of tiled windows that touch the right edge
of the screen. If you’ve run thetoggle-borders command to suppress borders entirely, you must
run that command again to reenable the borders.

border-top Preference Default:0

If nonzero, Epsilon puts a border on the top edges of tiled windows that touch the top edge of
the screen. If nonzero, Epsilon puts a border on the top edges of tiled windows that touch the
top of the screen (or the echo area, if it’s at the top of the screen). If Epsilon is set to display a
mode line above each tiled window, it puts a border there too, regardless of this variable’s
setting. If you’ve run thetoggle-borders command to suppress borders entirely, you must run
that command again to reenable the borders.

buf-accessed System Buffer-specific Default: none

Epsilon uses this variable to remember which buffer was accessed most recently. Older buffers
have lower values. Each time you switch to a new buffer, Epsilon increments
buf-accessed-clock and stores it as the new buffer’s setting forbuf-accessed.

buf-accessed-clock System Default: none

Epsilon uses this variable to remember which buffer was accessed most recently. See
buf-accessed.

221

bufed-grouping Preference Default:0

Epsilon can subdivide the list of buffers displayed by the bufed command, and sort each group
separately. This was Epsilon’s behavior prior to version 8. First it listed buffers with associated
files. Then it listed buffers without files. Finally (and only if you invoked bufed with a numeric
argument), Epsilon would list “system” buffers. Set this variable to1 if you want Epsilon to
sort each group in the buffer list separately, as in previous versions. By default, Epsilon sorts all
groups together.

bufed-width Preference Default:50

This variable contains the width of the pop-up window that thebufed command creates.
(Epsilon for Windows doesn’t use this variable; instead drag a dialog’s border to resize it.)

buffer-not-saveable Buffer-specific Default:0

Some buffers like Telnet buffers have an associated file name but should never be saved to that
file name. This variable is set nonzero in such buffers.

bufname System Default:"startup"

This variable contains the name of the current buffer. Setting it in an EEL program switches to a
different buffer. If the indicated buffer does not exist, nothing happens. Use this method of
switching buffers only to temporarily switch to a new buffer; use theto_buffer() or
to_buffer_num() subroutines to change the buffer a window will display.

bufnum System Default: none

This variable contains the number of the current buffer. Setting it in an EEL program switches
to a different buffer. If the indicated buffer does not exist, nothing happens. Use this method of
switching buffers only to temporarily switch to a new buffer; use theto_buffer() or
to_buffer_num() subroutines to change the buffer a window will display.

build-first Window-specific Default:0

Epsilon normally displays each window line by line, omitting lines that have not changed.
When a command has moved point out of the window, Epsilon must reposition the display point
(the buffer position at which to start displaying text) to return point to the window. However,
Epsilon sometimes does not know that repositioning is required until it has displayed the entire
window. When it discovers that point is not in the window, Epsilon moves the display point to a
new position and immediately displays the window again. Certain commands which would
often cause this annoying behavior set thebuild-first variable nonzero to prevent it.

byte-extension Default:".b"

This variable holds the correct extension of bytecode files in this version of Epsilon.

c-access-spec-offset Preference Default:0

In C mode, Epsilon offsets the indentation of an access specifier (public:, private:, or
protected:) by the value of this variable.

222 CHAPTER 6. VARIABLES

c-align-contin-lines Preference Default:48

By default, the C indenter tries to align continuation lines under parentheses and other syntactic
items on prior lines. If Epsilon can’t find anything on prior lines to align with, or if aligning the
continuation line would make it start past columnc-align-contin-lines, Epsilon uses a
fixed indentation: two levels more than the original line, plus the value of the variable
c-contin-offset (normally zero).

Set this variable to zero if you don’t want Epsilon to ever try to align continuation lines under
syntactic features in previous lines. If zero, Epsilon indents continuation lines by one level
(normally one tab stop), plus the value of the variablec-contin-offset (which may be
negative).

c-align-extra-space Preference Default:2

When C mode indents a continuation line, it tries to line up text under previous syntactic
constructs. For instance, it may position text just after a(character on the previous line.
Sometimes (commonly with continuedif statements) this causes the continuation line to be
indented to the same column as following lines. If Epsilon thinks this will happen, it adds the
additional indentation specified by this variable to the continuation line.

c-align-open-paren Preference Default:0

This variable controls the way Epsilon indents lines that contain only a(left parenthesis
character. If nonzero, Epsilon aligns it with the start of the current statement. If zero, it uses
extra indentation like other types of continuation lines.

c-auto-fill-mode Preference Default:1

Epsilon can break long C/C++/Java/EEL comments as you type them, using a variation of
auto-fill mode. Set this variable to 0 to disable this feature. Set it to 2 to let Epsilon break all
comments. The default value of 1 tells Epsilon not to break comments that follow non-comment
text on the same line, but permit Epsilon to break comments on other lines.

c-auto-show-delim-chars Default:"[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in C mode. Epsilon will search for and highlight the match of each
delimiter.

c-brace-offset Preference Default:0

In C mode, Epsilon offsets the indentation of a left brace on its own line by the value of this
variable. Thecloseback variable also helps to control this placement.

c-case-offset Preference Default:0

In C mode, Epsilon offsets the indentation of a case statement by the value of this variable.

c-contin-offset Preference Default:0

In C mode, Epsilon offsets its usual indentation of continuation lines by the value of this
variable. The variable only affects lines that Epsilon can’t line up under the text of previous
lines.

223

c-extra-keywords System Buffer-specific Default:3

C mode automatically sets the buffer-specificc-extra-keywords variable based on file
name extensions, to indicate which identifiers are considered keywords in the current buffer.
The value 1 tells Epsilon to recognize C++ keywords when code coloring. The value 2 tells
Epsilon to recognize EEL keywords. The values 4 and 8 indicate Java and IDL keywords,
respectively. Epsilon always recognizes those keywords common to C, C++, Java, and EEL.

c-fill-column Preference Default:72

This variable sets the default fill column for filling comments in C/C++/Java buffers. If positive,
Epsilon uses it to initialize the fill column whenever a buffer enters C mode. (Otherwise Epsilon
uses the default value of themargin-right variable.)

c-indent Preference Buffer-specific Default:0

C mode indents each additional level of nesting by this many columns. If the variable is less
than or equal to zero, Epsilon uses the value oftab-size instead. Set this variable if you
want Epsilon to use one number for displaying tab characters, and a different number for
indenting C code. (Epsilon will indent using a combination of spaces and tabs, as necessary.)

c-indent-after-extern-c Preference Default:0

If zero, a block that starts withextern "C" receives no additional indentation.

c-indent-after-namespace Preference Default:0

If zero, a block that starts with anamespace declaration receives no additional indentation.

c-label-indent Preference Default:0

This variable provides the indentation of lines starting with labels in C mode. Normally,
Epsilon moves labels to the left margin.

c-look-back Preference Default:100000

When C mode tries to determine the correct indentation of a line, it looks back in the buffer at
previous lines. To prevent long delays, Epsilon gives up if it finds itself looking back more than
this many characters, and uses its best indentation guess so far.

c-mode-mouse-to-tag Preference Default:1

If this variable is nonzero, double-clicking the right mouse button on a function or variable
name in a C mode buffer makes Epsilon for DOS or Epsilon for OS/2 jump to that item’s
definition. Epsilon uses thepluck-tag command to do this. (In Epsilon for Windows, use the
right mouse button’s context menu to jump to a definition.)

c-param-decl Preference Default:0

Epsilon indents pre-ANSI K&R-style parameter declarations by the number of characters
specified by this variable.

224 CHAPTER 6. VARIABLES

c-tab-always-indents Preference Default:0

By default, if you presshTabi when point is not in the current line’s indentation, C mode inserts
a tab character instead of recomputing the current line’s indentation. If this variable is nonzero,
thehTabi key will reindent the current line, regardless of your position on the line. If you press
the key again, it will insert an additional tab.

c-tab-override Preference Default:-1

If you want the width of a tab character in C mode buffers to be different than in other buffers,
set this variable to the desired value. C mode will change the buffer’s tab size to the specified
number of columns.

c-tagging-class System Default:""

Epsilon uses this variable while tagging C++/Java files to record the name of the current class.

c-top-braces Preference Default:0

Epsilon indents the braces of the top-level block of a function by the number of characters
specified by this variable. By default, Epsilon puts such braces at the left margin.

c-top-contin Preference Default:3

Epsilon indents continuation lines outside of any function body by the number of characters
specified by this variable, whenever it cannot find any text on previous lines to align the
continuation line beneath.

c-top-struct Preference Default:8

When the definition of a top-level structure, union, or class appears over several lines, Epsilon
indents the later lines by the number of characters specified in this variable, rather than the
value ofc-top-contin.

call-on-modify Buffer-specific Default:0

If the buffer-specificcall-on-modify variable has a nonzero value in a particular buffer,
whenever any primitive tries to modify that buffer, Epsilon calls the EEL subroutine
on_modify() first.

can-get-process-directory Default: varies

Epsilon sets this variable nonzero to indicate that it is able to retrieve current directory
information from the concurrent process. Unix versions of Epsilon will set this variable nonzero
only after the process has started and its first prompt has appeared.

capture-output Preference Default:0

If nonzero, Epsilon makes a transcript of console input and output when it runs another program
via thepush command. Epsilon puts the transcript in a buffer named “process”.

225

case-fold Preference Buffer-specific Default:1

If nonzero, Epsilon considers upper case and lower case the same when searching, so a search
string of “Word” would match “word” and “WORD” as well. This variable sets the default for a
search in each buffer, but when searching you can change case-folding status for that particular
search by pressing Ctrl-C.

catch-mouse Preference Default: varies

If nonzero, Epsilon queues up mouse events. If zero, Epsilon ignores the mouse.

Under DOS, various values ofcatch_mouse correspond to settings of the-km,-kc and-kw
switches. A setting of1 gives default mouse behavior. A setting of2 makes the mouse cursor
invisible, like-kc0. A setting of3 makes Epsilon uses absolute positioning, like-km1. A
setting of4 makes Epsilon use absolute positioning with an invisible mouse cursor, like-kw,
the correct setting for windowed environments.

If you run Epsilon for DOS under Microsoft Windows full-screen, be sure to set
catch-mouse to 4 before you press Alt-Enter to switch to a window. You can set
catch-mouse back to 1 when you return Epsilon to full-screen. The same comments apply
when running the DOS version under OS/2 PM.

clear-process-buffer Preference Default:0

If nonzero, the commandsstart-process, push, andmake will each begin by emptying the
process buffer. If zero, the commands append to whatever text is already in the process buffer.

clipboard-access Preference Default:1

If this variable is non-zero, all commands that put text on the kill ring will also try to copy the
text to the MS-Windows or X clipboard. Similarly, theyank command will retrieve any new
text from the clipboard before retrieving text from Epsilon’s kill ring if this variable is nonzero.

If you’re not running the Windows, Unix or DOS versions of Epsilon, not running under
MS-Windows in enhanced mode or under the X window system, or (for the DOS version) the
text has more than 65,500 characters, Epsilon ignores the clipboard, just as if this variable were
zero.

During a keyboard macro Epsilon also ignores the clipboard contents. Use theinsert-clipboard
or copy-to-clipboard commands if you want to access the clipboard from a keyboard macro. Or
setclipboard-access to 2, forcing Epsilon to use the clipboard even in a keyboard macro.

clipboard-format Preference Default:0

By default, when Epsilon for DOS puts characters on the MS-Windows clipboard, it lets
Windows translate the characters from the OEM/DOS character set to Windows ANSI. Epsilon
needs to do this so that national characters display correctly. When Epsilon retrieves characters
from the clipboard, it has Windows perform the reverse translation.

But each character set contains some characters that the other does not, so that copying
characters in one direction and then back can change the characters. Instead, you can tell
Epsilon to copy characters without translating them. Then copying back and forth will never
change the characters, but Epsilon for DOS and Windows won’t display the same symbols for
any character except the original ASCII printable characters (32 to 127).

226 CHAPTER 6. VARIABLES

Setting this variable to 7 makes Epsilon tell Windows that all text in Epsilon is in the OEM
character set, and Windows must translate between OEM/DOS and Windows ANSI. Setting the
variable to 1 makes Epsilon tell Windows that all text in Epsilon uses the Windows ANSI
character set, so no translating is necessary. The default value of zero makes Epsilon for DOS
always translate, and makes Epsilon for Windows translate only when you’ve selected an OEM
font. (Epsilon uses the value of this variable as the “clipboard format” to ask Windows for; you
can see the raw clipboard data Windows uses by setting the variable to other values, if you like.
Epsilon for Unix ignores this variable.)

closeback Preference Default:1

If nonzero, C mode aligns a right brace character that ends a block with the line containing the
matching left brace character. If zero, C mode aligns the right brace character with the first
statement inside the block.

cmd-len Default:0

This variable counts the number of keys in the current command. Epsilon resets it to zero each
time it goes through the main loop. It doesn’t count mouse keys or other events that appear as
keys.

cmd-line-session-file System Default: none

If you use the-p flag to provide the name of a particular session file, Epsilon puts the name in
this variable.

color-html-look-back Preference Default:50000

When Epsilon begins coloring HTML in the middle of a buffer, it has to determine whether it’s
inside a script by searching back. This can be slow in very large HTML files, so Epsilon limits
its search by assuming that a script can be no longer than this many characters.

color-look-back Preference Default:0

When Epsilon begins coloring in the middle of a buffer, it has to determine whether it’s inside a
comment by searching back for comment characters. Ifcolor-look-back is greater than
zero, Epsilon only looks back over that many characters for a block comment delimiter like/*
or*/ before giving up and concluding that the original text is not inside a comment. If you edit
extremely large C files with few block comments, you can speed up Epsilon by setting this
variable. Any block comments larger than this value may not be colored correctly. A value of
zero (the default) lets Epsilon search as far as it needs to, and correctly colors comments of any
size.

color-names System Default:"|black|blue| ...|"

Epsilon recognizes various color names in command files. It stores the names in this variable.

color-whole-buffer Preference Default:0

Normally Epsilon colors buffers as needed. You can set Epsilon to instead color the entire
buffer the first time it’s displayed. Set this variable to the size of the largest buffer you want
Epsilon to entirely color at once.

227

coloring-flags System Buffer-specific Default:0

Epsilon’s syntax highlighting functions use this variable to record various types of status. Bits
in the variable are specified by macros in colcode.h.

Epsilon uses some bits independently of any particular language mode.
COLOR_DO_COLORING indicates that Epsilon should perform coloring.
COLOR_IN_PROGRESSmeans Epsilon is in the middle of coloring; Epsilon uses this bit to
detect when a coloring function has aborted due to a programming error; it then disables
coloring for that buffer.COLOR_MINIMAL records whether minimal coloring (an option in
C/C++/Java mode) is in use for that buffer; Epsilon uses it to notice when this setting has
changed.

The remaining bits are set by individual language modes.COLOR_INVALIDATE_FORWARD
indicates that after the user modifies a buffer, any syntax highlighting information after the
modified region should be discarded.COLOR_INVALIDATE_BACKWARD indicates that
syntax highlighting information before the modified region should be discarded. (Without these
bits, Epsilon only discards syntax highlighting information that’s very close to the modified part
of the buffer.)

COLOR_INVALIDATE_RESETS tells Epsilon that whenever it invalidates syntax highlighting
in a region, it should also set the color of all text in that region to the default of-1.
COLOR_RETAIN_NARROWING indicates that coloring should respect any narrowing in effect
(instead of looking outside the narrowed area to parse the buffer in its entirety).

column-in-window Default: none

On each screen refresh, Epsilon sets this variable to the column of point within the current
window, counting from zero. If you switch windows or move point, Epsilon will not update this
variable until the next refresh.

comment-begin Buffer-specific Default:"; "

When Epsilon creates a comment, it inserts the contents of the buffer-specific variables
comment-begin andcomment-end around the new comment.

comment-column Buffer-specific Default:40

Epsilon creates and indents comments so they begin at this column, if possible.

comment-end Buffer-specific Default: none

When Epsilon creates a comment, it inserts the contents of the buffer-specific variables
comment-begin andcomment-end around the new comment.

comment-pattern Buffer-specific Default:";.*$"

The comment commands look for comments using regular expression patterns contained in the
buffer-specific variablescomment-pattern (which should match the whole comment) and
comment-start (which should match the sequence that begins a comment, like ‘/*’).

228 CHAPTER 6. VARIABLES

comment-repeat-indentation-lines Preference Default:2

Modes that provide language-sensitive indenting, such as C mode (for C, C++, Java, and EEL)
and Perl mode, typically indent single-line comments (such as C++’s // comments) to the same
indentation level as code. Sometimes in the midst of a block of indented code, you may wish to
write a series of comment lines with some different indentation.

When Epsilon notices that the 2 previous lines are comment lines, its auto-indenter decides that
a blank line that follows should be indented like them, and not as if the line will contain code.
Set this variable to change the number of comment lines Epsilon checks for. Set it to zero to
make Epsilon always indent blank lines based on language syntax rules.

comment-start Buffer-specific Default:";[n t]*"

The comment commands look for comments using regular expression patterns contained in the
buffer-specific variablescomment-pattern (which should match the whole comment) and
comment-start (which should match the sequence that begins a comment, like ‘/*’).

common-open-curdir System Default: none

In Windows, Epsilon uses this variable to maintain the current directory used in the Common
File Dialog that appears when you use the File/Open, File/Save As, or similar menu or toolbar
commands.

compare-windows-ignores-space Preference Default:2

This variable says whether thecompare-windows command should consider any run of one or
more whitespace characters in one buffer to match a run of one or more whitespace characters
in the other. If0, it doesn’t, and requires all characters to match. If1, it merges runs of spaces,
tabs and newlines. If2, it merges runs of spaces and tabs only.

compile-asm-cmd Preference Default:ml "%r"

Epsilon uses the command line contained in thecompile-asm-cmd variable to compile
Assembly files; those files ending with a .asm extension. Seecompile-c-cmd for details on
this variable’s format.

compile-buffer-cmd Buffer-specific Default: none

Thecompile-buffer command retrieves the command to compile the current buffer from
this buffer-specific variable. For C, C++, and EEL files this variable normally just points to the
compile-c-cmd, compile-cpp-cmd, orcompile-eel-cmd variables, respectively.
To make all files with one of the above extensions use a different compile command, set one of
these other variables. To make only the current buffer begin to use a different compile
command, set this variable.

Seecompile-c-cmd for details on this variable’s format.

229

compile-c-cmd Preference Default:cl "%r"

Epsilon uses the command line contained in thecompile-c-cmd variable to compile C files;
those files ending with a .c extension. (Epsilon for Unix uses thecompile-c-cmd-unix
variable instead.)

The command line works as a file name template, so you can substitute parts of the file name
into the command line. The sequence%p substitutes the path part of the file name, the sequence
%b substitutes the base name (without path or extension), the sequence%e substitutes the
extension (including the “.”), the sequence%f substitutes the full name as an absolute
pathname, and the sequence%r substitutes a pathname relative to the current directory. The
sequence%x substitutes the full pathname of the directory containing the Epsilon executable.
The sequence%X substitutes the same pathname to the Epsilon executable, but converts all
Windows long file names to their equivalent short name aliases.

compile-c-cmd-unix Preference Default:cc "%r"

Epsilon for Unix uses the command line contained in this variable to compile C files; those that
end with a .c extension. Seecompile-c-cmd for details on this variable’s format, or for the
equivalent variable in non-Unix versions.

compile-cpp-cmd Preference Default:cl "%r"

Epsilon uses the command line contained in thecompile-cpp-cmd variable to compile C++
files; those files ending with a .cpp or .cxx extension. Seecompile-c-cmd for details on this
variable’s format. (Epsilon for Unix uses thecompile-cpp-cmd-unix variable instead.)

compile-cpp-cmd-unix Preference Default:cc "%r"

Epsilon for Unix uses the command line contained in this variable to compile C files; those that
end with a .cpp or .cxx extension. Seecompile-c-cmd for details on this variable’s format.
Seecompile-cpp-cmd for the equivalent variable in non-Unix versions.

compile-csharp-cmd Preference Default:csc "%r"

Epsilon uses the command line contained in thecompile-csharp-cmd variable to compile
C-Sharp files; those files ending with a .cs extension. Seecompile-c-cmd for details on this
variable’s format.

compile-eel-cmd Preference Default:%Xeel "%r"

Epsilon uses the command line contained in thecompile-eel-cmd variable to compile EEL
files; those files ending with a .e extension. After an EEL file has been successfully compiled,
Epsilon will automatically load it. Epsilon for Windows or Unix generally uses its built-in EEL
compiler instead of this variable; seecompile-eel-dll-flags to set its flags. See
compile-c-cmd for details on this variable’s format.

compile-eel-dll-flags Preference Default:"-n -q"

When Epsilon compiles EEL code using its internal EEL compiler, it looks in this variable for
EEL command line flags.

230 CHAPTER 6. VARIABLES

compile-gams-cmd Preference Default:gams "%r"

Epsilon uses the command line contained in thecompile-gams-cmd variable to compile
GAMS files; those files ending with a .gms extension (or others). Seecompile-c-cmd for
details on this variable’s format.

compile-idl-cmd Preference Default:midl "%r"

Epsilon uses the command line contained in thecompile-idl-cmd variable to compile IDL
files; those files ending with a .idl extension. Epsilon normally edits such files using C mode.
Seecompile-c-cmd for details on this variable’s format.

compile-in-separate-buffer Preference Default:1

In some environments, thecompile-buffer andmake commands can do their work in a separate
compilation buffer. This is the most reliable way for them to work. Set this variable to zero to
force them to share an existing process buffer.

compile-java-cmd Preference Default:javac "%r"

Epsilon uses the command line contained in thecompile-java-cmd variable to compile
Java files; those files ending with a .java extension. Seecompile-c-cmd for details on this
variable’s format.

compile-makefile-cmd Preference Default:nmake /f "%r"

Thecompile-buffer command uses the command line contained in the
compile-makefile-cmd variable to “compile” a makefile (those files ending with a .mak
extension or named makefile); in the case of makefiles, this means to run make on it. See
compile-c-cmd for details on this variable’s format. See
compile-makefile-cmd-unix for the Unix equivalent.

compile-makefile-cmd-unix Preference Default:make -f %r

Thecompile-buffer command uses the command line contained in the
compile-makefile-cmd variable to “compile” a makefile (those files ending with a .mak
extension or named makefile) under Unix; in the case of makefiles, this means to run make on
it. Seecompile-c-cmd for details on this variable’s format. See
compile-makefile-cmd for the non-Unix equivalent.

compile-perl-cmd Preference Default:perl "%r"

Thecompile-buffer command uses the command line contained in thecompile-perl-cmd
variable to “compile” a Perl file (those files ending with a .perl extension or others); in the case
of Perl files, this means to execute it. Seecompile-c-cmd for details on this variable’s
format.

compile-python-cmd Preference Default:python "%r"

Thecompile-buffer command uses the command line contained in thecompile-perl-cmd
variable to “compile” a Python file (those files ending with a .py extension or others); in the
case of Python files, this means to execute it. Seecompile-c-cmd for details on this
variable’s format.

231

compile-tex-cmd Preference Default:
tex --interaction scrollmode "%r"

Epsilon uses the command line contained in thecompile-tex-cmd variable to compile TeX
or LaTeX files; those files ending with a .tex or .ltx extension. Seecompile-c-cmd for
details on this variable’s format.

compile-vbasic-cmd Preference Default:vbc "%r"

Epsilon uses the command line contained in thecompile-vbasic-cmd variable to compile
Visual Basic files. Seecompile-c-cmd for details on this variable’s format.

completion-pops-up Preference Default:1

If Epsilon cannot add any letters when you ask for completion on a file name or similar item, it
will pop up a list of items that match what you’ve typed so far. To disable automatic pop-ups on
completion, set thecompletion-pops-up variable to zero.

concurrent-compile Preference Buffer-specific Default:3

The buffer-specificconcurrent-compile variable controls how thecompile-buffer
command behaves. If 0,compile-buffer always runs the compiler or other program
non-concurrently, exiting the concurrent process if it needs to. If 2, thecompile-buffer
command always runs the compiler concurrently, creating a concurrent process if it needs to. If
1, thecompile-buffer command runs the compiler concurrently if a concurrent process is
already running, non-concurrently otherwise. If 3 (the default),compile-buffer uses the value
of theconcurrent-make variable instead.

concurrent-make Preference Default:1

Theconcurrent-make variable controls how themake command behaves. If0, themake
command always runs the compiler or other program non-concurrently, exiting the concurrent
process if it needs to. If2, themake command always runs the compiler concurrently, creating
a concurrent process if it needs to. If1 (the default), themake command runs the compiler
concurrently if a concurrent process is already running, non-concurrently otherwise.

current-video-mode System Default:""

Under DOS and OS/2, Epsilon remembers the name of the current video mode here. This can
be a value like"80x25", or"" if the video mode has never been set.

cursor-blink-period Preference Default:100

This variable controls the rate at which the text cursor blinks. It specifies the period of the
on/off cycle in hundredths of a second. It only applies when Epsilon runs as an X program in
Unix. Set this to-1 to disable blinking.

cursor-shape System Default:98099

This variable holds the current cursor shape code. Epsilon copies values from
overwrite-cursor,normal-cursor, or one of the other cursor variables, as
appropriate, into this variable whenever you switch windows or buffers. Set those variables
instead of this one. Epsilon only uses this variable under DOS and OS/2. See
gui-cursor-shape for the Windows or Unix equivalent.

232 CHAPTER 6. VARIABLES

cursor-to-column Window-specific Default:-1

The window-specificcursor-to-column variable lets you position the cursor in a part of a
window where there are no characters. It’s normally-1, and the cursor stays on the character
after point. If it’s non-negative in the current window, Epsilon puts the cursor at the specified
column in the window instead. Epsilon resetscursor-to-column to -1 whenever the
buffer changes, or point moves from where it was when you last setcursor-to-column.
(Epsilon only checks these conditions when it redisplays the window, so you can safely move
point temporarily.)

cygwin-filenames Preference Default:0

This variable makes Epsilon for Windows recognize file names in the format
//c/windows/file (instead ofc:n windowsnfile) in directory-change messages
when parsing compiler error messages. This format is used by some Cygwin programs, in
particular Gnu Make. The format conflicts with the format for Windows network file names, so
servers with one-letter names won’t be accessible if you enable this feature.

default-character-set Preference Default:0

Set this variable to 2 if you want Epsilon for Windows to translate character sets by default, in
the manner of thefind-oem-file command. Set it to any other value to disable this behavior.

default-oem-word Preference Default:
"[a-zA-Z0-9_nx80-nx9AnxA0-nxA5nE1]+"

The word commands use a regular expression to define the current notion of a word. While a
mode can provide its own regular expression for words, most modes use the regular expression
found in this variable in versions of Epsilon for DOS and OS/2.

default-state-file-name System Default:epsilon.sta

Epsilon sets this variable to the name of the state file it will look for when it starts. Typically
this is just “epsilon.sta”, but Epsilon for Unix uses a versioned name like “epsilon-v10.sta” so
users can more easily save customizations for multiple versions of Epsilon.

default-translation-type Preference Default:5

When you read an existing file, Epsilon consults this variable to determine what kind of line
translation to perform. If5 (FILETYPE_AUTO), Epsilon examines the file’s contents and
selects one of the following translations, setting the buffer’stranslation-type variable to
the selected translation. If this variable is set to any other value, Epsilon uses the specified
translation without examining the contents of the file.

A value of0 (FILETYPE_BINARY) makes Epsilon do no line translation,1
(FILETYPE_MSDOS) makes Epsilon striphReturni characters when reading and insert them
when writing,2 (FILETYPE_UNIX) makes Epsilon do no line translation, but indicates that
the file contains text,3 (FILETYPE_MAC) makes Epsilon replacehReturni characters with
hNewlinei characters when reading, and replacehNewlinei characters withhReturni characters
when writing.

Also seenew-buffer-translation-type to change the translation rules for
newly-created files and buffers.

233

default-word Preference Default:
"[a-zA-Z0-9_nxC0-nxD6nxD8-nxF6nF8-nxFF]+"

The word commands use a regular expression to define the current notion of a word. While a
mode can provide its own regular expression for words, most modes use the regular expression
found in this variable in versions of Epsilon for Windows and Unix.

delete-hacking-tabs Preference Buffer-specific Default:0

If nonzero,hBackspacei first turns a tab it wants to delete into the number of spaces necessary
to keep the cursor in the same column, then deletes one of the spaces.

diff-match-characters Preference Default:5

When thevisual-diff command highlights runs of modified characters within each group of
modified lines, it ignores short runs of matching characters. This variable specifies the size of
the smallest run of matching characters it will recognize.

diff-match-characters-limit Preference Default:10000

Thevisual-diff command highlights runs of modified characters within each group of modified
lines. To avoid long delays, it does this only if both runs of modified lines are smaller than this
size in characters. If either run contains this many characters or more,visual-diff presents that
group of lines without character-based highlighting. Set this variable to zero to entirely disable
visual diff’s highlighting based on individual characters; highlighting will then always be
line-based.

diff-match-lines Preference Default:3

When resynchronizing,diff believes it has found another match whendiff-match-lines
lines in a row match.

diff-mismatch-lines Preference Default:500

When resynchronizing,diff gives up if it cannot find a match within
diff-mismatch-lines lines.

diff-precise-limit Preference Default:500000

Thediff command normally uses an algorithm that finds the minimum set of differences
between the lines of two buffers. But this algorithm becomes slow on very large buffers. So if
both buffers are larger (in bytes) than this setting, Epsilon uses a different algorithm that doesn’t
always find the absolute minimum set of differences (and may give up if the buffers are too
different, according todiff-mismatch-lines), but is much faster.

directory-flags Default:0

When you specify the-w flag on the command line, Epsilon puts its numeric parameter in this
variable.

234 CHAPTER 6. VARIABLES

dired-24-hour-time Preference Default:2

Set this variable to 1 if you want thedired command in non-Unix versions of Epsilon to display
times in 24-hour format. Set it to 0 if you want 12-hour format with AM and PM indicators.
The value 2 makes Epsilon for Windows use the system’s setting for this. In Epsilon for OS/2,
it’s the same as 0.

dired-buffer-pattern System Buffer-specific Default: none

When dired wants to rebuild the file list in the current dired buffer, it looks in this variable for
the directory name or file pattern to use. If this variable is null, it uses the name of the dired
buffer as the pattern.

dired-format System Buffer-specific Default:0

Running dired on a remote directory of files uses this variable to record the format of the
directory listing. The variable is zero for local directories in Epsilon’s standard format.

dired-groups-dirs System Default:1

Thedired-sort command uses thedired-groups-dirs variable to record whether or not
to group subdirectories. If nonzero, all subdirectories appear in a dired listing before any of the
files in that directory. If zero, the subdirectories are sorted in with the files, except for the. and
.. subdirectories, which always appear first regardless of this setting. Use the S key in a dired
buffer to set this variable.

dired-live-link-limit Preference Default:3,000,000

Dired’s live link feature shows the contents of files in a separate window as you move about in
the dired buffer. To prevent long delays, it skips automatically showing files bigger than this
many bytes.

dired-sorts-files System Default:’n’

Thedired-sort command uses thedired-sorts-files variable to record how sort dired
buffers. It contains a letter code to indicate the type of sorting: N, E, S, or D to sort by file
name, file extension, size, or time and date of modification, respectively, or the value 0 to leave
the listing unsorted. An upper case letter code indicates a descending (reverse) sort, a lower case
letter code indicates the normal ascending sort. Set this variable using dired’sS subcommand.

discardable-buffer Buffer-specific Default:0

Epsilon warns you before exiting if any “valuable” unsaved buffers exist. It considers a buffer
valuable if it has a file name associated with it and contains at least one character. An EEL
program can set this buffer-specific variable to a nonzero value to indicate that the current
buffer doesn’t require any such warning.

display-column Preference Window-specific Default:0

This variable determines how Epsilon displays long lines. If negative, Epsilon displays buffer
lines too big to fit on one screen line on multiple screen lines, with a special character to
indicate that the line has been wrapped. Ifdisplay-column is 0 or positive, Epsilon only
displays the part of a line that fits on the screen. Epsilon also skips over the initial
display-column columns of each line when displayed. Horizontal scrolling works by
adjusting the display column.

235

display-definition Preference Default:1

In C/C++/Java/Perl buffers, Epsilon can display the name of the current function, subroutine,
class, or structure on a buffer’s mode line, or in the title bar of Epsilon’s window. Set this
variable to2 if you want Epsilon to use the title bar if possible. Epsilon for DOS, and other
versions that can’t set the title bar, will instead use the mode line. Set this variable to1 if you
want to use the mode line regardless. Or set this variable to0 to disable this feature. You can
modify themode-end variable to position the name within the mode line.

display-func-name System Default: none

Epsilon uses this variable to help display the name of the current function on the mode line or
window title bar. It contains the most recent function name Epsilon found.

display-func-name-buf System Default: none

Epsilon uses this variable to help display the name of the current function on the mode line or
window title bar. It contains the buffer number of the buffer wheredisplay-func-name is
valid.

display-func-name-win System Default: none

Epsilon uses this variable to help display the name of the current function on the mode line or
window title bar. It contains the window number of the window where
display-func-name is valid.

display-scroll-bar System Window-specific Default:0

This variable controls whether the current window’s right border contains a scroll bar. Set it to
zero to turn off the scroll bar, or to any positive number to display the bar. If a window has no
right border, or has room for fewer than two lines of text, Epsilon won’t display a scroll bar.
Although the EEL functions that come with Epsilon don’t support clicking on a scroll bar on
the left border of a window, Epsilon will display one if the variable is negative. Any positive
value produces the usual right-border scroll bar. Run thetoggle-scroll-bar command instead of
setting this internal variable directly.

double-click-time Preference Default:40

This variable specifies how long a delay to allow for mouse double-clicks, in hundredths of a
second. If two consecutive mouse clicks occur within the allotted time, Epsilon considers the
second a double-click. Epsilon for Windows ignores this variable and uses standard Windows
settings to determine double-clicks.

draw-column-markers Preference Default:""

This variable may contain a series of space-separated column numbers. Epsilon for Windows
draws a vertical line in the current window, at the left edge of each column number specified by
this variable, counting from zero. So a value of 1 specifies a line between the first and second
character positions on a line. This can be helpful when editing fixed-width files.

Set the screen-decoration color class to change the line’s color.

236 CHAPTER 6. VARIABLES

draw-focus-rectangle Preference Default:0

If nonzero, Epsilon for Windows draws a focus box around the current line, to make it easier for
a user to locate the caret. A value of 1 produces a normal-sized focus rectangle.

You can customize its shape by setting this variable to a four-digit number. The four digits
represent the left, right, top and bottom sides of rectangle. The digit 5 represents the normal
position of that side; lower values constrict the box and higher values expand it. For instance,
5555 represents the usual box size, while 1199 represents a box that’s extra narrow at its sides
and extra tall.

Set the screen-decoration color class to change the box’s color.

echo-line Preference Default:24 on a 25-line screen

This variable contains the number of the screen line on which to display the echo area, counting
from zero at the top. When the screen size changes, Epsilon automatically adjusts this variable
if necessary.

eel-tab-override Preference Default:4

If you want the width of a tab character in EEL buffers to be different than in other buffers, set
this variable to the desired value. C mode will change the buffer’s tab size to the specified
number of columns for EEL files (ending in .e).

eel-version Default: varies

This variable records the version number of the commands contained in the state file. Epsilon’s
-quickup flag sets this number. Epsilon compares this number to the version number stored in
its executable and warns of mismatches (indicating that the state file must be updated by
running-quickup).

epsilon-manual-port Preference Default:8888

When Epsilon displays its online manual in HTML format, it runs a documentation server
program, and constructs a URL that tells the web browser how to talk to the documentation
server. The URL includes a port number, specified by this variable. Set the variable to 0 and
Epsilon won’t run a local documentation server, but will instead connect to Lugaru’s web site.
Note that the manual pages on Lugaru’s web site may be for a later version of Epsilon than local
pages.

errno Default:0

Many Epsilon primitive functions that access operating system features set this variable to the
operating system’s error code if an error occurs.

expand-wildcards Preference Default:0

If nonzero, when you specify a file name with wild cards on Epsilon’s command line, Epsilon
reads each individual file that matches the pattern, as if you had listed them explicitly. If zero,
Epsilon displays a list of the files that matched the pattern, in adired buffer.

237

expire-message System Default:-1

An EEL function sometimes needs to display some text in the echo area that is only valid until
the user performs some action. For instance, a command that displays the number of characters
in the buffer might wish to clear that count if the user inserts or deletes some characters. After
displaying text with primitives likesay(), note(), orshow_text(), an EEL function
may set this variable to1 to tell Epsilon to clear that text on the next user key.

explicit-session-file System Default: none

If you use theread-session or write-session commands to use a particular session file, Epsilon
stores its name in this variable.

extra-video-modes Preference Default:0

Set theextra-video-modes variable to enable the additional video modes Epsilon
automatically provides under DOS. Besides Epsilon’s built-in video modes, Epsilon can look
for a VESA TSR or an Ultravision TSR, and retrieve a list of additional video modes from them.

Set this variable to1 to disable Ultravision modes but look for VESA modes. Set it to2 to
disable VESA modes but look for Ultravision modes. Set it to3 to look for both types of
TSR’s. The default value of0 disables both types of add-on modes.

If both Ultravision and VESA TSR’s are installed, the Ultravision TSR takes precedence.
Epsilon only examines the value of this variable when it starts up, so you must set it, use the
write-state command, and restart Epsilon for a new setting to take effect.

far-pause Preference Default:100

Thefind-delimiter andshow-matching-delimiter commands pause this many hundredths of a
second, when they must reposition the screen to a different part of the buffer to show the
matching delimiter.

file-date-tolerance Preference Default:2

Epsilon warns when a file has changed on disk. Sometimes files on a network will change their
recorded times shortly after Epsilon writes to them. So Epsilon ignores very small changes in a
file’s time. Set this variable to change the time difference in seconds that Epsilon will ignore.

file-pattern-wildcards Preference Default:15

Epsilon normally treats all of the characters[]fg; ; as wildcard characters in file patterns, except
when you surround a file name with"" characters. You can set this variable to force Epsilon to
treat each of these characters literally. The value1 enables comma as a wildcard character,2
enables semicolon,4 enables square brackets, and8 enables curly braces. Add the values
together to enable more than one group. The default of 15 enables all the above characters.

filename Buffer-specific Default: none

This variable holds the file name associated with the current buffer.

238 CHAPTER 6. VARIABLES

fill-c-comment-plain Preference Default:0

Set this variable nonzero if you want comment-filling commands to make C block comment
lines under an initial/* start with spaces, not the usual* aligned under the initial*. (Usually
this applies only to how Epsilon creates the second line of a block comment, since following
lines retain the previous line’s decoration.)

fill-mode Preference Buffer-specific Default:0

This variable controls auto filling. If nonzero, Epsilon breaks text into lines as you type it, by
changing spaces into newline characters. See the variablec-auto-fill-mode for the
equivalent variable used in C mode buffers.

final-macro-pause System Default:0

Epsilon sets this variable to1 when a keyboard macro ends with apause-macro command, to
help it execute the macro correctly.

find-lines-visible Preference Default:8

Epsilon uses thefind-lines-visible variable to help determine where to position the
find/replace dialog box. It considers a possible location acceptable if the top
find-lines-visible lines of the current window can be seen behind the dialog. If fewer
lines are visible, Epsilon will move the dialog to another part of the screen.

If you don’t want Epsilon to ever reposition its find/replace dialog, set this variable to zero.

find-linked-file-ignores-angles Preference Default:0

If this variable is nonzero, thefind-linked-file command treats the<> notation in a#include
directive found in a C/C++/Java buffer the same as the"" notation. That is, Epsilon searches in
the original file’s directory for the included file, before looking in other directories. If this
variable is zero, then only#include directives that use the"" notation will cause Epsilon to
search locally.

first-window-refresh Default:1

Epsilon sets this variable prior to calling awhen_displaying function to indicate if this is
the first window the current buffer is displayed in. If0, Epsilon has already called the
when_displaying function for this buffer during the current screen update. Otherwise, this
is the first window displaying this buffer.

font-dialog Preference Default:
"Courier New,8,0,400,0,1"

This variable controls what font Epsilon for Windows uses for its dialog windows. See
font-fixed for details on its format. Use theset-dialog-font command to set it.

239

font-fixed Preference Default:
"Courier New,10,0,400,0,1"

This variable controls what font Epsilon for Windows uses. It contains the name of the font,
followed by several numbers separated by commas. The first number specifies a point size. The
second specifies the width of the font in pixels, or 0 if any width is acceptable. A small number
of fonts, such as Terminal, have multiple widths for each height. The third number specifies
how bold the font is. A typical font uses a value of 400, while a bold font is usually 700. The
fourth number is nonzero to indicate an italic font. The fifth number indicates a character set; 1
means use the default character set for the font, 0 means use ANSI, 255 means use OEM.

font-printer Preference Default:
"Courier New,10,0,400,0,1"

This variable controls what font Epsilon for Windows uses when printing. Seefont-fixed
for details on its format. Use theset-printer-font command to set it.

force-save-as System Buffer-specific Default:0

Setting this variable nonzero instructs thesave-file command to ask for a file name before
writing the file. A setting of 1 (FSA_NEWFILE in EEL functions) indicates the buffer was
created by thenew-file command. A setting of 2 (FSA_READONLY) indicates the file was
marked read-only on disk, or the user checked the ”Open as read-only” box in the Open File
dialog.

forward-word-to-start Preference Default:0

Set theforward-word-to-start variable nonzero if you want theforward-word
command to leave point at the start of each word, instead of its end.

ftp-ascii-transfers Preference Default:0

When Epsilon uses FTP to read a file on a host computer, it normally uses FTP’s binary transfer
mode, and examines the contents of the file to determine the appropriate line translation. On
some kinds of host computers (VMS systems, for example) this doesn’t work. If you use such
systems, set this variable nonzero. In that case, you’ll need to tell Epsilon whenever you
transfer a binary file. Epsilon will use FTP’s ASCII transfer mode for all files except those
where you explicitly set the line transfer mode to binary (for example, by typing Ctrl-U Ctrl-X
Ctrl-F, and then pressing B at the line translation prompt).

ftp-compatible-dirs Preference Default:0

When Epsilon uses FTP to access files on a host computer, it normally assumes that the
directory conventions of the host computer are similar to those for Unix, Windows, DOS, and
OS/2. Some computers (notably some VMS systems) use different rules for directories. Setting
this variable nonzero makes Epsilon access remote directories in a way that’s slower, but works
on more systems.

240 CHAPTER 6. VARIABLES

ftp-passive-transfers Preference Default:1

This variable controls how Epsilon’s FTP client transfers files. Epsilon knows three methods,
called “passive”, “active”, and “default port”. Firewalls or ancient FTP server software can
cause one or more of the methods to fail. Set this variable to zero to use only active transfers.
Set it to two to make Epsilon try active transfers first, then passive. Set it to three to make
Epsilon use the “default port” method. The default of one makes Epsilon try passive, then
active.

full-path-on-mode-line Preference Default:0

Set this variable nonzero if you want Epsilon to display the full path of each file on the mode
line. By default, it uses a path relative to the current directory (set by thecd command)
whenever it can.

full-redraw Default:0

If nonzero, Epsilon rebuilds all mode lines, as well as any precomputed information Epsilon
may have on window borders, screen colors, and so forth, on the next redisplay. Epsilon then
resets the variable to zero.

fundamental-auto-show-delim-chars Default:""

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in Fundamental mode. Epsilon will search for and highlight the
match of each delimiter.

Delimiters in the left half of the list must be left-delimiters and those in the right half must be
right-delimiters, as in([]).

fwd-search-key Preference Default:-1

Inside a search command, Epsilon recognizes a key with this key code as a synonym for Ctrl-S,
for pulling in a default search string or changing the search direction.

gams-auto-show-delim-chars Default:"[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in GAMS mode. Epsilon will search for and highlight the match
of each delimiter.

gams-files Preference Default:0

The file extensions .inc, .map, and .dat are used in the GAMS language for mathematical
programming. But they’re also commonly used to represent other things. By default Epsilon
assumes such files are not GAMS files; set this variable nonzero if you want Epsilon to assume
they are GAMS files.

goal-column Buffer-specific Default:-1

If the goal-column variable is non-negative, theup-line anddown-line commands always
move to the goal column. Ifgoal-column is negative, the commands try to remain in the
same column.

241

got-bad-number System Default:0

Several EEL functions that convert a character string into a number set this variable to indicate
whether the string held a valid number.

grep-default-directory Preference Default:0

When you presshEnteri without entering a file pattern forgrep, it by default tries to search the
same set of files as last time, even if you’ve subsequently changed directories, if you previously
used a relative pattern like*.cpp. Set this variable to 1 if you wantgrep to instead reinterpret
the file pattern you typed according to the current directory. Set it to 2 if you want Epsilon to
reinterpret the previous file pattern according to the directory associated with the current buffer.
Set it to 3 if you want Epsilon to interpret any relative pattern you type according to the
directory associated with the current buffer.

grep-empties-buffer Preference Default:0

By default, each invocation ofgrep appends its results to the grep buffer. If you set the variable
grep-empties-buffer to a nonzero value,grep will clear the grep buffer at the start of
each invocation.

grep-ignore-file-extensions Preference Default:
"|.obj|.exe|.o|.b|.dll|.lib|"

This variable contains a list of file name extensions for Epsilon to skip over during agrep or
file-query-replace command. Each extension must appear surrounded by ‘|’ characters.

grep-keeps-files Preference Default:0

If nonzero, thegrep command reads each file matching the supplied pattern using thefind-file
command. If zero, Epsilon reads each file into a temporary buffer and discards the buffer after it
finishes listing the matches.

grep-prompt-with-buffer-directory Preference Default:1

Thegrep-prompt-with-buffer-directory variable controls how thegrep and
file-query-replace commands use the current directory at file prompts. It recognizes the same
values as forprompt-with-buffer-directory.

grep-show-absolute-path Preference Default:0

This variable controls how thegrep command formats the file names it inserts into the grep
buffer for each match. Ifgrep-show-absolute-path is 0, Epsilon uses a relative
pathname whenever it can. If1, Epsilon uses an absolute pathname always. If2, Epsilon for
Windows lists each file with its absolute DOS 8+3 file name. (This setting is the same as1 in
environments without such a notion.)

gui-cursor-shape System Default:100002

This variable holds the current cursor shape code under Windows and Unix’s X windowing
system. Epsilon copies values fromoverwrite-gui-cursor,normal-gui-cursor,
or one of the other cursor variables, as appropriate, into this variable whenever you switch
windows or buffers. Set those variables instead of this one. Epsilon only uses this variable
under Windows and X. Seecursor-shape for the non-graphical equivalent.

242 CHAPTER 6. VARIABLES

gui-menu-file Preference Default:"gui.mnu"

This variable contains the name of the file Epsilon loads its menu from at startup, in the
Windows version.

has-arg Default:0

Epsilon indicates that a command has received a numeric argument by setting this variable
nonzero. The value of the numeric argument is in theiter variable.

has-feature Default: varies

Epsilon runs under various operating systems. Some OS versions of Epsilon have a few features
that others lack. An EEL function may test bits in this variable to check if certain features are
available.

hex-overtype-mode Preference Default:0

Set this variable to one if you want hex mode to begin in its overtype submode. Seehex-mode.

html-asp-coloring Preference Default:1

This variable tells Epsilon how to syntax highlight scripts embedded in<% %> delimiters in
HTML documents. Zero means use a single color, 1 means color as Javascript, 2 means color as
VBScript.

html-auto-indent Preference Default:6

This variable controls indentation when Epsilon auto-fills, breaking lines in HTML mode. Bits
in the variable control whether Epsilon auto-indents in specific regions of the document. The 1
bit makes Epsilon auto-indent after auto-filling outside script blocks. The 2 bit makes Epsilon
auto-indent after auto-filling in script blocks that use C mode (like JavaScript blocks). The 4 bit
makes Epsilon auto-indent after auto-filling in script blocks that use Visual Basic mode (like
VBScript blocks).

html-auto-show-delim-chars Default:"<>"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in HTML mode. Epsilon will search for and highlight the match
of each delimiter.

html-javascript-coloring Preference Default:1

This variable tells Epsilon how to syntax highlight scripts marked as Javascript embedded in
HTML documents. Zero means use a single color, one means color as Javascript, 2 means color
as VBScript.

html-other-coloring Preference Default:1

This variable tells Epsilon how to syntax highlight scripts marked with an unknown language
name embedded in HTML documents. Zero means use a single color, one means color as
Javascript, two means color as VBScript.

243

html-php-coloring Preference Default:1

This variable tells Epsilon how to syntax highlight scripts marked with<? ?> delimiters
embedded in HTML documents. Zero means use a single color, one means color as Javascript,
2 means color as VBScript.

html-vbscript-coloring Preference Default:2

This variable tells Epsilon how to syntax highlight scripts marked as VBscript embedded in
HTML documents. Zero means use a single color, one means color as Javascript, 2 means color
as VBScript.

http-proxy-exceptions Preference Default:
"|localhost|127.0.0.1|"

When Epsilon uses a proxy server, it still directly connects to host names in this list. Each entry
must have a — character before and after.

http-proxy-port Preference Default:0

If you want Epsilon to use a proxy server to retrieve web pages, set its port number here, and set
http-proxy-server to the proxy server’s name. Zero means no proxy.

http-proxy-server Preference Default:""

If you want Epsilon to use a proxy server to retrieve web pages, set its name here, and set
http-proxy-port to the appropriate port setting.

http-user-agent Preference Default:""

When Epsilon retrieves a web page in response to an http URL, it identifies itself to the web
server as “Epsilonversionnumber”. Set this variable to force Epsilon to use a different name.

idle-coloring-delay Preference Buffer-specific Default:100

When Epsilon isn’t busy acting on your keystrokes, it looks through the current buffer and
assigns colors to the individual regions of text, so that Epsilon responds faster as you scroll
through the buffer. For smoother performance, Epsilon doesn’t begin to do this until it’s been
idle for a certain period of time, specified by this variable. Set it to the number of hundredths of
a second to wait before computing more coloring information. With its default value of100,
Epsilon waits one second. Set it to-1 to disable background code coloring.

idle-coloring-size System Buffer-specific Default:1000

While waiting for the next keystroke, Epsilon syntax-highlights the rest of the current buffer to
improve performance. It highlights in small sections. This variable determines the size of each
section. Some language modes highlight faster when they can work with larger sections.

ignore-error Preference Default: none

This variable holds a regular expression that commands likenext-error use to filter out any
error messages Epsilon should skip over, even if they match the error pattern. For example, if
ignore-error contains the pattern “.*warning”, Epsilon will skip over any error
messages that contain the word “warning”.

244 CHAPTER 6. VARIABLES

ignore-file-extensions Preference Default:"|.obj|.exe|.o|.b|"

This variable contains a list of file name extensions for Epsilon to ignore during file name
completion. Each extension must appear surrounded by ‘|’ characters.

ignore-kbd-macro Default:0

When theignore-kbd-macro variable is nonzero, Epsilon suspends any running keyboard
macros and doesn’t retrieve keys from them. When zero (the default), Epsilon retrieves keys
from a keyboard macro before handling keys from the keyboard.

ignoring-file-change System Buffer-specific Default:0

Epsilon sets this variable nonzero when the user says to temporarily ignore file date warnings.
Seewant-warn.

in-echo-area Default:0

Thein-echo-area variable controls whether the cursor is positioned at point in the buffer,
or in the echo area at the bottom of the screen. Thesayput() primitive sets this variable,
say() resets it, and it is reset after each command.

in-perl-buffer System Buffer-specific Default:0

Epsilon’s C mode uses this to record if the current buffer is really in Perl mode (which is
implemented as a variant of C mode).

in-shell-buffer System Buffer-specific Default:0

Epsilon’s Perl mode uses this to record if the current buffer is really in Shell mode (which is
implemented as a variant of Perl mode).

include-directories Preference Default:""

Thefind-linked-file command, in C/C++/Java buffers, edits the file named by the#include
directive on the current line. Epsilon knows a few standard places to look for#include files,
but if Epsilon doesn’t find yours, set this variable to a list of directories where Epsilon should
look, in addition to the standard places. Separate the directory names with colons under Unix,
with semicolons elsewhere.

indent-comment-as-code Preference Default:1

If nonzero, commenting commands indent lines containing only a comment to the same
indentation as other text.

indent-with-tabs Preference Buffer-specific Default:1

If zero, Epsilon indents using only space characters, not tab characters.

245

indents-separate-paragraphs Preference Buffer-specific Default:0

Blank lines and̂ L characters always separate paragraphs. If the variable
indents-separate-paragraphs has a nonzero value, then a paragraph also begins at a
nonblank line that starts with a tab or a space.

info-path-non-unix Preference Default:%x..n info;%x

Epsilon’s info mode looks for Info files in each of the directories named by this variable (but see
info-path-unix for the Unix equivalent). Separate the directory names with semicolons.
The sequence %x tells Epsilon to substitute the directory containing its executable.

info-path-unix Preference Default:
/usr/local/lib/info:/usr/local/info:/usr/info

Under Unix, Epsilon’s info mode looks for Info files in each of the directories named by this
variable. (Seeinfo-path-non-unix for the non-Unix equivalent). Separate the directory
names with colons. The sequence %x tells Epsilon to substitute the directory containing its
executable.

info-recovering System Default:0

Epsilon’s info mode uses this variable internally to record whether it’s currently recovering
from failing to reach a missing node.

initial-tag-file Preference Default:"default.tag"

This variable holds the name of the tag file Epsilon will search for. If it holds a relative
pathname, Epsilon will search for the file in the current directory tree. If
initial-tag-file holds an absolute pathname, Epsilon will always use that tag file.

insert-default-response Preference Default:1

If this variable is1, at many prompts Epsilon will insert a default response before you start
typing. The default response will be highlighted, so typing any text will remove it. If you turn
off typing-deletes-highlight, you may wish to set this variable to0.

While prompting for text, Epsilon can temporarily set this variable to other values. A value of2
makes Epsilon insert its default text without highlighting it. This means the text won’t
automatically be deleted when you begin typing. A value of3 inserts the default text, doesn’t
highlight it, and prepares to modify your file name response as you type it. See the description
of prompt-with-buffer-directory.

insert-file-remembers-file Preference Default:0

Set this nonzero and theinsert-file andwrite-region commands will prompt with the name of
the last inserted or written file as the default. Set it to zero and they’ll offer the current buffer’s
directory as a default.

invisible-window System Window-specific Default:0

If nonzero, Epsilon won’t display the text of the window (although it will display the border, if
the window has one). Epsilon won’t modify the part of the screen that would ordinarily display
the window’s text.

246 CHAPTER 6. VARIABLES

is-current-window System Default: none

An EEL program may set a highlighted region to be controlled by this variable to signal that the
region should only be displayed in the current window, not in other windows that display the
same buffer.

is-gui Default: varies

Theis-gui variable indicates whether a graphical version of Epsilon is running. In pure-text
versions of Epsilon, this variable is zero. When the 32-bit Windows version of Epsilon runs
under Windows NT/W2K/XP, it sets this variable to2. Under Windows 95/98/ME, it sets this
variable to3. The variable is1 when the 32-bit version runs under Windows 3.1 using the
Win32S package (though this is not supported). The 16-bit version of Epsilon for Windows 3.1
always sets this variable to4.

is-unix Default: varies

This variable is nonzero if Epsilon for Unix is running. It’s set to the constantIS_UNIX_XWIN
if Epsilon is running as an X program, orIS_UNIX_TERM if Epsilon is running as a curses
program.

is-win32 Default: varies

This variable is nonzero if a version of Epsilon for 32-bit Windows is running, either the GUI
version or the Win32 console version. The constantIS_WIN32_GUI represents the former.
The constantIS_WIN32_CONSOLE represents the latter.

iter Default:1

Epsilon indicates that a command has received a numeric argument by setting thehas-arg
variable nonzero, and settingiter to the value of the numeric argument.

kbd-extended Default: varies

This variable tells whether the-ke flag was used to make the numeric pad and cursor pad keys
distinct. Normally, both are treated the same, and this variable is zero. If you give the-ke flag,
Epsilon treats these as separate sets of keys, and makes the variable nonzero.

key Default: none

This holds the value of the last key pressed, or a special code indicating a mouse event.

key-code Default: none

This variable contains the sixteen-bit BIOS encoding for the last key that Epsilon received from
the operating system. Its ASCII code is in the low eight bits and its scan code is in the high
eight bits. This variable is always0 under Windows or Unix, when the key comes from a
macro, or (under DOS) when Epsilon translates a key without using the BIOS.

247

key-from-macro Default: varies

This variable is nonzero whenever the most recent key (or mouse event) came from a keyboard
macro, not an actual keypress.

key-is-button System Default: varies

When you click on a button in a dialog, Epsilon returns a particular fixed keystroke: Ctrl-M, the
abort key specified by theabort-key variable, or the help key specified by theHELPKEY
macro. To distinguish actual keys from these buttons, Epsilon sets thekey_is_button
variable to zero when returning normal keys, and to 1 when returning one of these button keys.

key-repeat-rate Preference Default:40

Under DOS and Windows, this variable controls the rate at which keys repeat in Epsilon, in
repeats per second. Setting this variable to 0 lets the keyboard determine the repeat rate, as it
does outside of Epsilon. Setting this variable to -1 makes keys repeat as fast as possible.
Epsilon never lets repeated keys pile up; it automatically ignores repeated keys when necessary.

key-type Default: none

This variable has a special code that identifies the type of key pressed. Epsilon uses the key type
to implement its auto-quoting facility.

kill-buffers Preference Default:10

This variable holds the maximum number of kill buffers, for holding killed text. Setting this
variable to a new value makes Epsilon throw away the contents of all the kill buffers the next
time you execute a command that uses kill buffers.

kill-rectangle-removes Preference Default:0

This variable controls the behavior of thekill-rectangle command. If zero, it replaces the
rectangular block with spaces. If nonzero, it removes the columns of the rectangular block
entirely shifting text to the left, like thedelete-rectangle command.

last-index Default: none

Thedo_command() primitive copies the name table index it receives as a parameter into this
variable, just before it executes the indicated command, so the help system can find the name of
the current command (among other uses).

last-show-spaces System Buffer-specific Default:0

Epsilon records the previous value of theshow-spaces variable here, to detect changes to it.

last-window-color-scheme System Default:0

When Epsilon has been set to display its tiled windows without borders (via thetoggle-borders
command), it uses this variable to help assign separate color schemes to the individual windows.

248 CHAPTER 6. VARIABLES

latex-2e-or-3 Preference Default:1

Set this variable to0 if you want LaTeX mode commands liketex-italic on Alt-i to insert a
LaTeX 2.09 command, instead of a LaTeX 2e/3 command. (For example,tex-italic inserts
n textit in LaTeX 2e/3 mode, andn it otherwise.)

leave-blank Default:0

When Epsilon is about to exit, it normally redisplays each mode line one last time just before
exiting, but only if this variable is zero.

line-in-window Default: none

On each screen refresh, Epsilon sets this variable to the line of point within the current window,
counting from zero. If you switch windows or move point, Epsilon will not update this variable
until the next refresh.

load-fail-ok System Default:0

If Epsilon cannot autoload a called EEL function, it will report an error. An EEL subroutine
may set this variable nonzero to make Epsilon silently ignore such a function call.

load-from-state Default: varies

Epsilon sets this variable to1 if it loaded its functions from a state file at startup, or0 if it
loaded only from bytecode files.

locate-path-unix Preference Default:
"/f*bin*,etc,home*,lib,opt,root,usr*,var*g/**/"

Under Unix, thelocate-file command uses this variable to decide where to look for a file. It
contains part of an extended file pattern that should match those directories where Epsilon
should look. The specified file name will be appended to this value. It’s a good idea to make
sure special file systems like /proc are not matched by the pattern.

macro-runs-immediately Default:1

When an EEL function says to run a keyboard macro, Epsilon can do it two ways. Normally
Epsilon enters a recursive edit loop, and executes keys from the macro. When the macro ends,
Epsilon exits the recursive edit loop, and returns to the EEL function that said to run the macro.
This makes keyboard macros behave like functions.

Epsilon can instead simply queue the macro’s keys, without employing any loop. Then when an
EEL function says to run a keyboard macro, Epsilon just records the fact that it’s running a
macro and immediately returns to the EEL function. Later when Epsilon is ready for more input
(perhaps long after the original macro-queuing function has returned), it begins to use the
macro’s keys. An EEL function can get this behavior by temporarily setting the
macro-runs-immediately variable to zero prior to executing a keyboard macro.

major-mode System Buffer-specific Default:
"Fundamental"

This variable holds the name of the current major mode for this buffer.

249

margin-right Preference Buffer-specific Default:70

This variable holds the current fill column, or right margin. (Also seec-fill-column for
the C mode equivalent.)

mark Buffer-specific Default: none

This variable holds the buffer position of the mark. Several commands operate on the current
region. The text between the mark and point specifies the region.

mark-to-column Window-specific Default:-1

The window-specificmark-to-column variable lets you position the mark in a part of a
window where there are no characters. Epsilon uses this variable when it displays a region that
runs to the mark’s position. It’s normally-1, so Epsilon highlights up to the actual buffer
position of the mark. If it’s non-negative in the current window, Epsilon highlights up to the
specified column instead. Epsilon resetsmark-to-column to -1 whenever the buffer
changes, or the mark moves from where it was when you last setmark-to-column. (Epsilon
only checks these conditions when it redisplays the window, so you can safely move the mark
temporarily.)

mark-rectangle-expands Preference Default:0

Normally themark-rectangle command begins defining a zero-width rectangle, setting point
and mark the same. If this variable is nonzero, that command makes the new rectangle have a
width of 1 at the start, by adjusting the current position.

mark-unhighlights Preference Default:0

When Epsilon is already displaying a highlighted region, region-marking commands like
mark-rectangle normally change the type of the region. For example,mark-rectangle will
change a highlighted line region into a rectangular region. If this variable is nonzero, such
commands will instead remove the highlighting when Epsilon is already displaying a
highlighted region of the desired type. For example,mark-line-region will turn off
highlighting if Epsilon is displaying a line region. If this variable is zero, Epsilon does nothing
when the correct type of highlighted region is already being displayed.

matchdelim Preference Default:1

If nonzero, typing),], org in C mode displays the corresponding (, [, orf using the
show-matching-delimiter command.

matchend Default: none

Most of Epsilon’s searching primitives set this variable to the far end of the match from the
original buffer position.

matchstart Default: none

Most of Epsilon’s searching primitives set this variable to the near end of the match from the
original buffer position.

250 CHAPTER 6. VARIABLES

max-initial-windows Preference Default:3

When you name several files on Epsilon’s command line, Epsilon reads all the named files. But
it only displays up to this many in separate windows.

mem-in-use Default: varies

This variable holds the amount of space Epsilon is now using for miscellaneous storage (not
including buffer text).

mention-delay Preference Default:0

Themention() primitive displays its message only after Epsilon has paused waiting for user
input formention-delay tenths of a second. When Epsilon prompts for another key, it often
displays its prompt in this way.

menu-bar-flashes Preference Default:2

When you select an item on the menu bar, Epsilon flashes the selected item. This variable holds
the number of flashes. (DOS, OS/2, Unix only.)

menu-bindings Preference Default:1

If nonzero, Epsilon puts the key bindings of commands into its menu bar. (DOS, OS/2, Unix
only.)

menu-command System Default: varies

When the user selects an item from a menu or the tool bar, Epsilon for Windows returns a
special key code,WIN_MENU_SELECT, and sets themenu_command variable to the name of
the selected command.

menu-file Preference Default:"epsilon.mnu"

Epsilon stores the name of the file it is using to display the menu bar in this variable, in all
environments except Windows. Also seegui-menu-file.

menu-stays-after-click Preference Default:1

By default, when you click on the menu bar but release the mouse without selecting a
command, Epsilon leaves the menu displayed until you click again. Set the
menu-stays-after-click variable to zero if you want Epsilon to remove the menu when
this happens. (DOS, OS/2, Unix only.)

menu-width Preference Default:35

This variable contains the width of the pop-up window of matches that Epsilon creates when
you press ‘?’ during completion. (DOS, OS/2, Unix only.)

251

menu-window System Default: none

This variable stores the window handle of the current menu bar, or zero if there is none. (DOS,
OS/2, Unix only.)

merge-diff-var Preference Default:"DIFFVAR"

Themerge-diff command stores the name of the #ifdef variable you select here.

message-history-size Preference Default:20000

Epsilon keeps a history of prior messages displayed in the echo area in the buffer
#messages#. The oldest messages are deleted from the top of the buffer whenever it exceeds
this size in bytes. If this variable is zero, most commands avoid writing their messages to a
#messages# buffer.

minimal-coloring Preference Default:0

Set theminimal-coloring variable to 1 to tell Epsilon to limit the amount of coloring it
does in order to make code coloring faster. For C files, Epsilon will color all identifiers,
keywords, numbers, function calls and punctuation the same, using the c-ident color class for
all. Epsilon will still uniquely color comments, preprocessor lines, and strings.

mode-end Preference Default:" %d%p %s%f"

This specifies the part of the mode line after the square brackets. Epsilon substitutes various
values for the following sequences in the mode line, as follows:

%c The current column number, counting columns from 0.

%C The current column number, counting columns from 1.
%d The current display column, with a< before it, and a space after. However, if

the display column has a value of0 (meaning horizontal scrolling is enabled,
but the window has not been scrolled), or-1 (meaning the window wraps long
lines), Epsilon substitutes nothing.

%D The current display column, but if the display column is-1, Epsilon
substitutes nothing.

%f The name of the current function (in buffers where Epsilon can determine this).

%l The current line number.
%m Epsilon substitutes the text “More ”, but only if characters exist past the end

of the window. If the last character in the buffer appears in the window, Epsilon
substitutes nothing.

%P Epsilon substitutes the percentage of point through the buffer, followed by a
percent sign.

%p Epsilon substitutes the percentage of point through the buffer, followed by a
percent sign. However, if the bottom of the buffer appears in the window,
Epsilon displays Bot instead (or End if point is at the very end of the buffer).
Epsilon displays Top if the top of the buffer appears, and All if the entire buffer
is visible.

%s Epsilon substitutes “* ” if the buffer’smodified flag has a nonzero value,
otherwise nothing.

252 CHAPTER 6. VARIABLES

%S Epsilon substitutes “*” if the buffer’smodified flag has a nonzero value,
otherwise nothing.

%h Epsilon substitutes the current hour in the range 1 to 12.

%H Epsilon substitutes the current hour in military time in the range 0 to 23.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

%a Epsilon substitutes “am” or “pm” as appropriate.

Note: For the current time, use a sequence like%2h:%02n%a for “3:45 pm” or
%02H:%02n:%02e for “15:45:21”.

%% Epsilon substitutes a literal “%” character.

%< Indicates that redisplay may omit text to the left, if all of the information will
not fit.

%> Puts any following text as far to the right as possible.

For any numeric substitution, you may include a number between the% and the letter code,
giving the field width: the minimum number of characters to print. You can use the same kinds
of field width specifiers as C’sprintf() function. The sequence%4c expands to
“hSpaceihSpaceihSpacei9”, %04c expands to “0009”, and%-4c expands to
“9hSpaceihSpaceihSpacei”.

Also see the variablesmode-start andshow-when-idle.

mode-extra System Buffer-specific Default: none

Epsilon displays this text at the end of the mode line. Internet commands use this to display
transfer status via theset_mode_message() subroutine.

mode-line-at-top Preference Default:0

If nonzero, Epsilon puts each window’s mode line above the corresponding buffer text.

mode-line-position Preference Default:3

Themode-line-position variable specifies how to position the title text in a tiled
window. To set it in an EEL function, use one of the following macros defined in codes.h.
(These are the same as those used by thewindow_title() primitive.) The
TITLELEFT(n)macro, which is defined as(1 + (n)), positions the titlen characters from
the left edge of the window. TheTITLERIGHT(n)macro, defined as(-(1 + (n))),
positions the titlen characters from the right edge of the window. TheTITLECENTER macro,
defined as0, centers the title in the window.

mode-line-shows-mode Preference Default:1

If the variablemode-line-shows-mode is non-zero, when Epsilon constructs a mode line
for a tiled window, it will include the name of the current major mode plus any minor modes in
effect, and enclose the result in an appropriate number of square bracket pairs (to indicate the
current recursion depth). When this variable is zero, Epsilon omits this information and just
includes the file and/or buffer name, plus the information specified by themode_start and
mode_end variables.

253

mode-start Preference Default:" "

This specifies the part of the mode line before the file or buffer name. Epsilon substitutes
various values for the following sequences in the mode line, as follows:

%c The current column number, counting columns from 0.

%C The current column number, counting columns from 1.

%d The current display column, with a< before it, and a space after. However, if
the display column has a value of0 (meaning horizontal scrolling is enabled,
but the window has not been scrolled), or-1 (meaning the window wraps long
lines), Epsilon substitutes nothing.

%D The current display column, but if the display column is-1, Epsilon
substitutes nothing.

%f The name of the current function (in buffers where Epsilon can determine this).

%l The current line number.

%m Epsilon substitutes the text “More ”, but only if characters exist past the end
of the window. If the last character in the buffer appears in the window, Epsilon
substitutes nothing.

%P Epsilon substitutes the percentage of point through the buffer, followed by a
percent sign.

%p Epsilon substitutes the percentage of point through the buffer, followed by a
percent sign. However, if the bottom of the buffer appears in the window,
Epsilon displays Bot instead (or End if point is at the very end of the buffer).
Epsilon displays Top if the top of the buffer appears, and All if the entire buffer
is visible.

%s Epsilon substitutes “* ” if the buffer’smodified flag has a nonzero value,
otherwise nothing.

%S Epsilon substitutes “*” if the buffer’smodified flag has a nonzero value,
otherwise nothing.

%h Epsilon substitutes the current hour in the range 1 to 12.

%H Epsilon substitutes the current hour in military time in the range 0 to 23.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

%a Epsilon substitutes “am” or “pm” as appropriate.

Note: For the current time, use a sequence like%2h:%02n%a for “3:45 pm” or
%02H:%02n:%02e for “15:45:21”.

%% Epsilon substitutes a literal “%” character.

%< Indicates that redisplay may omit text to the left, if all of the information will
not fit.

%> Puts any following text as far to the right as possible.

For any numeric substitution, you may include a number between the% and the letter code,
giving the field width: the minimum number of characters to print. You can use the same kinds
of field width specifiers as C’sprintf() function. The sequence%4c expands to
“hSpaceihSpaceihSpacei9”, %04c expands to “0009”, and%-4c expands to
“9hSpaceihSpaceihSpacei”.

Also see the variablesmode-end andshow-when-idle.

254 CHAPTER 6. VARIABLES

modified Buffer-specific Default:0

If nonzero, the buffer has been modified since it was last read or written.

monochrome Default: varies

This variable is nonzero if Epsilon believes it is running on a monochrome display.

mouse-auto-off Preference Default:1

If nonzero, Epsilon automatically stops displaying the mouse cursor when you start to type on
the keyboard.

mouse-auto-on Preference Default:1

If nonzero, Epsilon automatically displays the mouse cursor when it detects mouse motion.

mouse-center-yanks Preference Default:2

This variable controls the action of the center mouse button, when that button is bound to the
mouse-center command as it usually is. A value of0 means the button pans, by calling the
mouse-pan command. A value of1 means the button yanks text from a kill buffer or clipboard
by callingmouse-yank. A value of2, the default, makes Epsilon yank under Unix, and pan in
other environments.

mouse-cursor-attr Default:0x77

When Epsilon displays the mouse cursor as a reverse-highlighted character cell (rather than a
graphic arrow symbol), it toggles the bits of the color attribute code of the underlying screen
character according to the value of this variable. (DOS, OS/2 only.)

mouse-cursor-char Default:0

When Epsilon displays the mouse cursor as a reverse-highlighted character cell (rather than a
graphic arrow symbol), it replaces the character under the mouse cursor with this character. If
zero, Epsilon doesn’t change the character, but merely highlights it according to
mouse-cursor-attr. (DOS, OS/2 only.)

mouse-dbl-selects System Buffer-specific Default:0

This variable controls what double-clicking with a mouse button does in a particular buffer. If
zero, double-clicking selects words. If nonzero, Epsilon instead runs the command bound to the
hNewlinei key.

mouse-display Default: none

If nonzero, Epsilon is now displaying a mouse cursor. When Epsilon turns on the mouse cursor
automatically due to mouse movement, it sets this variable to2.

255

mouse-goes-to-tag Buffer-specific Default:0

If nonzero, double-clicking with the right mouse button on a subroutine name in this buffer
makes Epsilon for DOS or Epsilon for OS/2 go to the definition of that subroutine using the
pluck-tag command. (In Epsilon for Windows, use the right mouse button’s context menu to
jump to a definition.)

mouse-graphic-cursor Default: varies

If nonzero, Epsilon displays the mouse cursor as a graphic arrow symbol (DOS only). If zero,
Epsilon uses a reverse-highlighted character cell for the mouse cursor. Epsilon sets this variable
at startup based on the operating environment and the presence of the-kc flag.

mouse-mask Default:0x2B

Only show mouse events that match bits in this variable.

0x01 MASK_MOVE

0x02 MASK_LEFT_DN

0x04 MASK_LEFT_UP

0x08 MASK_RIGHT_DN

0x10 MASK_RIGHT_UP

0x20 MASK_CENTER_DN

0x40 MASK_CENTER_UP

mouse-panning System Default:0

Epsilon uses this variable to help it autoscroll when you click the middle mouse button (on
three-button or wheeled mice).

mouse-pixel-x Default: none

This variable contains the horizontal mouse position, in the most accurate form Epsilon
provides.

mouse-pixel-y Default: none

This variable contains the vertical mouse position, in the most accurate form Epsilon provides.

mouse-screen System Default: varies

All keys that represent mouse movements or button activity set themouse_screen variable
to indicate which screen their coordinates refer to. All tiled windows are on the main screen,
screen 0. When Epsilon for Windows creates a dialog box containing one or more Epsilon
windows, each Epsilon window has its own screen number.

mouse-selection-copies Preference Default:2

When you select text with the mouse under Unix, Epsilon copies it to a kill buffer (and the
clipboard), likecopy-region does. Set this variable to zero to change that behavior. A value of
0 means selecting text doesn’t copy it. A value of1 means selecting text copies it too. A value
of 2, the default, makes Epsilon copy under Unix, but not in other environments.

256 CHAPTER 6. VARIABLES

mouse-shift Default: none

Bits in this variable indicate which shift keys were depressed at the time the current mouse
event was enqueued.

mouse-x Default: none

This variable contains the vertical mouse position as a line number on the screen (counting from
line zero at the top).

mouse-y Default: none

This variable contains the horizontal mouse position as a column number on the screen
(counting from column zero on the left).

must-build-mode Buffer-specific Default:0

Epsilon “precomputes” most of the text of each mode line, so it doesn’t have to figure out what
to write each time it updates the screen. Setting this variable nonzero warns Epsilon that mode
lines must be rebuilt for all windows displaying this buffer. Epsilon resets the variable to zero
after every screen update.

narrow-end Buffer-specific Default:0

Epsilon ignores the lastnarrow-end characters of the buffer, neither displaying them nor
allowing any other access to them. But Epsilon does include them when it writes the buffer to a
file, and counts them in the total size of the buffer.

narrow-start Buffer-specific Default:0

Epsilon ignores the firstnarrow-start characters of the buffer, neither displaying them nor
allowing any other access to them. But Epsilon does include them when it writes the buffer to a
file, and counts them in the total size of the buffer.

national-keys-not-alt Preference Default:2

When Epsilon for Unix runs as a curses-style terminal program (not an X program), it can
interpret key codes in the range 128–255 either as national characters (accented characters) or
as Alt versions of other characters. Set this variable to1 for the former interpretation or0 for
the latter one. Any other value makes Epsilon for Linux provide national characters, and
Epsilon for FreeBSD provide Alt keys. (This is intended to accommodate the different console
settings on the two systems.) If you need to type accented characters in Epsilon for FreeBSD
when it runs outside X, set this variable to1.

near-pause Preference Default:50

Thefind-delimiter andshow-matching-delimiter commands pause this many hundredths of a
second, when they don’t have to reposition the screen to a different part of the buffer in order to
show the matching delimiter.

257

need-rebuild-menu System Default:0

Epsilon sets this nonzero to indicate that it must rebuild the contents of its menu bar.

new-buffer-translation-type Preference Default:5

When you create a new buffer or file, Epsilon sets itstranslation-type variable to this
variable’s value. The translation type determines how Epsilon writes or reads a buffer.

A value of0 (FILETYPE_BINARY) makes Epsilon do no line translation,1
(FILETYPE_MSDOS) makes Epsilon striphReturni characters when reading and insert them
when writing,2 (FILETYPE_UNIX) makes Epsilon do no line translation, but indicates that
the file contains text,3 (FILETYPE_MAC) makes Epsilon replacehReturni characters with
hNewlinei characters when reading, and replacehNewlinei characters withhReturni characters
when writing.

The default,5 (FILETYPE_AUTO), makes Epsilon use the usual type for this operating
system: Unix files under Unix, MS-DOS files elsewhere.

Also seedefault-translation-type.

new-c-comments Preference Default:1

If nonzero, Epsilon creates a comment in C mode using the // syntax, rather than the /* */
syntax. Changing this setting won’t affect buffers already in C mode; restarting Epsilon is one
way to make the change take effect.

new-file-ext Preference Default:".c"

Thenew-file command creates new buffers with an associated file name that uses this
extension. Some modes look at the extension of a buffer’s file name to determine how to
behave; for example, C mode’s syntax highlighting sets its list of keywords differently for C++
buffers than for C buffers.

new-file-mode Preference Default:"c-mode"

Thenew-file command creates new buffers set to use this mode. The specified mode-setting
command will be run to initialize the buffer.

new-search-delay Preference Default:250

In commands that present a list of choices and automatically search through the list when you
type text, Epsilon uses this variable to determine how long a delay must transpire between
keystrokes to signal the start of new search text. The delay is in .01 second units. For example,
if you type “c”, then immediately “o”, Epsilon will move to the first entry in the list that starts
with “co”. But if you pause for more thannew-search-delay before typing “o”, Epsilon
begins a new search string and goes to the first entry that starts with “o”.

Currently only theedit-variables command does this kind of searching.

258 CHAPTER 6. VARIABLES

normal-cursor Preference Default:98099

This variable holds the shape of the cursor in insert mode (as opposed to overwrite mode). It
contains a code that specifies the top and bottom edges of the cursor, such as 3006, which
specifies a cursor that begins on scan line 3 and extends to scan line 6 on a character box. The
topmost scan line is scan line 0.

Scan lines above 50 in a cursor shape code are interpreted differently. A scan line number of 99
indicates the highest-numbered valid scan line (just below the character), 98 indicates the line
above that, and so forth. For example, a cursor shape like 1098 produces a cursor that extends
from scan line 1 to the next-to-last scan line, one scan line smaller at top and bottom than a full
block cursor.

Seenormal-gui-cursor for the Windows or X equivalent.

normal-gui-cursor Preference Default:100002

This variable holds the shape of the caret (the text cursor) in insert mode (as opposed to
overwrite mode) in the Windows and X versions of Epsilon. It contains a code that specifies the
height and width of the caret and a vertical offset, each expressed as a percentage of the size of
a character in pixels. For example, a width of 100 indicates a caret just as wide as a character.
Values close to 0 or 100 are absolute pixel counts, so a width of 98 is two pixels smaller than a
character. A width of exactly zero means use the default width.

All measurements are from the top left corner of the character cell. A nonzero vertical offset
moves the caret down from its usual starting point at the top left corner.

In EEL programs, you can use theGUI_CURSOR_SHAPE()macro to combine the three
values into the appropriate code; it simply multiplies the height by 1000 and the offset by
1,000,000, and adds both to the width. So the default Windows caret shape of
GUI_CURSOR_SHAPE(100, 2, 0), which specifies a height of 100% of the character size
and a width of 2 pixels, is encoded as the value 100,002. The value 100100 provides a block
cursor, while 99,002,100 makes a good underline cursor. (It specifies a width of 100%, a height
of 2 pixels, and an offset of 99 putting the caret down near the bottom of the character cell.) The
CURSOR_SHAPE()macro serves a similar purpose for DOS and OS/2 versions of Epsilon.

The X version of Windows can only change the cursor shape if you’ve provided an
Epsilon.cursorstyle:1 resource, and it doesn’t use the offset.

only-file-extensions System Default: none

If non-null, file name completion only finds files with extensions from this list. Each extension
must include the. character and be surrounded by| characters.

opsys Default: varies

Theopsys variable tells which operating system version of Epsilon is running, using the
following macros defined in codes.h.OS_DOS, defined as 1, indicates the DOS version or one
of the Windows versions is running. (See theis-gui variable to distinguish these.)OS_OS2,
defined as 2, indicates the OS/2 version is running.OS_UNIX, defined as 3, indicates the UNIX
version is running.

over-mode Preference Buffer-specific Default:0

If nonzero, typing ordinary characters doesn’t insert them between existing characters, but
overwrites the existing characters on the line.

259

overwrite-cursor Preference Default:0099

This variable holds the shape of the cursor in overwrite mode (as opposed to insert mode). See
the description ofnormal-cursor for details. Seeoverwrite-gui-cursor for the
Windows or X equivalent.

overwrite-gui-cursor Preference Default:100100

This variable holds the shape of the caret (the text cursor) in overwrite mode (as opposed to
insert mode) in the Windows or X versions of Epsilon. See the description of
normal-gui-cursor for details.

paging-centers-window Preference Default:1

If the paging-centers-window variable is nonzero, thenext-page andprevious-page
commands will leave point on the center line of the window when you move from one page to
the next. Set this variable to zero if you want Epsilon to try to keep point on the same screen
line as it pages. Whenpaging-centers-window is zero, these commands won’t position
point at the start (end) of the buffer when you page up (down) from the first (last) screenful of
the buffer, as they normally do.

paging-retains-view Default:0

If the paging-retains-view variable is nonzero when Epsilon displays a buffer in a
pop-up window, scrolling up or down past the end of the buffer won’t remove the pop-up
window. Epsilon will ignore attempts to scroll too far.

path-list-char Preference Default:
’;’, or ’:’ in Unix

This variable contains the character separating the directory names in a configuration variable
like EPSPATH.

path-sep Preference Default:’n’, or ‘/’ in Unix

This variable contains the preferred character for separating directory names. It is normally ‘n’.
You may change it to ‘/’ if you prefer Unix-style file names. Epsilon will then display file
names with ‘/’ instead of with ‘n’. (Epsilon for Windows currently ignores this setting. So does
Epsilon for DOS when running under Windows. Under Unix, this variable is normally set to ‘/’
and should not be changed.)

perl-align-contin-lines Preference Default:48

By default, the Perl indenter tries to align continuation lines under parentheses and other
syntactic items on prior lines. If Epsilon can’t find anything on prior lines to align with, or if
aligning the continuation line would make it start past column
perl-align-contin-lines, Epsilon uses a fixed indentation: two levels more than the
original line, plus the value of the variableperl-contin-offset (normally zero).

Set this variable to zero if you don’t want Epsilon to ever try to align continuation lines under
syntactic features in previous lines. If zero, Epsilon indents continuation lines by one level
(normally one tab stop), plus the value of the variableperl-contin-offset (which may
be negative).

260 CHAPTER 6. VARIABLES

perl-auto-show-delim-chars Preference Default:"[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in Perl mode. Epsilon will search for and highlight the match of
each delimiter.

perl-brace-offset Preference Default:0

In Perl mode, Epsilon offsets the indentation of a left brace on its own line by the value of this
variable. Theperl-closeback variable also helps to control this placement.

perl-closeback Preference Default:1

If nonzero, Perl mode aligns a right brace character that ends a block with the line containing
the matching left brace character. If zero, Perl mode aligns the right brace character with the
first statement inside the block.

perl-contin-offset Preference Default:0

In Perl mode, Epsilon offsets its usual indentation of continuation lines by the value of this
variable. The variable only affects lines that Epsilon can’t line up under the text of previous
lines.

perl-indent Preference Buffer-specific Default:0

Perl mode indents each additional level of nesting by this many columns. If the variable is less
than or equal to zero, Epsilon uses the value oftab-size instead. Set this variable if you
want Epsilon to use one number for displaying tab characters, and a different number for
indenting Perl code. (Epsilon will indent using a combination of spaces and tabs, as necessary.)

perl-label-indent Preference Default:0

This variable provides the indentation of lines starting with labels in Perl mode. Normally,
Epsilon moves labels to the left margin.

perl-tab-override Preference Default:8

If you want the width of a tab character in Perl mode buffers to be different than in other
buffers, set this variable to the desired value. Perl mode will change the buffer’s tab size to the
specified number of columns.

perl-top-braces Preference Default:0

Epsilon indents the braces of the top-level block of a function by the number of characters
specified by this variable. By default, Epsilon puts such braces at the left margin.

perl-top-contin Preference Default:3

Epsilon indents continuation lines outside of any function body by the number of characters
specified by this variable, whenever it cannot find any text on previous lines to align the
continuation line beneath.

261

perl-top-struct Preference Default:8

When a top-level definition appears over several lines, Epsilon indents the later lines by the
number of characters specified in this variable, rather than the value ofperl-top-contin.

perl-topindent Preference Default:1

If nonzero, Epsilon indents top-level statements in a function. If zero, Epsilon keeps such
statements at the left margin.

permanent-menu System Default:0

This variable records whether you want a permanent menu bar. Set it only with the
toggle-menu-bar command. (DOS, OS/2, Unix only.)

permit-window-keys System Default:0

Epsilon only recognizes user attempts to scroll by clicking on the scroll bar, or to resize the
window, when it waits for the first key in a recursive edit level. Within an EEL command, when
an EEL command requests a key, Epsilon normally ignores attempts to scroll, and postpones
acting on resize attempts. An EEL command can set thepermit_window_keys variable to
allow these things to happen immediately, and possibly redraw the screen. Bits in the variable
control these activities: set thePERMIT_SCROLL_KEY bit to permit immediate scrolling, and
setPERMIT_RESIZE_KEY to permit resizing. Setting thePERMIT_WHEEL_KEY bit tells
Epsilon to generate aWIN_WHEEL_KEY key event after scrolling due to a wheel roll on a
Microsoft IntelliMouse.

point Buffer-specific Default: none

This variable stores the current editing position. Its value denotes the number of characters from
the beginning of the buffer to the spot at which insertions happen.

position-window-on-screen-line System Window-specific Default:50

When Epsilon displays a window and discovers that some command has moved point to a part
of the buffer outside the window, it centers the window around point’s new position. Set this
variable to change this positioning. It represents the approximate percentage of window lines
that should appear above point. For instance, a setting of 25 on a 40 line window positions point
near the window’s tenth line.

postscript-auto-show-delim-chars Default:"[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in PostScript mode. Epsilon will search for and highlight the
match of each delimiter.

preserve-filename-case Preference Default:0

Set this variable nonzero to tell Epsilon to use the case of file names exactly as retrieved from
the operating system. By default, Epsilon changes all-uppercase file names like WIN.INI to
lower case like win.ini, except on case-sensitive file systems.

262 CHAPTER 6. VARIABLES

preserve-session Preference Default:6

When this variable is 6, Epsilon writes a session file when it exits, and reads one when it starts.
Set it to 2 to save the session every time you exit, but not to restore the session by default. Set it
to 4 to restore the session normally (see thesession-always-restore variable) but not
to save the session. The value 0 does neither. (The value 1 does both, like 6, for compatibility
with previous versions.)

prev-cmd Default: none

Some commands behave differently depending on what command preceded them. To get this
behavior, the command acts differently ifprev-cmd is set to a certain value and sets
this-cmd to that value itself. Epsilon copies the value inthis-cmd to prev-cmd and then
clearsthis-cmd each time through the main loop.

print-color-scheme Preference Default:""

When Epsilon for Windows prints on color printers, you can tell it to use a different color
scheme than it uses for on-screen display. Put the name of the color scheme in this variable. If
"", Epsilon uses the same color scheme as for on-screen display.

print-destination Preference Default:"lpt1"

For DOS or OS/2, Epsilon’s printing commands record the device name of your printer in this
variable. The printer device name is typically something like LPT1 or COM2.

If the print-destination variable begins with the! character, Epsilon interprets the
remainder of the value as a command line to execute in order to print a file. Epsilon substitutes
the file to be printed for any%f sequence in the command line. For example, if your system
requires you to type “netprint filename” to print a file, setprint-destination to
!netprint %f and Epsilon will run that command, passing it the file name of the temporary
file it generates holding the text to print. Theprint-destination can include any of the
file name template sequences, such as%p for the path to the file to print. (DOS, OS/2 only.)

print-destination-unix Preference Default:"!lpr %f"

Under Unix, this variable tells Epsilon how to print. If it names a file, Epsilon will print by
simply writing text to that file. But if it starts with a! character (as is usual), Epsilon will
interpret the text after the! as a command line to execute in order to print a file.

Epsilon substitutes the file to be printed for any%f sequence in the command line. For
example, if your system requires you to type “netprint filename” to print a file, set
print-destination to !netprint %f and Epsilon will run that command, passing it
the file name of the temporary file it generates holding the text to print. The
print-destination can include any of the file name template sequences, such as%p for
the path to the file to print.

print-doublespaced Preference Default:0

Set this variable nonzero if you want Epsilon for Windows to leave alternate lines blank when
printing.

263

print-heading Preference Default:7

Epsilon for Windows prints a heading at the top of each page. Set this variable to control what it
includes. The value1 makes Epsilon include the file name,2 makes Epsilon include a page
number, and4 makes Epsilon include the current date. You can add these values together; the
default value of7 includes all the above items.

print-in-color Preference Default:1

By default, Epsilon for Windows will print in color on color printers, and in black & white on
non-color printers. You can set the print-in-color variable to0, if you don’t want Epsilon to ever
print in color, or to2 if you want Epsilon to attempt to use colors even if the printer doesn’t
appear to be a color printer. (Some printers will substitute shades of grey.) The value1
produces color printing only on color printers.

print-line-numbers Preference Default:0

Epsilon for Windows will include line numbers in printed output if this variable is nonzero.

print-long-lines-wrap Preference Default:1

Epsilon for Windows will truncate long lines in printed output if this variable is zero. Otherwise
they will be wrapped to the next line.

print-tabs Preference Default:0

If the print-tabs variable is zero, Epsilon will make a copy of any text to be printed and
convert tab characters within it to spaces, prior to sending it to the printer. If you want Epsilon
to send the text to be printed without converting tabs first, set this variable to one.

process-current-directory System Default: varies

When you use a concurrent process, Epsilon stores its current directory in this variable. Setting
this variable switches the concurrent process to a different current directory.

To set the variable from EEL, use the syntaxprocess_current_directory = new
value;. Don’t usestrcpy(), for example, to modify it.

The Windows 95/98/ME (and 3.1) versions of Epsilon only transmit current directory
information to or from the process when the process prompts for input. The DOS version
transmits current directory information immediately. Under OS/2, Epsilon can’t detect or set the
concurrent process’s current directory, so setting this variable has no effect. Under Unix,
Epsilon tries to retrieve the process’s current directory whenever you access this variable, but
setting it has no effect. Under NT/W2K/XP, EEL code scans prompts to detect the process’s
current directory and sets this variable. See the variable
use-process-current-directory for more details.

process-enter-whole-line Preference Default:1

If this variable is nonzero,hEnteri in the concurrent process buffer moves to the end of the
current line before sending it to the process, but only when in a line that has not yet been sent to
the process. If theprocess-enter-whole-line variable is two, Epsilon copies the
current line to the end of the buffer, making it easier to repeat a command.

264 CHAPTER 6. VARIABLES

process-exit-status System Default: varies

Epsilon sets this variable when a concurrent process exits, to indicate its exit code. Before the
process exits, it contains the valuePROC_STATUS_RUNNING.

process-output-to-window-bottom Preference Default:1

When output arrives from the concurrent process, Epsilon scrolls the text so the end of the
output appears on the last line of the window, if possible, like a traditional console window. Set
this variable to zero to disable this feature.

process-pass-drive-directories Preference Default:0

When Epsilon for Windows starts a process, it passes its own current directory settings to the
process. Each drive has its own current directory setting. By default, Epsilon doesn’t pass its
current directory setting for any network or removable drives, because passing current directory
information for these types of drives can be slow. Set this variable to1 if you want Epsilon to
pass its current directory setting for each network drive,2 for each removable drive, or3 for
both.

process-tab-size Preference Default:8

Epsilon sets the displayed width ofhTabi characters in the process buffer to this value.

process-warn-on-exit Preference Default:0

If nonzero, whenever you try to exit Epsilon and a concurrent process is running, Epsilon will
use theexit-process command to try to make it exit. If the process refuses to exit, Epsilon will
warn you before exiting.

prompt-with-buffer-directory Preference Default:2

Theprompt-with-buffer-directory variable controls how Epsilon uses the current
directory at file prompts. When this variable is2, the default, Epsilon inserts the current
buffer’s directory at many file prompts. This makes it easy to select another file in the same
directory. You can edit the directory name, or you can begin typing a new absolute pathname
right after the inserted pathname. Epsilon will delete the inserted pathname when it notices your
absolute pathname. This behavior is similar to Gnu Emacs’s.

Whenprompt-with-buffer-directory is 1, Epsilon temporarily changes to the
current buffer’s directory while prompting for a file name, and interprets file names relative to
the current directory. This behavior is similar to the “pathname.e” extension available for
previous versions of Epsilon.

Whenprompt-with-buffer-directory is 0, Epsilon doesn’t do anything special at file
prompts. This was Epsilon’s default behavior in previous versions.

push-cmd Preference Default:"make"

This variable holds the default command line for running another program. The variable is a
template based on the current file name, so you can set it to automatically operate on the current
file. Epsilon substitutes pieces of the current file name for codes in the template, as follows
(examples are for the file c:ndosnread.me):

265

%p The current file’s path (c:ndosn).
%b The base part of the current file name (read).
%e The extension of the current file name (.me).
%f The full name of the current file (c:ndosnread.me).
%r The name of the file relative to the current directory. (read.me if the current

directory is c:ndos, dosnread.me if the current directory is c:n, otherwise
c:ndosnread.me).

%x The full pathname of the directory containing the Epsilon executable.
%X The full pathname of the directory containing the Epsilon executable, after

converting all Windows long file names to their equivalent short name aliases.

push-cmd-unix-interactive Preference Default:"xterm &"

When Epsilon for Unix runs as an X program, thepush command executes this command when
it needs to start an interactive shell.

python-auto-show-delim-chars Preference Default:"[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in Python mode. Epsilon will search for and highlight the match
of each delimiter.

python-indent Preference Default:4

Each level of indentation in Python mode will occupy this many columns.

python-indent-to-comment Preference Default:1

If nonzero, Python mode typically indents each line to match the previous nonblank line. If
zero, Python mode typically indents each line to match the previous nonblank, noncomment
line.

quiet-write-state Default:0

If this variable is nonzero, thewrite-state command won’t prompt, but simply write the state to
the file it would offer as a default.

readonly-pages Preference Default:1

In a read-only buffer you can use thehSpacei andhBackspacei keys to page forward and back
more conveniently. Other inserting keys display an error message. Set this variable to zero if
you want these keys to display an error message, not page.

readonly-warning Preference Default:3

Bits in this variable control Epsilon’s action when it reads a read-only file:

ROWARN_MSG (1) Epsilon displays a warning message.
ROWARN_BUF_RO (2) Epsilon sets the buffer read-only.
ROWARN_BELL (4) Epsilon beeps.
ROWARN_GREP (8) Postpone the above actions during multi-file search.

Add these together to get multiple actions.

266 CHAPTER 6. VARIABLES

recall-id System Default: none

Epsilon’s line input subroutines let you recall previous responses to each prompt. Epsilon
normally keeps track of which responses go with which prompts by recording the type of
response (file name, buffer name, etc.) and the name of the command that prompted for the text.
A command can tell Epsilon to use a different “handle” for a prompt by setting therecall-id
variable to a string containing the handle. For example, if you wrote three new EEL commands
and wanted them to share previous responses, you could include the linesave_var
recall_id = "my_responses"; in each command prior to calling the input function.

recall-maximum-session Preference Default:40000

Epsilon saves previous responses to all prompts in its session file, so you don’t have to type
them in again. It uses up torecall-maximum-session bytes in a session file for previous
responses, discarding the oldest unrecalled responses when necessary.

recall-maximum-size Preference Default:40000

Epsilon saves previous responses to all prompts, so you don’t have to type them in again. It
retains up torecall-maximum-size bytes of previous responses, discarding the oldest
unrecalled responses when necessary.

recognize-password-prompt Preference Default:3

In telnet and concurrent process buffers, Epsilon looks for a Password: prompt and intercepts it
to help hide your password. Set this variable to zero if you don’t want this feature. Set it to 1 if
you want it only in telnet buffers, 2 if you want it only in concurrent process buffers, or 3 if you
want both. If you disable this feature (or it doesn’t recognize an unusual password prompt), you
can use thesend-invisible command to manually send a password without letting it appear in
the buffer.

recording-suspended System Default:0

Thepause-macro command sets this variable nonzero to indicate that it has suspended
recording of a keyboard macro.

regex-first-end Preference Default:0

If nonzero, Epsilon’s standard regular expression searching commands find the match of the
pattern that ends first, rather than the one that begins first.

regex-shortest Preference Default:0

If nonzero, Epsilon’s standard regular expression searching commands find the shortest match
of the pattern, rather than the longest match.

reindent-after-c-yank Preference Default:10000

When you yank text into a buffer in C mode, Epsilon automatically reindents it. This is similar
to the “smart paste” feature in some other editors. Epsilon won’t automatically reindent very
large blocks of text. This variable specifies the size in characters of the largest block that should
automatically be reindented. Set it to0 to disable automatic reindent in C mode, or-1 to
reindent all text yanked in C mode.

Also see the variablesreindent-c-comments and
reindent-one-line-c-comments.

267

reindent-after-perl-yank Preference Default:0

When you yank text into a buffer in Perl mode, Epsilon automatically reindents it. This is
similar to the “smart paste” feature in some other editors. Epsilon won’t automatically reindent
very large blocks of text. This variable specifies the size in characters of the largest block that
should automatically be reindented. Set it to0 to disable automatic reindent in Perl mode, or
-1 to reindent all text yanked in Perl mode.

reindent-after-yank Preference Default:0

This variable controls whether Epsilon automatically reindents blocks of text you yank into the
current buffer. This is similar to the “smart paste” feature in some other editors. This variable
specifies the size in characters of the largest block that should automatically be reindented. A
value of0 disables automatic reindent in this buffer, and-1 removes any size limitation.
Mode-specific variables likereindent-after-c-yank take precedence over this variable.

reindent-c-comments Preference Default:1

This variable controls how Epsilon indents lines that start a block comment (those that begin
with ‘/*’) and lines that start inside a block comment. If0, Epsilon never changes the
indentation of these lines in commands likeindent-region. If 1, Epsilon reindents these lines,
except when yanking a block of text and automatically reindenting it. If2, Epsilon reindents in
all cases.

reindent-one-line-c-comments Preference Default:1

This variable controls how Epsilon indents comment lines that start with ‘//’. If0, Epsilon never
changes the indentation of these lines in commands likeindent-region. If 1, Epsilon reindents
these lines, except when yanking a block of text and automatically reindenting it. If2, Epsilon
reindents in all cases.

replace-num-changed System Default:0

Thestring_replace() subroutine sets thereplace-num-changed variable to the
number of matches it changed.

replace-num-found System Default:0

Thestring_replace() subroutine sets thereplace-num-found variable to the
number of matches it found.

resize-menu-list System Default:0

An EEL completion function can set this variable nonzero to indicate that if the user tries to list
possible completion choices, the window displaying the choices should be widened if necessary
to fit the widest choice. This variable has no effect on Epsilon windows within GUI dialogs.

restart-concurrent Preference Default:1

When thepush, make, or compile-buffer commands exit from a concurrent process to run a
command non-concurrently, they will restart the concurrent process once the command finishes.
Setrestart-concurrent to zero if you don’t want Epsilon to restart the concurrent
process in this case.

268 CHAPTER 6. VARIABLES

restore-blinking-on-exit Preference Default:0

Under DOS and OS/2, Epsilon normally sets the video mode on EGA/VGA systems to display
bright backgrounds in place of blinking characters. Setrestore-blinking-on-exit
nonzero if you want Epsilon to reset back to blinking characters when it exits.

restore-color-on-exit Preference Default:1

If nonzero, Epsilon for DOS tries to restore the screen color when you exit. If zero (and under
OS/2), Epsilon tries to set the color to the after-exiting color class, as specified with the
set-color command. (Sometimes the operating system environment overrides this and forces a
particular color. DOS, OS/2 only.)

resynch-match-chars Preference Default:15

If you invokecompare-windows again immediately after it has found a difference, the
command will try to resynchronize the windows by moving forward in each window until it
finds a match of at leastresynch-match-chars characters.

return-raw-buttons System Default:0

If you click a button in a dialog under Epsilon for Windows, Epsilon represents the input with
an ordinary key value, such ashEnteri when you click an Ok button. An EEL program can
temporarily set this variable to a nonzero value to retrieve button presses as distinct keys. All
buttons will then appear with the key codeWIN_BUTTON. Use thekey-is-button variable
to distinguish one button from another.

rev-search-key Preference Default:-1

Inside a search command, Epsilon recognizes a key with this key code as a synonym for Ctrl-R,
for pulling in a default search string or changing the search direction.

run-by-mouse System Default:0

If nonzero, this command was run by the mouse, via the menu bar or tool bar.

save-all-without-asking Preference Default:0

Set this variable nonzero if you want thesave-all-buffers command to skip over those buffers
created with the File/New menu item ornew-file command that still lack associated file names.
Instead of prompting for a file name, it will report which buffers it didn’t save.

save-when-making Preference Default:2

If zero, themake command doesn’t warn about unsaved buffers before running another
program. If one, the command automatically saves all unsaved buffers without asking. If two,
Epsilon asks if you want to save the unsaved buffers.

screen-cols System Default: varies

This variable holds the number of columns on the screen.

269

screen-lines System Default: varies

This variable holds the number of lines on the screen.

screen-mode Default: varies

Under DOS, this variable holds the code for the current screen mode at startup, according to the
BIOS. Under other operating systems, Epsilon sets this variable to the BIOS value that most
closely matches the current screen mode.

scroll-at-end Preference Default:1

When you move past the top or bottom edge of the window via theup-line or down-line
commands, Epsilon scrolls the screen by this many lines. Ifscroll-at-end is zero, Epsilon
instead centers the new line in the window.

scroll-bar-type Preference Default:1

Epsilon for 32-bit Windows can display two types of scroll bars. By default
scroll-bar-type is 1, and Epsilon uses a line-based approach, with a “thumb” size that
varies to reflect the number of lines visible in the window relative to the number of lines in the
buffer. On extremely large buffers, this could be slow, so you can set the variable to0 and
Epsilon will use a fixed-size thumb as in previous versions.

scroll-init-delay Preference Default:35

Epsilon delaysscroll-init-delay hundredths of a second after its first scroll due to a
mouse click on the scroll bar, before it begins repeatedly scrolling atscroll-rate lines per
second.

scroll-rate Preference Default:45

Epsilon scrolls by this many lines per second when scrolling due to mouse movements.

search-in-menu Preference Default:0

This variable controls what Epsilon does when you press ‘?’ during completion and then
continue typing a response. If zero, Epsilon moves from the pop-up list of responses back to the
prompt area, and editing keys likehLefti navigate in the response. If nonzero, Epsilon moves in
the pop-up menu of names to the first name that matches what you’ve typed, and stays in the
pop-up window. (If it can’t find a match, Epsilon moves back to the prompt as before.)

search-wraps Preference Default:1

By default, when an incremental search fails, pressing Ctrl-S or Ctrl-R to continue the search in
the same direction makes Epsilon wrap to the other end of the buffer and continue searching
from there. Set this variable to zero to disable this behavior.

see-delay Preference Default:100

Epsilon displays most messages in the echo area for at leastsee-delay hundredths of a
second before replacing them with new messages.

270 CHAPTER 6. VARIABLES

selectable-colors Default: varies

This variable contains the maximum number of color combinations theset-color command lets
you select from.

selected-color-scheme Default: index ofstandard-color

Epsilon keeps the name table index of the current color scheme in this variable.

sentence-end Preference Default:[Omitted]

Epsilon uses this regular expression pattern to find the end of a sentence.

sentence-end-double-space Preference Default:1

Set this variable to zero if you want filling commands and sentence commands to use a single
space at the ends of sentences instead of two.

server-raises-window Preference Default:0

Under X, the-add and-wait flags cause the server instance of Epsilon to try to raise itself in
the window order and set the input focus to itself, if this variable is nonzero, as Epsilon does
under MS-Windows. Some window managers for X will keep programs from altering the
window order in this way.

session-always-restore Preference Default:1

If nonzero, Epsilon reads a session file when starting even if its command line contains file
names. If zero, Epsilon only restores the previous session when no files are specified.

session-default-directory Preference Default: none

If Epsilon finds no session file by searching the current directory tree, it uses a session file in
this directory. But ifsession-default-directory is empty, Epsilon uses the EPSPATH
configuration variable, if there is one, or the root directory.

session-file-name Preference Default: none

If this variable is nonempty, it provides the name of the session file Epsilon should use. If the
name isn’t an absolute pathname, Epsilon can search for files by that name in the current
directory hierarchy.

session-restore-biggest-file Preference Default:300000

To prevent excessive delays when starting, Epsilon won’t automatically restore any files bigger
than this size in bytes when it restores a previous session. If this value is negative, Epsilon
ignores it and restores files of any size.

session-restore-directory Preference Default:2

When Epsilon reads a session file, it can restore the current directory named in that file. If
session-restore-directory is 1, it always does this. If 0, it never restores the current
directory. If 2, the default, it restores the current directory only if the-w1 flag was specified.

271

session-restore-files Preference Default:1

If 0, when Epsilon restores a session, it won’t load any files named in the session, only settings
like previous search strings and command history. If1, Epsilon will restore previous files as
well as other settings. If2, Epsilon will restore previous files only if there were no files
specified on Epsilon’s command line.

session-restore-max-files Preference Default:15

When Epsilon restores a session, it will only reload up to this number of files. Files are
prioritized by time of access in Epsilon, so Epsilon by default restores the 15 files you’ve most
recently edited. If this value is negative, Epsilon ignores it and restores any number of files.

session-tree-root Preference Default:"NONE"

If nonempty, when Epsilon searches for a session file in the current directory tree, it only
examines directories that are children of this directory. For example, if
session-tree-root holdsnjoenproj, and the current directory isnjoenprojnsrc, Epsilon
will search innjoenprojnsrc, thennjoenproj, for a session file. If the current directory is
njoenmisc, on the other hand, Epsilon won’t search at all (sincenjoenmisc isn’t a child of
njoenproj), but will use the rules in the previous paragraph. By default,
session-tree-root is set to an impossible absolute pathname, so searching is disabled.

shell-auto-show-delim-chars Preference Default:"[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in Shell mode. Epsilon will search for and highlight the match of
each delimiter.

shell-shrinks Preference Default:1

Under DOS, this variable helps to determine the amount of memory available to any subprocess
you run. If zero, Epsilon and the process share the available memory. If nonzero, Epsilon
unloads itself from memory until you exit from the process, leaving only a small section of
itself behind. When your program exits, Epsilon reloads itself, leaving you in exactly the same
state as before the shrinking occurred.

shell-tab-override Preference Default:8

If you want the width of a tab character in Shell script buffers to be different than in other
buffers, set this variable to the desired value. Shell mode will change the buffer’s tab size to the
specified number of columns.

shift-selecting System Default:0

Epsilon uses this variable to keep track of whether the currently highlighted selection was
begun by pressing an arrow key while holding down the Shift key. If so, pressing an arrow key
without holding down the Shift key will turn off highlighting.

shift-selects Preference Default:1

If this variable is nonzero, you can select text by using the arrow keys,hHomei, hEndi,
hPageUpi, or hPageDowni while holding down the Shift key.

272 CHAPTER 6. VARIABLES

show-all-variables System Default:0

If zero, commands that offer completion on variable names will only recognize user variables,
those marked with theuser keyword. If nonzero, such commands also list system variables.

show-mouse-choices System Default:0

If nonzero, commands that provide completion immediately display a list of possible choices,
when run via the mouse.

show-spaces Preference Buffer-specific Default:0

Set this variable nonzero to make Epsilon display special symbols on the screen for each
hSpacei, hTabi, or hNewlinei character in the buffer, to make them easily visible. Set it back to
zero to restore the normal display.

show-tag-line Preference Default:2

When Epsilon jumps to a tag, it positions the window so the first line of the definition appears
this many lines from the top of the window.

show-when-idle Preference Default: none

You can set Epsilon to display text in the echo area whenever it’s idle. Theshow-when-idle
variable holds the text to display. It can include any of the following sequences, and Epsilon
will substitute the indicated value for that sequence:

%c Epsilon substitutes the current column number, counting columns from 0.

%C Epsilon substitutes the current column number, counting columns from 1.

%d Epsilon substitutes the current display column, with a< before it, and a space after.
However, if the display column has a value of0 (meaning horizontal scrolling is enabled,
but the window has not been scrolled), or-1 (meaning the window wraps long lines),
Epsilon substitutes nothing.

%D Epsilon substitutes the current display column, but if the display column is-1, Epsilon
substitutes nothing.

%f Epsilon substitutes the name of the current function, class, or similar (in buffers where
Epsilon can determine this).

%l Epsilon substitutes the current line number.

%m Epsilon substitutes the text “More ”, but only if characters exist past the end of the
window. If the last character in the buffer appears in the window, Epsilon substitutes
nothing.

%P Epsilon substitutes the percentage of point through the buffer, followed by a percent sign.

%p Epsilon substitutes the percentage of point through the buffer, followed by a percent sign.
However, if the bottom of the buffer appears in the window, Epsilon displays Bot instead
(or End if point is at the very end of the buffer). Epsilon displays Top if the top of the
buffer appears, and All if the entire buffer is visible.

%s Epsilon substitutes “* ” if the buffer’smodified flag has a nonzero value, otherwise
nothing.

273

%S Epsilon substitutes “*” if the buffer’smodified flag has a nonzero value, otherwise
nothing.

%h Epsilon substitutes the current hour in the range 1 to 12.

%H Epsilon substitutes the current hour in military time in the range 0 to 23.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

%a Epsilon substitutes “am” or “pm” as appropriate.

Note: For the current time, use a sequence like%2h:%02n %a for “3:45 pm” or
%02H:%02n:%02e for “15:45:21”.

%% Epsilon substitutes a literal “%” character.

For any numeric substitution, you may include a number between the% and the letter code,
giving the field width: the minimum number of characters to print. You can use the same kinds
of field width specifiers as C’sprintf() function. The sequence%4c expands to
“hSpaceihSpaceihSpacei9”, %04c expands to “0009”, and%-4c expands to
“9hSpaceihSpaceihSpacei”.

Also see the variablesmode-start andmode-end.

show-when-idle-column Preference Default:48

You can set Epsilon to display text in the echo area whenever it’s idle. Epsilon positions the text
show-when-idle-column columns from the left edge of the screen. Set this variable to a
negative number to make Epsilon count columns from the right edge of the screen instead. For
example, setshow-when-idle-column to -10 to make Epsilon position the text 10
columns from the right edge.

soft-tab-size Preference Buffer-specific Default:0

If nonzero, indenting commands likeindent-rigidly andback-to-tab-stop will indent by this
amount instead of the setting of thetab-size variable.

sort-case-fold Preference Buffer-specific Default:2

When comparing lines of text during sorting, Epsilon folds lower case letters to upper case
before comparison, if thesort-case-fold variable is 1. If thesort-case-fold
variable is 0, Epsilon compares characters as-is. Ifsort-case-fold is 2, Epsilon instead
folds characters only if thecase-fold variable is nonzero.

sort-status Default:1

If nonzero, Epsilon displays progress messages as it sorts. Otherwise, no status messages
appear.

start-make-in-buffer-directory Preference Default:2

Thestart-make-in-buffer-directory variable controls which directory becomes
current when you run themake command. Set the variable to0 if you want each subprocess to
begin with its current directory set to match Epsilon’s. Set the variable to2 if you want each
subprocess to begin in the current buffer’s directory. Set the variable to1 if you want each
subprocess to begin in the current buffer’s directory, and you also want Epsilon to change its
own current directory to match, whenever you start a process. Also see the
start-process-in-buffer-directory variable.

274 CHAPTER 6. VARIABLES

start-process-in-buffer-directory Preference Default:2

Thestart-process-in-buffer-directory variable controls which directory
becomes current when you start a process. Set the variable to0 if you want each subprocess to
begin with its current directory set to match Epsilon’s. Set the variable to2 if you want each
subprocess to begin in the current buffer’s directory. Set the variable to1 if you want each
subprocess to begin in the current buffer’s directory, and you also want Epsilon to change its
own current directory to match, whenever you start a process. Also see the
start-make-in-buffer-directory variable.

state-extension System Default:".sta"

This variable holds the correct extension of state files in this version of Epsilon.

state-file-backup-name Preference Default:"%pebackup%e"

When you write a new state file, Epsilon makes a copy of the old one if the variable
want-state-file-backups is nonzero. Epsilon constructs the backup file name from the
original using the file name template in this variable.

system-window System Window-specific Default:0

If nonzero in a window, user commands that switch windows will skip over this window.

tab-size Preference Buffer-specific Default:8

This variable holds the number of columns from one tab stop to the next. Epsilon expands tab
characters in the buffer to reach the next tab stop. By default, Epsilon also indents in units of
the tab size. Set thesoft-tab-size variable if you want independent settings for the width
of a tab character and the amount to indent.

table-count System Default:0

This variable counts the number of prefix keys like Ctrl-X you’ve typed so far in the current
command.

tag-ask-before-retagging Preference Default:0

If zero, when a tag’s line has changed within a file, Epsilon retags the file automatically and
then searches again. Similarly, when Epsilon can’t find a tag at all, it tries tagging the current
file. If nonzero, Epsilon asks before doing either of these things.

tag-batch-mode System Default:0

Epsilon’s tag facility uses this variable to decide if it should report an error immediately, or just
log it to a buffer.

tag-by-text Preference Default:1

If nonzero, Epsilon includes the entire line that defined a tag in the tag file, so it can search for
the line when the buffer has been modified since tagging. If zero, Epsilon only includes the
offset, saving space in the tag file for files that rarely change.

275

tag-case-sensitive Preference Default:0

Set this variable nonzero if you want tagging to consider MAIN, Main and main to be distinct
tags. By default, typing main will find any of these.

tag-declarations Preference Default:0

Thetag-declarations variable lets you set whether the tagger will tag function or
variable declarations (as opposed to definitions, which Epsilon always tags). If zero (the
default), Epsilon only tags definitions. If one, Epsilon tags function declarations as well. If two,
Epsilon tags variable declarations (which use theextern keyword). If three, Epsilon tags both
types of declarations. You may wish to use this setting to tag the .h header files of library
functions.

tag-extern-decl System Default:0

The C tagger uses this variable to decide if it’s found a variable definition, or just a declaration.

tag-list-exact-only System Default:0

Epsilon’s tag facility uses this variable internally to decide if tag matching should include prefix
matches or only exact matches.

tag-pattern-c System Default:[Omitted]

Thepluck-tag command searches using this regular expression to locate the current tag in
C/C++/Java buffers.

tag-pattern-default System Default:[a-zA-Z0-9_]+

Thepluck-tag command searches using this regular expression to locate the current tag in
buffers without a mode-specific tag pattern.

tag-pattern-perl System Default:[Omitted]

Thepluck-tag command searches using this regular expression to locate the current tag in Perl
buffers.

tag-relative Preference Default:1

If nonzero, Epsilon stores relative pathnames in the tag file whenever it can. If zero, Epsilon
uses only absolute pathnames.

tag-show-percent System Default:0

If nonzero, Epsilon displays a percentage status report while tagging instead of mentioning each
tag it finds. Commands that use tagging to parse a buffer without really generating tags can set
this.

tex-auto-fill-mode Default:1

If nonzero, Epsilon breaks long lines in TeX/LaTeX files using auto-fill mode. If zero, it doesn’t.

276 CHAPTER 6. VARIABLES

tex-auto-show-delim-chars Default:"f[]g"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in TeX mode. Epsilon will search for and highlight the match of
each delimiter.

tex-environment-name Default:"document"

Thetex-environment command uses this variable to hold the name of the last environment you
inserted in TeX mode.

tex-force-latex Preference Buffer-specific Default:1

Some TeX mode commands are slightly different in LaTeX than in pure TeX. Set
tex-force-latex to 1 if all your documents are LaTeX,0 if all your documents are TeX,
or2 if Epsilon should determine this on a document-by-document basis. In that case, Epsilon
will assume a document is LaTeX if it contains anbeginfdocumentg statement or if it’s in a file
with an .ltx extension.

tex-look-back Preference Default:20000

TeX syntax highlighting sometimes needs to look back in the buffer to locate the start of a
paragraph. Long stretches of text without paragraph breaks can make it slow. Set this variable
lower if you want Epsilon to give up sooner and incorrectly color some rare cases.

tex-paragraphs Preference Buffer-specific Default:0

If nonzero, then Epsilon will not consider as part of a paragraph any sequence of lines that each
start with at sign or period, if that sequence appears next to a blank line. And lines starting with
nbegin ornend will also delimit paragraphs.

tex-save-new-environments Preference Default:0

Thetex-environment command lets you easily create a new environment, inserting begin/end
pairs. When it prompts for an environment name, you can type the name of a new environment,
and Epsilon will remember it for the rest of the editing session, offering it for completion. Set
this variable nonzero and Epsilon will also save the new environment name for future sessions.

text-color Window-specific Default:0

This variable contains the color class of normal text in the current window.

this-cmd Default: none

Some commands behave differently depending on what command preceded them. To get this
behavior, the command acts differently ifprev-cmd is set to a certain value and sets
this-cmd to that value itself. Epsilon copies the value inthis-cmd to prev-cmd and then
clearsthis-cmd each time through the main loop.

tiled-border Preference Default:0xAA

This variable holds the border codes Epsilon uses for putting borders at the edges of a tiled
window.

277

tiled-scroll-bar System Default:0

If nonzero, Epsilon constantly displays a scroll bar on tiled windows. Set this with the
toggle-scroll-bar command.

topindent Preference Default:1

If nonzero, Epsilon indents top-level statements in a function. If zero, Epsilon keeps such
statements at the left margin.

translation-type Buffer-specific Default:5

Epsilon uses this variable to record the type of line translation used by the current buffer. The
set-line-translate command sets this variable. To read a new file in a mode other than the
default, type Ctrl-U Ctrl-X Ctrl-F to run thefind-file command with a numeric argument.

type-point Buffer-specific Default: none

This variable holds the position within the process buffer where Epsilon inserts new text from
the process. Epsilon retrieves any text after the type point and sends it as input to the process.
The variable serves a similar purpose in Telnet buffers and buffers involved in FTP transfers.

typing-deletes-highlight Preference Default:1

If this variable is nonzero, pressing a self-inserting key like “j” while text is highlighted deletes
the highlighted selection, replacing it with the key. PressinghBackspacei simply deletes the
text.

If you set this variable to zero, you may wish to set theinsert-default-response
variable to zero also. Then Epsilon won’t automatically insert and highlight your previous
response at various prompts.

undo-flag Buffer-specific Default: none

In addition to buffer changes and movements, Epsilon can record other information in its list of
undoable operations. Each time you set this variable, Epsilon inserts a “flag” in its undo list
with the particular value you specify. When Epsilon is undoing or redoing and encounters a
flag, it immediately ends the current group of undo operations, returns a special code, and puts
the value of the flag it encountered back into theundo_flag variable.

undo-keeps-narrowing System Buffer-specific Default:0

If you use thenarrow-to-region command to hide part of the buffer, and then use theundo
command to undo a change in a hidden part of the buffer,undo removes the narrowing. Some
modes set this variable nonzero to prevent that behavior.

undo-size Preference Buffer-specific Default:500000

Epsilon retains at most this many characters of deleted or changed text in this buffer’s undo
information.

278 CHAPTER 6. VARIABLES

ungot-key Default:-1

If this variable is set to some value other than its usual value of-1, Epsilon uses that value
when it next tries to read a key and setsungot-key to -1 again.

unicode-detection Preference Buffer-specific Default:1

When this variable is 1, Epsilon automatically translates Unicode files that start with a UTF-16
marker (a 4-byte sequence that marks the start of most such files), as it reads or writes them. Set
this variable to 0 to disable such automatic translation. (You can use the
unicode-convert-encoding command to translate manually.) Set this variable to 2 if you want
Epsilon to translate files that appear to be in UTF-16LE (and use only Latin-1 characters) even
if they lack this marker. This last option is only recognized if you also set
unicode-use-latin1 nonzero.

unicode-use-latin1 Preference Buffer-specific Default:0

This option controls how Epsilon translates files encoded in the Unicode UTF-16 format. If
zero, Epsilon translates these as it reads them to the UTF-8 encoding, and performs the opposite
conversion when you save them. If nonzero, Epsilon translates to the Latin 1 encoding instead
of UTF-8.

In UTF-8 format, any characters outside the range 0–127 are represented as multi-byte
sequences of graphic characters. Latin 1 format displays the proper glyph for characters in the
range 128–255, unlike the UTF-8 option, but it will perform no conversion at all if a UTF-16
file contains any characters outside the range 0–255.

use-default System Default:0

If nonzero, every time Epsilon refers to a buffer- or window-specific variable, it uses the default
value instead of the current value.

use-grep-ignore-file-extensions Preference Default:1

Setuse-grep-ignore-file-extensions to zero if you want Epsilon to ignore the
grep-ignore-file-extensions variable, and search all files.

use-process-current-directory Preference Default:1

If the use-process-current-directory variable is 1, the default, Epsilon for
Windows 95/98/ME (or Windows 3.1) and its concurrent process will share a common current
directory. Changing the current directory in Epsilon will change the current directory for the
process, and vice versa. If the variable is 0, Epsilon and its concurrent process will use
independent current directories.

This variable only modifies the behavior of Epsilon for Windows. Epsilon for DOS always
shares the current directory with its process. Under OS/2, Epsilon always uses independent
current directories.

Under Unix, Epsilon tries to retrieve the process’s current directory and use it as the default
directory for the process buffer, but it doesn’t affect Epsilon’s current directory (set with Alt-x
cd), and Epsilon never tries to set the process’s current directory.

Under NT/W2K/XP, Epsilon tries to retrieve the process’s current directory and use it as the
default directory for the process buffer, but it only affects Epsilon’s current directory (set with
Alt-x cd) if this variable is set to 2. Epsilon never tries to set the process’s current directory.

279

user-abort Default:0

Epsilon sets this nonzero when you press the abort key. Commands check this variable and
abort if it’s nonzero.

version Default: varies

This variable holds the current version number of Epsilon in text form, as recorded in the
executable file.

vbasic-auto-show-delim-chars Preference Default:"[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s
auto-show-delimiters feature in Visual Basic mode. Epsilon will search for and highlight the
match of each delimiter.

vbasic-indent Preference Default:3

Each level of indentation in Visual Basic mode will occupy this many columns.

vbasic-indent-subroutines Preference Default:1

If nonzero, the bodies of subroutines will be indented more than the subroutine declaration line
at the top, in Visual Basic mode. Otherwise they will start with the same indentation.

vbasic-indent-with-tabs Preference Default:0

If zero, Epsilon indents using only space characters, not tab characters, in Visual Basic mode.
Thevbasic-mode command initializes theindent-with-tabs variable from this one.

versioned-file-string System Default: varies

This variable holds Epsilon’s version number, formatted so that it can be part of a directory
name. Epsilon for Unix looks for its configuration files in a directory whose name is built from
this string; it also checks this against the variableeel-version to detect version mismatches
between an Epsilon executable and its state file commands.

vga43 Preference Default:0

Under DOS on a VGA board, Epsilon only recognizes 80x43 mode if this variable is nonzero.

virtual-insert-cursor Preference Default:93099

Epsilon uses the cursor shape code specified by this variable whenever the cursor is in virtual
space (between characters) and Epsilon’s overwrite mode is off. See the description of
normal-cursor for details. Seevirtual-insert-gui-cursor for the Windows or X
equivalent.

virtual-insert-gui-cursor Preference Default:50002

Epsilon for Windows or X uses the cursor shape code specified by this variable whenever the
cursor is in virtual space (between characters) and Epsilon’s overwrite mode is off. See the
description ofnormal-gui-cursor for details.

280 CHAPTER 6. VARIABLES

virtual-overwrite-cursor Preference Default:0005

Epsilon uses the cursor shape code specified by this variable whenever the cursor is in virtual
space (between characters) and Epsilon’s overwrite mode is on. See the description of
normal-cursor for details. Seevirtual-overwrite-gui-cursor for the Windows
or X equivalent.

virtual-overwrite-gui-cursor Preference Default:50100

Epsilon for Windows or X uses the cursor shape code specified by this variable whenever the
cursor is in virtual space (between characters) and Epsilon’s overwrite mode is off. See the
description ofnormal-gui-cursor for details.

virtual-space Preference Buffer-specific Default:0

If zero, Epsilon commands only position to places on the screen where there is actual buffer
text. If one, thehUpi andhDowni keys will stay in the same column, even if no text exists there.
If two, in addition tohUpi andhDowni, thehRighti andhLefti keys will move into places
where no text exists.

w-bottom System Default: none

Mouse commands store the bottom edge of the selected window here.

w-left System Default: none

Mouse commands store the left edge of the selected window here.

w-right System Default: none

Mouse commands store the right edge of the selected window here.

w-top System Default: none

Mouse commands store the top edge of the selected window here.

want-auto-save Preference Default:0

If nonzero, Epsilon periodically saves a copy of each unsaved file.

want-backups Preference Buffer-specific Default:0

If 2, Epsilon makes a backup whenever it saves a file. If1, Epsilon makes a backup the first
time it saves a file in a session.

want-bell Preference Default:1

If nonzero, Epsilon beeps to warn you of certain conditions. Variables starting withbell-on-
permit finer control over just when Epsilon beeps.

281

want-code-coloring Preference Buffer-specific Default:1

If this buffer-specific variable is non-zero, Epsilon tries to do code coloring (syntax
highlighting) in the current buffer.

want-cols System Default: varies

This variable holds the value the user specified through the-vc switch, or 0 if the user did not
explicitly specify the number of columns to display via this flag.

want-common-file-dialog Preference Default:1

In Epsilon for Windows, some commands that prompt for files can use the Windows Common
File Dialog. By default, these commands use the dialog if you invoke them from the menu or
tool bar, but not if you invoke them from the keyboard using their bindings. Set this variable to
2 if you want Epsilon to use the Common File Dialog whenever it can. Set the variable to0 to
prevent Epsilon from ever using this dialog. The default value of1 produces the behavior
described above.

want-display-host-name Preference Default:1

Set this variable to0 to keep Epsilon from displaying the computer’s configured host name in
the window title.

want-gui-help Preference Default:1

If this variable is zero, most of the help commands in Epsilon for Windows will avoid using
WinHelp to deliver help, and will instead retrieve help from the text-only edoc file, like
non-Windows versions of Epsilon.

want-gui-help-console Preference Default:1

If this variable is zero, most of the help commands in Epsilon for the Win32 console will avoid
using WinHelp to deliver help, and will instead retrieve help from the text-only edoc file, like
non-Windows versions of Epsilon.

want-gui-menu System Default:1

Epsilon for Windows sets this variable to indicate whether it should display a menu bar.

want-gui-printing Preference Default:1

If this variable is zero, printing commands in Epsilon for Windows won’t use standard
Windows printing features, but instead will print via theprint-destination variable. If
you want Epsilon to run an external command to print a file, set this variable to zero.

want-gui-prompts Preference Default:1

If this variable is zero, Epsilon for Windows will avoid using Windows dialogs in many
commands, and will draw text boxes instead, similar to the non-Windows versions of Epsilon.

282 CHAPTER 6. VARIABLES

want-lines System Default: varies

This variable holds the value the user specified through the-vl switch, or 0 if the user did not
explicitly specify the number of lines to display via this flag.

want-sorted-tags Preference Default:1

If nonzero, Epsilon displays its list of tags alphabetically. If zero, the order depends on the order
in which you tagged the files.

want-state-file-backups Preference Default:1

If nonzero, Epsilon makes a backup whenever you write a new state file.

want-toolbar Preference Default:1

Epsilon uses this variable to remember if the user wants a tool bar displayed, in versions of
Epsilon which support this. Use thetoggle-toolbar command to change this setting.

want-warn Preference Buffer-specific Default:1

If nonzero, before Epsilon saves a file, it checks the time and date of the copy of the file already
on disk (to see if anyone has modified it since you read it into Epsilon), and warns you if the file
has been modified. Epsilon also checks the file each time you switch to a buffer or window
displaying that file, and before you read or write the file.

want-window-borders Preference Default:1

Thetoggle-borders command uses this variable to record whether or not you want borders
between tiled windows. Without borders, Epsilon assigns separate color schemes to each
window.

warn-before-overwrite Preference Default:1

Commands likewrite-region that write to a user-specified file ask for confirmation if the file
already exists. To make Epsilon write over such files without asking, set this variable to0.

was-quoted System Default:0

Epsilon makes this variable nonzero if the last file name you typed included the" character.
Epsilon treats some files patterns differently in this case.

wheel-click-lines Preference Default:-1

Rolling the wheel on a Microsoft IntelliMouse under Windows scrolls by this many lines at
once. A value of0 means scroll by pages. A value of-1 means use the value set in the
IntelliMouse control panel (or, for Unix, 3).

window-bufnum System Window-specific Default: none

This variable holds the buffer number of the buffer Epsilon should display in the current
window.

283

window-caption Preference Default:"Epsilon"

Epsilon for Windows or X sets its caption to this text when the current buffer is not associated
with a file.

window-caption-file Preference Default:"%s - Epsilon"

Epsilon for Windows or X sets its caption to this text when the current buffer is associated with
a file. The%s in the text is replaced by the file name.

window-color-scheme System Window-specific Default:0

If the window-specific variablewindow_color_scheme is non-zero in a window, Epsilon
uses its value in place of theselected_color_scheme variable when displaying that
window.

window-end Window-specific Default: none

On each screen refresh, Epsilon sets this variable to the last buffer position displayed in the
window.

window-handle Default: none

This variable holds the current window’s window handle, a code that uniquely identifies the
window. Setting it switches windows.

window-height Window-specific Default: none

This variable contains the height of the current window in lines, including any mode line or
borders. Setting it changes the size of the window.

window-left Window-specific Default: none

This variable holds the screen coordinate of the left edge of the current window. If the current
window is a pop-window, you can set this variable to move the window around.

window-number Default: none

This variable holds a number that denotes the current window’s position in the window order.
Tiled windows are numbered from the upper-left window, which is numbered zero, to the
lower-right window. Pop-up windows always come after tiled windows in this order, with the
most recently created pop-up window last.

window-overlap Preference Default:2

When scrolling by pages, Epsilon leaves this many lines of overlap between one window of text
and the next (or previous). A negative value forwindow-overlap represents a percentage of
overlap, instead of the number of screen lines.

window-start Window-specific Default: none

This variable holds the buffer position of the first character displayed in the current window.

284 CHAPTER 6. VARIABLES

window-top Window-specific Default: none

This variable holds the screen coordinate of the top edge of the current window. If the current
window is a pop-window, you can set this variable to move the window around.

window-width Window-specific Default: none

This variable contains the width of the current window in characters, including any borders.
Setting it changes the size of the window.

winhelp-display-contents Preference Default:0

If winhelp-display-contents is nonzero, help file menu items created by the
select-help-files command will display the contents page of their help file if you select one
without first highlighting a keyword. If zero, Epsilon will display the keyword index of the help
file.

word-pattern Buffer-specific Default: points to
default_word

This variable points to the regular-expression pattern Epsilon uses to move forward or backward
by a word in the current buffer. Set the variabledefault-word instead to change the pattern
for all buffers, or to change it permanently. (Epsilon for DOS and Epsilon for OS/2 use
default-oem-word instead ofdefault-word.)

yank-rectangle-to-corner Preference Default:1

This variable determines how Epsilon positions point and mark after you yank a rectangular
region. If 1, it puts point at the bottom right corner of the region, and mark at the upper left. If
2, it puts point at the upper left and mark at the lower right. If 3, it puts mark at the upper left
corner, and positions point one line below the bottom left corner (Brief-style). Note that with
this last style, theyank-pop command will not function after yanking a rectangular region.

285

Chapter 7

Changing Epsilon

287

Epsilon provides several ways for you to change its behavior. Some commands enable you to make simple
changes. For example,set-fill-column can change the width of filled lines of text. Commands like
bind-to-key andcreate-prefix-command can move commands around on the keyboard, and using
keyboard macros, you can build simple new commands. The remaining chapters of the manual describe how
to use the Epsilon Extension Language, EEL, to make more sophisticated commands and to modify existing
commands.

Unless you save them, all these types of changes go away when you exit, and you must reload them the
next time you run Epsilon. As you’ll see in the following chapters, extension language changes always exist
in a bytecode file before they exist in Epsilon, so you could load the file again (with theload-bytes
command) to restore changes made with the extension language. You can also save bindings and macros in a
command file (using theinsert-binding andinsert-macro commands), so with some care you could
preserve these types of changes from session to session via command files. However, Epsilon provides an
easier way to preserve changes.

When it starts, Epsilon reads a state file named epsilon.sta containing all of Epsilon’s initial commands,
variables, and bindings. You can change the set of initial commands by generating a new state file with the
Epsilon commandwrite-state on Ctrl-F3.

When Epsilon starts, it usually looks for a state file named epsilon.sta. Alternatively, you can use
Epsilon’s-s flag to make Epsilon load its state from some other file. For example, “epsilon
-sfilename” loads its commands from the file filename.sta.

If you have just a few simple changes to make to Epsilon, you can make them permanent without
learning EEL, the extension language. Simply start Epsilon, make your changes (bind some keys, set a
variable, define some macros) and use thewrite-state command to put the changes in epsilon.sta. Your
customizations will take effect each time you run Epsilon.

Once you’ve learned a little EEL, you may want to modify some of Epsilon’s built-in commands. We
recommend that you keep your modifications to Epsilon in files other than the standard distributed source
files. That way, when you get an update of Epsilon, you will find it easy to recompile your changes without
accidentally loading in old versions of some of the standard functions.

You may find it handy to have a file that loads your changes into a fresh Epsilon, then writes the new
state file automatically. The following simple EEL file, which we’ll call changes.e, uses features described
in later chapters to do just that:

#include "eel.h" /* load standard definitions */

when_loading() /* execute this file when loaded */
{

want_bell = 0; /* turn off the bell */
kill_buffers = 6; /* make 6 kill buffers */
load_commands("mycmds"); /* load my new cmnds */
do_save_state("epsilon"); /* save these changes */

}

Each time you get an update of Epsilon, you can compile this program (typeeel changes outside of
Epsilon) and start Epsilon with its new state file (typeepsilon). Then when you load this file (typeF3
changes hEnteri to Epsilon), Epsilon will make all your changes in the updated version and automatically
save them for next time.

You can change most variables as in the example above. Some variables, however, have a separate value
for each buffer. Consider, for example, the tab size (which corresponds to the value of thetab-size
variable). This variable’s value can potentially change from buffer to buffer. We call this a buffer-specific

288 CHAPTER 7. CHANGING EPSILON

variable. Buffer-specific variables have one value for each buffer plus a special value called the default
value. The default value specifies the value for the variable in a newly created buffer. A state file stores only
the default value of a buffer-specific variable.

Thus, to change the tab size permanently, you must changetab_size’s default value. You can use the
set-variable command to make the change, or an EEL program. The following version of changes.e sets the
default tab size to 5.

#include "eel.h" /* load standard definitions */

when_loading() /* execute this file when loaded */
{

tab_size.default = 5; /* set default value */
load_commands("mycmds"); /* load my new cmnds */
do_save_state("epsilon"); /* save these changes */

}

You cannot redefine a function during that function’s execution. Thus, changing theload-bytes
command, for example, would seem to require writing a different command with the same functionality, and
using each to load a new version of the other. You don’t have to do this, however. Using the-b flag, you can
load an entire system into Epsilon from bytecode files, not reading a state file at all. Epsilon does not
execute any EEL functions while loading commands with the-b flag, so you can redefine any function
using this technique.

To use this technique, first compile all the files that make up Epsilon. If you have a “make” utility
program, you can use the makefile included with Epsilon to do this. Then start Epsilon with the command
epsilon -b. This loads the single bytecode file epsilon.b, which automatically loads all the others.

You can then save the entire system in a state file using thewrite-state command. You may sometimes
find it more convenient to modify the source files and build a new system, instead of using changes.e as
outlined previously (for example, when you have made many changes to commands).

289

Chapter 8

Introduction to EEL

291

8.1 Epsilon Extension Language

The Epsilon Extension Language (EEL) allows you to write your own commands and greatly modify and
customize the editor to suit your style. EEL provides a great deal of power. We used it to write all of
Epsilon’s commands. You can use it to write new commands, or to modify the ones that we provide.

We call EEL anextension languagebecause you use it to extend the editor. Some people call such
thingsmacro languages. We use the term “macro” to refer to the keyboard macros you can create in
Epsilon, or to EEL’s C-like textual macros, but not to the commands or extensions you write in EEL.

EEL has quite a few features that most extension languages don’t:

� Block structure, with a syntax resembling theC programming language.

� Full flow control: if, while, for, do, switch andgoto. Additionally, EEL has a non-local goto facility
provided bysetjmp andlongjmp.

� Complete set of data types, includingintegers, arrays, structures, andpointers. In addition, you
may define new data types and allocate data objects dynamically.

� Subroutines withparameter passing. You may invoke subroutinesrecursively, and can designate
any subroutine a command.

� Rich set ofarithmetic andlogical operators. EEL has all the operators of the C programming
language.

� A powerful set of primitives. We wroteall of Epsilon’s commands in EEL.

� Global variables accessible everywhere, and local variables accessible only in the current routine.
EEL also hasbuffer-specific variables that change from buffer to buffer, andwindow-specific
variables that have a different value in each window.

In addition, the runtime system provides asource level tracing debugger, and anexecution profiler.
(The Windows 3.1 version does not provide the execution profiler).

Epsilon’s source subdirectory contains the EEL source code to all Epsilon’s commands. You may find it
helpful to look at this source code when learning the extension language. Even after you’ve become a
proficient EEL programmer, you probably will find yourself referring to the source code when writing your
own extensions, to see how a particular command accomplishes some task.

8.2 EEL Tutorial

This section will take you step by step through the process of creating a new command using EEL. You will
learn how to use the EEL compiler, a few control structures and data types, and a few primitive operations.
Most importantly, this section will teach you the mechanics of writing extensions in EEL.

As our example, we will write a simplified version of theinsert-file command calledsimple-insert-file.
It will ask for the name of a file, and insert the contents of the file before point in the current buffer. We will
write it a few lines at a time, each time having the command do more until the whole command works.
When you write EEL routines, you may find this the way to go. This method allows you to debug small
sections of code.

Start Epsilon in a directory where you want to create the files for this tutorial. Using thefind-file
command (Ctrl-X Ctrl-F), create a file with the name “learn.e”.

292 CHAPTER 8. INTRODUCTION TO EEL

To write an extension, you:write the source code,compile the source code,load the compiled code,
thenrun the command.

First, we write the source code. Type the following into the buffer and save it:

#include "eel.h" /* standard definitions */

command simple_insert_file()
{

char inserted_file[FNAMELEN];

get_file(inserted_file, "Insert file", "");
say("You typed file name %s", inserted_file);

}

Let’s look at what the source code says. The first line includes the text of the file “eel.h” into this
program, as though you had typed it yourself at that point.

Comments go between /* and */.

The file “eel.h” defines some system-wide constants, and a few global variables. Always include it at
the beginning of your extension files.

The line

command simple_insert_file()

says to define a command with the namesimple_insert_file. The empty parentheses mean that this
function takes no parameters. The left brace on the next line and the right brace at the end of the file delimit
the text of the command.

Each command or subroutine begins with a sequence of local variable declarations. Our command has
one, the line

char inserted_file[FNAMELEN];

which declares an array of characters calledinserted_file. The array has a length ofFNAMELEN. The
constantFNAMELEN (defined in eel.h) may vary from one operating system to another. It specifies the
maximum file name length, including the directory name. The semicolon at the end of the line terminates
the declaration.

The next statement

get_file(inserted_file, "Insert file", "");

calls the built-in subroutineget_file(). This primitive takes three parameters: a character array to store
the user’s typed-in file name, a string with which to prompt the user, and a value to offer as a default. In this
case, the Epsilon will prompt the user with the text between the double quotes (with a colon stuck on the
end). We call a sequence of characters between double quotes astring constant.

When the user invokes this command, the prompt string appears in the echo area. Epsilon then waits for
the user to enter a string, which it copies to the character array. While typing in the file name, the user may
use Epsilon’s file name completion and querying facility. This routine returns when the user hits thehEnteri
key.

The next statement,

say("You typed file name %s", inserted_file);

8.2. EEL TUTORIAL 293

prints in the echo area what file name the user typed in. The primitivesay() takes one or more arguments.
The first argument acts as a template, specifying what to print out. The “%s” in the above format string says
to interpret the next argument as a character array (or a string), and to print that instead of the “%s”. In this
case, for the second argument we providedinserted_file, which holds the name of the file obtained in
the previous statement.

For example, say the user types the file name “foo.bar”, followed byhEnteri. The character array
inserted_file would have the characters “foo.bar” in it when theget_file() primitive returns.
Then the second statement would print out

You typed file name foo.bar

in the echo area.

One way to get this command into Epsilon is to run the EEL compiler to compile the source code into a
form Epsilon can interpret, called a bytecode file. EEL source files end in “.e”, and the compiler generates a
file of compiled binary object code that ends in “.b”. After you do that, you can load the .b file using the
load-bytes command.

But an easier way that combines these steps is to use Epsilon’scompile-buffer command on Alt-F3.
This command invokes the EEL compiler, as if you typed

eel filename

wherefilenameis the name of the file you want to compile, and then (if there are no errors) loads the
resulting bytecode file. You should get the message “learn.b compiled and loaded.” in the echo area.

Now that you’ve compiled and loaded learn.b, Epsilon knows about a command named
simple-insert-file. Epsilon translates the underscores of command names to hyphens, so as to avoid
conflicts with the arithmetic minus sign in the source text. So the namesimple_insert_file in the eel
source code definessimple-insert-file at command level.

Go ahead and invoke the commandsimple-insert-file. The prompt

Insert file:

appears in the echo area. Type in a file name now. You can use all Epsilon’s completion and querying
facilities. If you press ‘?’, you will get a list of all the files. If you type “foo?”, you will get a list of all the
files that start with “foo”.hEsci andhSpacei completion work. You can abort the command with Ctrl-G.

After you type a file name, this version of the command simply displays what you typed in the echo
area.

Let’s continue with thesimple-insert-file command. We will create an empty temporary buffer, read
the file into that buffer, transfer the characters to our buffer, then delete the temporary buffer. Also, let’s get
rid of the line that displays what you just typed. Make the file learn.e look like this:

#include "eel.h" /* standard definitions */

command simple_insert_file()
{

char inserted_file[FNAMELEN];
char *original_buffer = bufname;

get_file(inserted_file, "Insert file", "");
zap("tempbuf"); /* make an empty buffer */
bufname = "tempbuf"; /* use that buffer */
if (file_read(inserted_file, 1) != 0)

294 CHAPTER 8. INTRODUCTION TO EEL

error("Read error: %s", inserted_file);
/* copy the characters */

xfer(original_buffer, 0, size());
/* move back to buffer */

bufname = original_buffer;
delete_buffer("tempbuf");

}

This version has one more declaration at the beginning of the command, namely

char *original_buffer = bufname;

This declaresoriginal_buffer to point to a character array, and initializes it to point to the array
namedbufname.

The value of the variablebufname changes each time the current buffer changes. For this reason, we
refer to such variables asbuffer-specific variables. At any given time,bufname contains the name of the
current buffer. So this initialization in effect stores the name of the current buffer in the local variable
original_buffer.

After theget_file() call, we create a new empty buffer named “tempbuf” with the statement
“zap("tempbuf");”. We then make “tempbuf” the current buffer by setting the bufname variable with
the following.

bufname = "tempbuf";

Now we can read the file in:

if (file_read(inserted_file, 1) > 0)
error("Read error: %s", inserted_file);

This does several things. First, it calls thefile_read() primitive, which reads a file into the current
buffer. It returns 0 if everything goes ok. If the file doesn’t exist, or some other error occurs, it returns a
nonzero error code. The actual return value in that case indicates the specific problem. This statement, then,
executes the line

error("Read error: %s", inserted_file);

if an error occurred while reading the file. Otherwise, we move on to the next statement. The primitive
error() takes the same arguments thatsay() takes. It prints out the message in the echo area, aborts the
command, and drops any characters you may have typed ahead.

Now we have the text of the file we want to insert in a buffer namedtempbuf. The next statement,

xfer(original_buffer, 0, size());

calls the primitivexfer(), which transfers characters from one buffer to another. The first argument
specifies the name of the buffer to transfer characters to. The second and third arguments give the region of
the current buffer to transfer. In this case, we want to transfer characters tooriginal_buffer, which
holds the name of the buffer from which we invoked this command. We want to transfer the whole thing, so
we give it the parameters0 andsize(). The primitivesize() returns the number of characters in the
current buffer.

The last two statements return us to our original buffer and delete the temporary buffer.

The final version of this command adds several more details.

8.2. EEL TUTORIAL 295

#include "eel.h" /* standard definitions */

char region_file[FNAMELEN];

command simple_insert_file() on cx_tab[’i’]

{

char inserted_file[FNAMELEN], *buf;
char *original_buffer = bufname;

int err;

iter = 0;

get_file(inserted_file, "Insert file", region_file);
mark = point;

bufname = buf = temp_buf();
err = file_read(inserted_file, 1);

if (!err)
xfer(original_buffer, 0, size());

bufname = original_buffer;

delete_buffer(buf);
if (err)

file_error(err, inserted_file, "read error");
else

strcpy(region_file, inserted_file);

}

Figure 8.1: The final version ofsimple-insert-file

On the first line, we’ve addedon cx_tab[’i’]. This tells Epsilon to bind the command to Ctrl-X I.
We’ve added a new character pointer variable namedbuf, because we will use Epsilon’stemp_buf()
subroutine for our temporary buffer rather than the wired-in name of “tempbuf”. This subroutine makes up
an unused buffer name and creates it for us. It returns the name of the buffer.

The line

mark = point;

causes Epsilon to leave the region set around the inserted text. Thexfer() will insert its text between mark
and point. We’ve added the lineiter = 0; to make the command ignore any numeric argument. Without
this line, it would ask you for a file to insert over and over, if you accidentally gave it a numeric argument.

We now save the error code thatfile_read() returns so we can delete the temporary buffer in the
event of an error. We also use thefile_error() primitive rather thanerror() because the former will
translate system error codes to text.

Finally, we added the line

char region_file[FNAMELEN];

to provide a default if you should execute the command more than once. Because this definition occurs
outside of a function definition, the variable persists even after the command finishes. Variables defined

296 CHAPTER 8. INTRODUCTION TO EEL

within a function definition (local variables) go away when the function finishes. We copy the file name to
region_file each time you use the command, and pass it toget_file() to provide a default value.

8.2. EEL TUTORIAL 297

Chapter 9

Epsilon Extension
Language

299

This chapter describes the syntax and semantics of EEL, the Epsilon Extension Language. Starting on page
341, we describe the built-in functions and variables (calledprimitives) of EEL. The tutorial that explains
how to compile and load commands into Epsilon begins on page 291. You will find EEL very similar to the
C programming language. A list of differences between EEL and C appears on page 330.

9.1 EEL Command Line Flags

To invoke the EEL compiler, typeeel filename. If you omit the file name, the compiler will display a
message showing its command line options.

Before thefilename, you can optionally specify one or more command line switches. The EEL compiler
looks for an environment variable named EEL before examining its command line, then “types in” the
contents of that variable before the compiler’s real command line. Under 32-bit Windows, the EEL compiler
uses a registry entry named EEL (a “configuration variable”, as described on page 9), not an environment
variable.

The EEL compiler has the following flags:

-dmac!def This flag defines the textual macromac, giving it the definitiondef, as if you had
defined it using the#define command. The syntax-dmacdefines the macromac,
giving it the definition(1). You can also use the syntax-dmac=def, but beware: if you
run EEL via a .BAT or .CMD file, the system will replace any=’s with spaces, and EEL
will not correctly interpret the flag.

-e This flag tells the compiler to exclude definitions from#included files when it writes the
bytecode file. This results in smaller bytecode files. You can safely use this flag when
compiling EEL files other than epsilon.e that only include the file eel.h, but it’s most
useful with autoloaded files. Epsilon will signal an error if you call a function using a
variable whose definition has been omitted by-e in all loaded bytecode files.

-f This flag makes the compiler act as a filter, reading EEL code from stdin instead of a file,
and writing its binary output to stdout. A file name on the command line is still required,
but it is used only for error messages and debugging information.

-F This flag makes the compiler write its binary output to stdout instead of a bytecode file.

-idirectory This flag sets the directories to search for files included with the preprocessor
#include command. Precede each search directory with-i. If you use several-i flags on
the command line, Epsilon will search the directories in the order they appear.

If you don’t specify any search directories, EEL looks for an EPSPATH configuration
variable, which should contain a list of directories, and searches in an “include”
subdirectory of each directory on the EPSPATH. For example, if EPSPATH is
c:nold;d:nnew, EEL searches in c:noldninclude, then in d:nnewninclude. Under 32-bit
Windows, the EEL compiler uses a registry entry named EPSPATH (a “configuration
variable”, as described on page 9), not an environment variable. (In Epsilon for Unix, a
missing EPSPATH variable causes EEL to look in /usr/local/epsilonVER(whereVERis
replaced by text representing the current version, such as 101 for 10.1), then
/usr/local/epsilon and then /opt/epsilon. In other versions, a missing EPSPATH makes
EEL skip this step.)

EEL also searches for included files based on the location of its executable. If the EEL
executable is in c:nsomedirnbin, EEL uses the default include path c:nsomedirninclude.
EEL’s -w flag makes it skip this step. EEL also skips this step under Unix.

300 CHAPTER 9. EPSILON EXTENSION LANGUAGE

EEL always searches the current directory first if the file name in the #include directive
appears between quotes. Then, if there are any-i flags, EEL searches in the specified
directories. Next, EEL searches based on the executable’s location. Finally, if there were
no-i flags, EEL searches based on the EPSPATH setting.

-n Makes the EEL compiler skip displaying its copyright message.

-ofile Sets the output file. Normally EEL constructs the file name for the bytecode file based
on the input file, with the .e extension replaced by “.b”, and puts the bytecode file in the
current directory.

-p Makes the compiler display a preprocessed version of the file.

-q Suppress warning messages about unused local variables and function parameters.

-s Leave out debugging information from the bytecode file. Such a file takes up less space, and
runs a bit faster. If you use this switch, though, you cannot use the debugger on this file,
and the debug key Ctrl-hScroll Locki (except under Windows and Unix) will not work
while such a function executes. We compiled the standard system with the-s flag. You
may wish to recompile some files without this flag so you can trace through functions and
see how they work.

-v Prints a hash mark each time the compiler encounters a function or global variable
definition. Use it to follow the progress of the compiler.

-w This flag tells EEL not to search for included files based on the location of the EEL
executable. See the description of the-i flag above.

An example using these switches is:

eel -s -p -v -dCODE=3 -oout -i/headers source >preproc

9.2 The EEL Preprocessor

EEL includes a preprocessor that can do macro substitution on the source text, among other things. You give
preprocessor commands by including lines that start with “#” in your source text. A backslash character “n”
at the end of a line makes the preprocessor command continue to the next line. This section lists the
available preprocessor commands.

#define identifier replacement-text

This command defines a textual macro namedidentifier. When this identifier appears again in normal
text (not in quotes), it is immediately replaced with the characters in the replacement text.

The rules for legal macro names are the same as the rules for identifiers in the rest of EEL: a letter or the
underscore character “_”, followed by any number of letters, digits, or underscore characters. Identifiers
which differ by case are different identifiers, so mabel, maBel, and MABEL could be three different macros.
For clarity, it’s best to use all upper case names for macros, and avoid such names otherwise.

When the EEL compiler starts, the macro_EEL_ is predefined, with replacement text(1).

Note that these textual EEL macros are not related to keyboard macros. Only the EEL compiler knows
about textual macros; Epsilon has no knowledge of them. You cannot bind a textual macro to a key, for
example. Keyboard macros can be bound to a key, and the EEL compiler doesn’t know anything about them,
only the main Epsilon program. To further confuse matters, other editors refer to their extension languages

9.2. THE EEL PREPROCESSOR 301

as macro languages, and call all editor extensions “macros”. In this manual, we never use the word “macro”
to mean an editor extension written in EEL.

#define identifier(arg1,arg2,arg3,...) replacement-text

A macro with arguments is like a normal macro, but instances of the identifier in normal text must be
followed by the same number of text sections (separated by commas) as there are arguments. Commas
inside quotes or parentheses don’t separate text sections. Each of these text sections replace the
corresponding identifier within the replacement text. For example, the preprocessor changes

#define COLOR(fg, bg) ((fg) + ((bg) << 4))
int modecol=COLOR(8, 3);
int mcol=COLOR(new_col(6,2),name_to_col("green"));

to

int modecol=((8) + ((3) << 4))
int mcol=((new_col(6,2))+((name_to_col("green"))<<4))

The command

#undef identifier

removes the effect of a prior#define for the rest of a compilation.

The command

#include <filename>

inserts the text in another file at this point in the source text.#include’s may be nested. In the above
format, the EEL compiler searches for the file in each of the#include directories specified on the
command line, or in a default location if none were specified. See page 299.

If you use quote marks (" ") instead of angle brackets (< >) around the file name of the#include
command, the EEL compiler will first look in the current directory for the file, before searching the
#include directories as above. With either delimiter, the compiler will ignore attempts to include a single
file more than once in a compilation.

The EEL compiler keeps track of the current source file name and line number to provide error
messages during compilation, and passes this information along in the bytecode file (unless you used the-s
command line option to suppress this). Epsilon then uses this information for the EEL debugger and profiler,
and displays it when certain errors occur. You can change the compiler’s notion of the current line and
source file with the command

#line number "filename"

This makes the compiler believe the current file isfilename, and the#line command appears on line
numberof it. If the file name is omitted, only the line number is changed.

#if constant-expression
. . . text . . .

#endif

The #if command permits sections of the source text to be conditionally included. A constant
expression (defined on page 324) follows the#if. If the value of the constant expression is nonzero, text
from this point to a matching#endif command is included. Otherwise, that region is ignored.

302 CHAPTER 9. EPSILON EXTENSION LANGUAGE

#if constant-expression
. . . text . . .

#else

. . . text . . .
#endif

If an #else command appears between the#if and the#endif, the text following the#else is
ignored whenever the text preceding it is not. In other words, the text following the#else is ignored if the
constant is nonzero.

#ifdef identifier
. . . text . . .

#endif

#ifndef identifier
. . . text . . .

#endif

You can use the#ifdef command in place of the#if command. It ignores text between the
command and a matching#endif if the identifier is not currently defined as a textual macro with the
#define command. The text is included if the macro is defined. The#ifndef command is the same, but
with the condition reversed. It includes the text only if the macro is undefined. Both commands may have an
#else section, as with#if.

9.3 Lexical Rules

Comments in EEL begin with the characters/*, outside of any quotes. They end with the characters*/.
The sequence/* has no effect while inside a comment, nor do preprocessor control lines.

You can also begin a comment with the characters//, outside of quotes. This kind of comment
continues until the end of the line.

9.3.1 Identifiers

Identifiersin EEL consist of a letter or the underscore character “_”, followed by any number of letters,
digits, or underscore characters. Upper case and lower case characters are distinct to the compiler, soAb and
ab are different identifiers. When you load an identifier into Epsilon, Epsilon converts underscores “_” to
hyphens “-” and converts identifiers to lower case. For example, when invoking a command that has been
defined in an EEL source file asthis_command(), you typethis-command. All characters are
significant, and no identifier (or any token, for that matter) may be longer than 1999 characters.

The following identifiers are keywords, and you cannot use them for any other purpose:

if switch struct static
else case union unsigned
for default keytable enum
do goto typedef color_class
while sizeof buffer save_spot

9.3. LEXICAL RULES 303

return char window save_var
break short command spot
continue int on on_exit
user volatile zeroed color_scheme

The keywordson_exit, enum, unsigned, andstatic have no function in the current version of
EEL, but we reserve them for future use.

9.3.2 Numeric Constants

The termnumeric constantcollectively refers to decimal constants, octal constants, binary constants and hex
constants.

A sequence of digits is adecimal constant, unless it begins with the digit 0. If it begins with a 0, it is an
octal constant(base 8). The characters 0x followed by a hexadecimal number are also recognized (the digits
0–9 and the letters a–f or the letters A–F form hexadecimal numbers). These are thehex constants. The
characters 0b followed by a binary number form abinary constant. A binary number contains only the digits
0 and 1.

All numeric constants in EEL are of type int.

9.3.3 Character Constants

Text enclosed in single quotes as in’a’ is acharacter constant. The type of a character constant is int. Its
value is the ASCII code for the character. Instead of a single character, an escape sequence can appear
between the quotes. Each escape sequence begins with a backslash, followed by either an octal or
hexadecimal number (representing the character with that ASCII code) or a letter in the following table. A
backslash followed by any other character represents that character.

The special escape sequences are:

nn newline character,̂J
nb backspace character,ˆH
nt tab character,̂ I
nr return character,̂M
nf form feed character,̂L
nyyy character with ASCII codeyyyoctal
nxhh character with ASCII codehhhexadecimal

For example,’n’’ represents the ’ character,’nn’ represents then character,’n0’ represents the null
character, and’nn’, ’n12’, and’nx0A’, all represent the newline character (whose ASCII code is 12 in
octal notation, base 8, and 0A in hexadecimal, base 16).

Anywhere a numeric constant is permitted, so is a character constant, and vice versa.

9.3.4 String Constants

Text enclosed in double quote characters (such as"example") is astring constant. It produces a block of
storage whose type isarray of char, and whose value is the sequence of characters between the double
quotes, with a null character (ASCII code 0) automatically added at the end. All the escape sequences for
character constants work here too.

304 CHAPTER 9. EPSILON EXTENSION LANGUAGE

The compiler merges a series of adjacent string constants into a single string constant (before
automatically adding a null character at the end). For example,"sample" "text" produces the same
single block of storage as"sampletext".

9.4 Scope of Variables

Variables may have two different kinds of “lifetimes”, orscopes. If you declare a variable outside of any
function declaration, it is aglobal variable. If you declare it inside a function declaration, it is alocal
variable.

A local variable only exists while the function it is local to (the one you declared it in) is executing. It
vanishes when the function returns, and reappears (with some different value) when the function executes
later. If you call the function recursively, each call of the function has its own value for the local variable.
You may also declare a variable to be local to a block, in which case it exists only while code inside the
block is executing. A local variable so declared only has meaning inside the function or block it is local to.

A global variable exists independently of any function. Any function may use it. If functions declared
in different source files use the same global variable, the variable must be declared in both source files (or in
files#included by both files) before its first use. If the two files have different initializations for the
variable, only the first initialization has effect.

If a local variable has the same name as a global variable, the local masks the global variable. All
references in the block to a variable of that name, from the local variable’s definition until the end of the
block it is defined in, are to the local variable. After the end of the block, the name again refers to the global
variable.

You can declare any global variable to bebuffer-specificusing thebuffer keyword. A buffer-specific
variable has a value for each buffer and a default value. The default value is the value the variable has when
you create a new buffer (and hence a new occurrence of the buffer-specific variable). When you refer to a
buffer-specific variable, you normally refer to the part that changes from buffer to buffer. To refer to the
default portion, append “.default” to the variable name. For example, suppose the variablefoo is
buffer-specific. References tofoo would then refer to the value associated with the current buffer. To refer
to the default value, you would use the expressionfoo.default. (The syntax of appending “.default” is
available only when writing EEL programs, not when specifying a variable name toset-variable, for
example.) When you save Epsilon’s state using thewrite-state command, Epsilon saves only the default
value of each buffer variable, not the value for the current buffer.

Global variables may also be declaredwindow-specificusing thewindow keyword. A window-specific
variable has a separate value for each window and a default value. When Epsilon starts from a state file, it
uses the default value saved in the state file to set up the first window. When you split a window, the new
window’s variables start off with the same values as the original window. Epsilon also uses the default value
to initialize each new pop-up window. You can append “.default” to refer to the default value of a
window-specific variable.

9.5 Data Types

EEL supports a rich set of data types. First there are thebasic types:

int These are 32 bit signed quantities. These correspond to integers. The value of an int
ranges from -2,147,483,648 to 2,147,483,647.

9.5. DATA TYPES 305

short These are like ints, except they are only 16 bits. Thus the value ranges from -32768 to
32767.

char These are 8 bit unsigned quantities. They correspond to characters. For example, the
buffer primitivecurchar() returns an object of type char. The values range from 0 to
255.

spot These are references to buffer positions. A spot can remember a buffer position in such a
way that after inserting or deleting characters in the buffer, the spot will still be between
the same two characters. Like pointers, spots can also hold the special value zero. See
page 344.

Besides basic types, there is an infinite set of types derived from these. They are defined recursively as
follows:

pointer If t is some type, thenpointer to tis also a type. Conceptually, this is the address of
some object of type t. When you dereference an object of typepointer to t, the result is of
typet.

array If t is some type, thenarray of t is also a type.

structure If t1, . . . ,tn are types, thenstructure oft1, . . . , tn is also a type. Conceptually,
a structure is a sequence of objects, where thejth object is of typetj .

union If t1, . . . ,tn are types, thenunion of t1, . . . ,tn is also a type. Conceptually, a union is
an object that can be of any of typet1, . . . ,tn at different times.

function If t is a type, thenfunction returning tis also a type.

Any function has a type, which is the type of the value it returns. If the function returns no value, it is of
int type, but it is illegal to attempt to use the function’s value.

Regardless of its type, you may declare any function to be a command (using thecommand keyword) if
it takes no parameters. Commands likenamed-command on Alt-X will then complete on its name, but
there is no other difference between commands andsubroutines(user-defined functions which are not
commands). Functions that the user is expected to invoke directly (by pressing a key, for example) are
generally commands, while functions that act as helpers to commands are generally subroutines. Nothing
prevents an EEL function from calling a command directly, though, and the user can invoke any subroutine
directly as well (providing that it takes no arguments). Though a command may not have arguments, it may
return a value (which is ignored when the user directly invokes it).

9.5.1 Declarations

Declarations in EEL associate a type with an identifier. The structure of EEL declarations mimics the
recursive nature of EEL types.

A declarationis of the form:

declaration:

type-specifier;

type-specifier declarator-list;

declarator-list:

declarator

declarator, declarator-list

306 CHAPTER 9. EPSILON EXTENSION LANGUAGE

A type specifiernames one of the basic types, a structure or union (described on page 308), or a typedef,
a type abbreviation (described on page 310).

type-specifier:

char

short

int

struct struct-or-union-specifier

union struct-or-union-specifier

spot

typedef-name

typedef-name:

identifier

A declarator, on the other hand, specifies the relationship of the identifier being declared to the type
named by the type specifier. If this is a recursive type, the relationship of the identifier’s type to the basic
type of the type specifier is indicated by the form of the declarator.

Declarators are of the following form:

declarator:

identifier

(declarator)

* declarator

declarator[constant-expression]

declarator[]

declarator()

If D is a declarator, then (D) is identical toD. Use parentheses to alter the binding of composed
declarators. We discuss this more on page 310.

9.5.2 Simple Declarators

In the simplest case, the identifier being declared is of one of the basic types. For that, the declarator is
simply the identifier being declared. For example, the declarations

int length;
char this_character;
short small_value;

declare the type of the identifierlength to be int, the type ofthis_character to be char, and the type
of small_value to be short.

If the relationship between the identifier and the type specified in the type specifier is more complex, so
is the declarator. Each type of declarator in the following sections contains exactly one identifier, and that is
the identifier being declared.

9.5. DATA TYPES 307

9.5.3 Pointer Declarators

Pointer declarators are used in conjunction with type specifiers to declare variables of typepointer to t,
wheret is some type. The form of a pointer declarator is

* declarator

SupposeT is a type specifier andD is a declarator, and the declaration “T D;” declares the identifier
embedded inD to be of type “. . .T”. Then the declarationT *D; declares the identifier inD to be of type
“. . . pointer to T”. Several examples illustrate the concept.

int l;
int *lptr;
int **ldblptr;

Clearly, the first declaration declaresl to be of type int. The type specifier isint and the declarator is
l.

The second line is a little more complicated. The type specifier is stillint, but the declarator is
*lptr. Using the rule above, we see thatlptr is a pointer to an int. This is immediately clear from the
above if you substitute “int” forT, and “lptr” for D.

Similarly, the third line declaresldblptr to be a pointer to a pointer to an int.

9.5.4 Array Declarators

Array declarators are used in conjunction with type specifiers to declare objects of typearray of t, wheret is
some type. The form of an array declarator is

declarator[constant-expression]

but you may omit the constant expression if

� An initialized global variable of type “array of . . .” is being defined. (See page 311.) In this case, the
first constant-expression may be omitted, and the size of the array will be calculated from the
initializer.

� A function argument(sometimes called a formal parameter) of type “array of . . .” is being declared.
Since the type of the argument will be changed to “pointer to. . .” (as described on page 329) the first
constant-expression may be omitted.

The rules for constant expressions appear on page 324.

SupposeT is a type specifier andD is a declarator, and the declaration “T D;” declares the identifier
embedded inD to be of type “. . .T”. Then the declarationT (D)[]; declares the identifier to be of type “. . .
array of T”.

As an example, consider:

int (one_dim)[35];
int ((two_dim)[35])[44];

The first line declares the identifierone_dim to be of typearray of int.

The second line declarestwo_dim to bearray of array of int. Clearly, we can have arbitrary
multi-dimensional arrays by declaring the arrays in this manner.

As another example, consider the following:

308 CHAPTER 9. EPSILON EXTENSION LANGUAGE

char (*arg);
char (*argptr)[5];
char *(argary[5]);

From the preceding section, we know that the first line declaresarg to be a pointer to a char. From this
section, we see that the second line declaresargptr to be of typepointer to array of char.

Compare this to the third line, which declaresargary to be of typearray of pointer to char.

When you have mixed declarators as you have in this example, you sometimes can elide parentheses
according to the precedence rules of declarators. See section 9.5.7 for these precedences.

9.5.5 Function Declarators

Function declarators are used in conjunction with type specifiers to declare variables of typefunction
returning t, wheret is some type. The form of a function declarator is

declarator()

or

declarator(ansi-argument-list)

Again, supposeT is a type specifier andD is a declarator, and the declaration “T D;” declares the
identifier embedded inD to be of type “. . .T”. Then the declarationT (D)(); declares the identifier to be
of type “. . . function returning T”.

Consider:

char (c)();
char *(fpc());
char (*pfc)(int count, char *msg);

The first line declaresc to be of typefunction returning char. The second line declaresfpc to be a
function returning pointer to char. The third line declarespfc to be of typepointer to function returning
char. The third example also declares thatpfc requires two parameters and gives their types; the first two
examples provide no information about their functions’ parameters.

9.5.6 Structure and Union Declarations

This section describes how to define variables of typestructure oft1, . . ., tn, wheret1, . . ., tn are each
types. First, we give an informal description, with examples, of how structures are often declared. A more
formal description with BNF diagrams follows.

There is a special type-specifier, called astructure-or-union specifier, that defines structure and union
types. This type-specifier has several forms.

The simplest form is seen in the following example:

struct {
int field1;
char name[30];
char *data;

}

9.5. DATA TYPES 309

The field names of the structure are the identifiers being declared within the curly braces. These
declarations look like variable declarations, but instead of declaring variables, they declarefield names. The
type of a particular field is the type the identifier would have if the declaration were a variable declaration.

The example above refers to a structure with fields namedfield1, name, anddata, with typesint,
array of char, andpointer to char, respectively.

Use the structure-or-union specifier like the other type-specifiers (int, short, char, and spot) in
declarations. For example:

struct {
int field1;
char name[30];
char *data;

} rec, *recptr, recary[4];

declaresrec to be a structure variable,recptr to be a pointer to a structure, andrecary to be an array
of (4) structures.

The structure-or-union-specifier may contain atag, which gives a short name for the entire structure.
For example, the type-specifier in the following example:

struct recstruct {
int field1;
char name[30];
char *data;

};

creates a new type,struct recstruct, that refers to the structure being defined. Given this structure
tag, we may define our structure variables in the following manner:

struct recstruct rec, *recptr, recary[4];

Structure (or union) tags also let you create self-referential types. Consider the following:

struct list {
int data;
struct list *next;

};

struct list list1, list2;

This creates a structure typelist, which has adata field that’s an int, and anext field that is a
pointer to alist structure. A structure may not contain an instance of itself, but may contain (as in this
example) a pointer to an object of its type.

More formally, a structure-or-union-specifier has the following form:

struct-or-union-specifier:
struct-or-union-tag
struct-or-union-tagf member-listg
f member-listg

struct-or-union-tag:

310 CHAPTER 9. EPSILON EXTENSION LANGUAGE

identifier

member-list:

type-specifier declarator-list;

type-specifier declarator-list; member-list

A description of how to use structures and unions in expressions appears on page 324.

9.5.7 Complex Declarators

As some of the examples thus far have shown, you can compose (combine) declarators to yield arbitrarily
complicated types, likefunction returning pointer to an array of 10 chars:

char (*foo())[10];

When composing declarators, function and array declarators have the same precedence. They each take
precedence over pointer declarators. So the example we used in section 9.5.5:

char *(fpc());

could have been written more simply as

char *fpc();.

The rule that EEL follows for declarations is that the identifier involved is to be declared so that an
expression with the form of the declarator has the type of the type specifier. This implies that the grouping
of operators in a declarator follows the same rules as the operators do in an expression.

There are a few restrictions on the combinations of declarators when functions are involved (and so on
the combinations of types). Functions may not return arrays, structures, unions, or functions, but they may
return pointers to any of these. Similarly, functions may not be members of structures, unions, or arrays, but
pointers to functions may be.

9.5.8 Typedefs

typedef-definition:

typedef type-specifier declarator-list;

You can use typedefs to provide convenient names for complicated types. Once you define it, use a
typedef as a type specifier (likeint) in any declaration. A typedef definition looks just like a variable
definition, except that the keywordtypedef appears before the type specifier. The name of the typedef
being defined appears instead of the variable name, and the typedef has the same type the variable would
have had.

Typedefs only serve as abbreviations. They always create types that could be made in some other way.
A variable declared using a typedef is just the same as a variable declared using the full specification. For
example:

typedef short *NAME_LIST;
NAME_LIST nl, narray[20];

is equivalent to

9.6. INITIALIZATION 311

short *nl, *narray[20];

9.5.9 Type Names

EEL’s sizeof operator and its casting operator specify particular types usingtype names. A type name
looks like a declaration of a single variable, except that the variable name is missing (as is the semicolon at
the end). For example,int * is a type name referring to a pointer to an int.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator[constant-expression]
abstract-declarator[]

abstract-declarator()
abstract-declarator(ansi-argument-list)

Note that you could interpret a type name likeint *() in two ways: either as a function returning a
pointer to an int (likeint *foo();) or as a pointer to an int (likeint *(foo);). EEL rules out the
latter by requiring that a parenthesizedabstract-declaratorbe nonempty. Given this, the system is not
ambiguous, and an identifier can appear in only one place in each type name to make a legal declaration.

The same precedence rules apply to type names as to normal declarators (or to expressions). For
example, the type namechar *[10] refers to an array of 10 pointers to characters, butchar (*)[10]
refers to a pointer to an array of 10 characters.

9.6 Initialization

Declarations for the formal parameters of functions work just as described above, but you can additionally
provide local and global variables with a specific initial value.

local-variable-definition:
type-specifier local-declarator-list;

local-declarator-list:
local-declarator
local-declarator, local-declarator-list

local-declarator:
declarator
declarator= expression

You can initialize a local variable with any expression so long as the corresponding assignment would
be permitted. Since you cannot assign to variables with types such as “array of . . .” and “structure of. . .”,
you cannot initialize such local variables at compile time. Local variables (those defined within a block)
have undefined initial values if no explicit initialization is present.

global-variable-definition:
type-specifier global-declarator-list;

312 CHAPTER 9. EPSILON EXTENSION LANGUAGE

global-modifier-list global-declarator-list;
global-modifier-list type-specifier global-declarator-list;

global-modifier-list:
global-modifier
global-modifier global-modifier-list

global-modifier:
buffer

window

zeroed
user

volatile

global-declarator-list:
global-declarator
global-declarator, global-declarator-list

global-declarator:
declarator
declarator= string-constant
declarator= initializer

initializer:
constant-expression
f initializer-list g
f initializer-list , g

initializer-list:
initializer
initializer , initializer-list

You may initialize a global variable of type “array of characters” with a string constant. If you omit the
length of the array in a declaration with such an initialization, it’s set to just contain the initializing string
(including its terminating null character).

If no explicit initialization is specified, variables defined globally are set to zero. If you provide a partial
initialization (for example, if you specify the first 5 characters in a 10 character array), the remainder of the
variable is set to zero. Initializers for global variables must involve only constant expressions known at
compile time, whereas initializers for local variables may involve arbitrary expressions (including function
calls, for example).

When Epsilon loads a file defining an initialized global variable and the variable was already defined to
have the same type, the initialization has no effect: the variable’s value remains the same. If the new
declaration specifies a different type for the variable, however, the variable’s value is indeed changed.
(Actually, Epsilon only compares the sizes of the variables. If you redefine an integer as a four character
array, Epsilon won’t apply the new initialization.) For example, suppose you declarefoo to be an int and
initialize it to 5. If you later load a file which redeclaresfoo to be an int and initializes it to 7, the value of
foo would remain 5. If instead you redeclarefoo to be a char and reinitialize it to’C’, then the value
would change, since the size of a char is different from the size of an int.

To tell Epsilon that it must reinitialize the variable each time it reads a definition, use thevolatile
keyword. Every time you load a bytecode file containing such a variable definition, Epsilon will set the
variable according to its initialization.

If you declare a global variable that is a number, spot, or pointer, the initializer must be a constant
expression. In fact, if the variable is a spot or pointer, you can only initialize it with the constant zero. For
example:

9.7. STATEMENTS 313

int i=3;
char *name="harold";

initializes the int variablei to be 3, and the character pointername to point to the first character in the
string “harold”. The variablename must be a local variable. If it were global, then you could initialize it
only to zero, which is equivalent to not initializing it at all (see above).

If you declare a global array, you can initialize each element of the array. The initializer in this case
would be a sequence of constant expressions, separated by commas, with the whole thing enclosed in braces
fg. Consider the following examples:

int ary1[4] = { 10, 20, 30, 40 };
int ary2[] = { 10, 20, 30, 40 };
int ary3[4] = { 10, 20 };

Here we haveary1 declared to be an array of 4 ints. We initialize the first element in the array to 10,
the second to 20, and so on. The declaration ofary2 does the same thing. Notice that the square brackets in
the declarator are empty. The EEL compiler can tell from the initializer that the size must be 4. The
declaration ofary3 specifies the size of the array, but only initializes the first two elements. The compiler
initializes the remaining two elements to zero.

The initializers for global structures are similar. The items between the curly braces are a sequence of
expressions, with each expression’s type matching the type of the corresponding field name. For example,
the declaration:

struct {
int f1;
char f2;
short f3;

} var = { 33, ’t’, 22 };

declares the variablevar to be a structure with fieldsf1, f2, andf3, with typesint, char, andshort
respectively. The declaration initializes thef1 to 33, the character fieldf2 to ’t’, and the short fieldf3 to
22.

You cannot initialize either unions or local structures. Global pointers may only be initialized to zero
(which is equivalent to not initializing them at all).

If you initialize an array or structure which has subarrays or substructures, simply recursively apply the
rules for initialization. For example, consider the following:

struct {
char c;
int ary1[3];

} var = { ’t’, { 3, 4, 5} };

This declaresvar to be a structure containing a character and an array of 3 ints. It initializes the
character to’t’, and the array of ints so that the first element is 3, the second 4, and the third 5.

9.7 Statements

EEL has all of the statements of the C programming language. You can precede a statement by alabel, an
identifier followed by a colon, which you can use with thegoto statement to explicitly alter the flow of
control. Except where noted below, statements are executed in order.

314 CHAPTER 9. EPSILON EXTENSION LANGUAGE

9.7.1 Expression Statement

expression;

The expression is simply evaluated. This is the form of function calls and assignments, and is the most
common type of statement in EEL.

9.7.2 If Statement

if (expression)

statement

If the value ofexpressionis not zero,statementexecutes. Otherwise control passes to the statement
after theif statement.

if (expression)

statement1

else

statement2

If the value ofexpressionis not zero,statement1executes. If the value ofexpressionis zero, control
passes tostatement2.

9.7.3 While, Do While, and For Statements

while (expression)

statement

In awhile loop, theexpressionis evaluated. If nonzero, thestatementexecutes, and the expression is
evaluated again. This happens over and over until the expression’s value is zero. If the expression is zero the
first time it is evaluated,statementis not executed at all.

do

statement

while (expression);

A do while loop is just like a plainwhile loop, except the statement executesbeforethe expression
is evaluated. Thus, the statement will always be evaluated at least once.

for (expression1; expression2; expression3)

statement

In afor loop, firstexpression1is evaluated. Thenexpression2is evaluated, and if it is zero EEL leaves
the loop and begins executing instructions afterstatement. Otherwise the statement is executed,expression3
is evaluated, andexpression2is evaluated again, continuing untilexpression2is zero.

You can omit any of the expressions. If you omitexpression2, it is like expression2is nonzero.while
(expression) is the same asfor (; expression;). The syntaxfor (;;) creates an endless loop that
must be exited using thebreak statement (or one of the other statements described below).

9.7. STATEMENTS 315

9.7.4 Switch, Case, and Default Statements

switch (expression)
statement

case constant-expression: statement

default: statement

Statements within thestatementfollowing theswitch (which is usually a block, as described below)
are labeled with constant expressions usingcase. Theexpressionis evaluated (it must yield an int), and
Epsilon branches to thecase statement with the matching constant. If there is no match, Epsilon branches
to thedefault statement if there is one, and skips over theswitch statement if not.

A case or default statement associates with the smallest surroundingswitch statement. Each
switch statement must have at most onecase statement with any given value, and at most onedefault
statement.

9.7.5 Break and Continue Statements

break;

This statement exits from the smallest containingfor, while, do while orswitch statement. The
break statement must be the last statement in eachcase if you don’t want execution to “fall through” and
execute the statements for the following cases too.

continue;

Thecontinue statement immediately performs the test for the smallest enclosingfor, while, or
do while statement. It is the same as jumping to the end of thestatementin each of their definitions. In
the case offor, expression3will be evaluated first.

9.7.6 Return Statement

return;

return expression;

Thereturn statement exits from the function it appears in. The first form returns no value, and
produces an error message if you called the function in a way that requires a value. The second form returns
expressionas the value of the function. It must have the same type as you declared the function to be. It is
not an error for the value to be unused by the caller.

If execution reaches the end of a function definition, it is the same as ifreturn; were there.

9.7.7 Save_var and Save_spot Statements

statement:
save_var save-list;

save_spot save-list;
save-list:

save-item

316 CHAPTER 9. EPSILON EXTENSION LANGUAGE

save-item, save-list

save-item:
identifier

identifier= expression
identifier modify-operator expression

identifier++
identifier--

Thesave_var statement tells Epsilon to remember the current value of a variable, and set it back to
its current value when the function that did thesave_var exits. Epsilon will restore the value no matter
how the function exits, even if it calls another function which signals an error, and this aborts out of the
calling function.

You can provide a new value for the variable at the same time you save the old one. Epsilon first saves
the old value, then assigns the new one. You can use any of the assignment operators listed on page 322, as
well as the++ and-- operators.

For example, this command plays a note at 440 Hz for one second, without permanently changing the
user’s variable settings for the bell (in versions of Epsilon that support changing the bell’s frequency and
duration).

command play_note()
{

save_var beep_frequency = 440;
save_var beep_duration = 100;
ding(); /* uses beep_ variables */

}

Thesave_spot statement functions likesave_var, but it creates aspot(see page 344) in the
current buffer to hold the old value. The spot will automatically go away when the function exits. Use
save_spot instead ofsave_var when you wish to save a buffer position, and you want it to stay in the
right place even if the buffer contents change.

Thesave_var andsave_spot statements can apply to global variables with “simple” types: those
that you can directly assign to with the= operator. They don’t work on structures, for example, or on local
variables.

Although thesave_var andsave_spot statements resemble variable declarations, they are true
statements. You can use theif statement (above), for example, to only save a variable in certain cases.
These statements operate with a “stack” of saved values, so that if you save the same variable twice in a
function, only the first setting will have an effect on the final value of the variable. (Repeated save
statements take up space on the saved value stack, however, so they should be avoided.) When you save a
buffer-specific or window-specific variable, Epsilon remembers which buffer’s or window’s value was
saved, and restores only that one.

Therestore_vars() primitive restores all variables saved in the current function. After a
restore_vars(), future modifications to any saved variables won’t be undone.

9.7.8 Goto and Empty Statements

goto label;

label: statement

9.8. CONVERSIONS 317

The next statement executed after thegoto will be the one following thelabel. It must appear in the
same function as thegoto, but may be before or after.

;

This null statement is occasionally used in looping statements, where all the “work” of the loop is done
by the expressions. For example, a loop that calls a functionfoo() repeatedly until it returns zero can be
written as

while (foo()) ;.

9.7.9 Block

f

declarations

statements

g

Anywhere you can have a statement, you can have ablock. A block contains any number of
declarations, followed by any number ofstatements(including zero). The variables declared in the block are
local to the block, and you may only use them in thestatements(or in statements contained in those
statements). The body of a function definition is itself a block.

9.8 Conversions

When a value of a certain type is changed to another type, aconversionoccurs.

When a number of some type is converted to another type of number, if the number can be represented
in the latter type its value will be unchanged. All possible characters can be represented as ints or short ints,
and all short ints can be represented as ints, so these conversions yield unchanged values.

Technically, Epsilon will sign-extend a short int to convert it to an int, but will pad a character with zero
bits on the left to convert it to an int or short int. Converting a number of some type to a number of a shorter
type is always done by dropping bits.

A pointer may not be converted to an int, or vice versa, except for function pointers. The latter may be
converted to a short int, or to any type that a short int may be converted to. A pointer to one type may be
converted to a pointer to another type, as long as neither of them is a function pointer.

All operators that take numbers as operands will take any size numbers (characters, short ints, or ints).
The operands will be converted to int if they aren’t already ints. Operators that yield numbers always
produce ints.

9.9 Operator Grouping

In an expression like

10 op1 20 op2 30

318 CHAPTER 9. EPSILON EXTENSION LANGUAGE

Highest Precedence

l-to-r () [] -> .
r-to-l All unary operators (see below)
l-to-r * / %

l-to-r + -
l-to-r << >>

l-to-r > < >= <=
l-to-r == !=

l-to-r &

l-to-r ˆ
l-to-r |

l-to-r &&
l-to-r ||

l-to-r ? :

r-to-l All assignment operators (see below)
l-to-r ,

Lowest Precedence

Assignment operators are: = *= /= %= += -=

<<= >>= &= ˆ= |=

Unary operators are:* & - ! ˜

++ -- sizeof (type-name)

Figure 9.1: Operator Precedence

the compiler determines the rules for grouping by theprecedenceandassociativityof the operatorsop1and
op2. Each operator in EEL has a certain precedence, with some precedences higher than others. Ifop1and
op2have different precedences, the one with the higher precedence groups tighter. In table 9.1, operators
with higher precedences appear on a line above operators with lower precedences. Operators with the same
precedence appear on the same line.

For example, sayop1is + andop2 is *. Since*’s line appears above+’s, * has a higher precedence
than+ and the expression10 + 20 * 30 is the same as10 +(20 * 30).

If two operators have the same precedence, the compiler determines the grouping by their associativity,
which is either left-to-right or right-to-left. All operators of the same precedence have the same associativity.
For example, supposeop1is - andop2is +. These operators have the same precedence, and associate
left-to-right. Thus10 - 20 + 30 is the same(10 - 20) + 30. All operators on the same line in the
table have the same precedence, and their associativity is given with either “l-to-r” or “r-to-l.”

Enclosing an expression in parentheses alters the grouping of operators. It does not change the value or
type of an expression itself.

9.10. ORDER OF EVALUATION 319

9.10 Order of Evaluation

Most operators do not guarantee a particular order of evaluation for their operands. If an operator does, we
mention that fact in its description below. In the absence of such a guarantee, the compiler may rearrange
calculations within a single expression as it wishes, if the result would be unchanged ignoring any possible
side effects.

For example, if an expression assigns a value to a variable and uses the variable in the same expression,
the result is undefined unless an operator that guarantees order of evaluation occurs at an appropriate point.

Note that parentheses do not alter the order of evaluation, but only serve to change the grouping of
operators. Thus in the statement

i = foo() + (bar() + baz());

the three functions may be called in any order.

9.11 Expressions

9.11.1 Constants and Identifiers

expression:
numeric-constant
string-constant
identifier
color_class identifier

The most basic kinds of expressions are numeric and string constants. Numeric constants are of type
“int”, and string constants are of type “array of character”. However, EEL changes any expression of type
“array of . . .” into a pointer to the beginning of the array (of type “pointer to . . .”). Thus a string constant
results in a pointer to its first character.

An identifier is a valid expression only if it has been previously declared as a variable or function. A
variable of type “array of . . .” is changed to a pointer to the beginning of the array, as described above.

Some expressions are calledlvalue expressions. Roughly, lvalue expressions are expressions that refer
to a changeable location in memory. For example, iffoo is an integer variable andfunc() is a function
returning an integer, thenfoo is an lvalue, butfunc() is not. The& and. operators, the++ and--
operators, and all assignment operators require their operands to be lvalues. Only the*, [], ->, and.
operands return lvalues.

An identifier which refers to a variable is an lvalue if its type is an integer, a spot, a pointer, a structure,
or a union, but not if its type is an array or function.

If an identifier has not been previously declared, and appears in a function call as the name of the
function, it is implicitly declared to be a function returning an int.

If the name of a previously declared function appears in an expression in any context other than as the
function of a function call, its value is a function pointer to the named function. Function pointers may not
point to primitive functions.

For example, iffoo is previously undeclared, the statementfoo(1, 2); declares it as a function
returning an int. If the next statement isreturn foo;, a pointer to the functionfoo() will be returned.

Once a color classnewclass has been declared, you can refer to it by using the special syntax
color_class newclass. This provides a numeric code that refers to the particular color class. It’s

320 CHAPTER 9. EPSILON EXTENSION LANGUAGE

used in conjunction with the primitivesalter_color(), add_region(),
set_character_color(), and others. See page 89 for basic information on color classes, and page
326 for information on declaring color classes in EEL.

9.11.2 Unary Operators

expression:

! expression

* expression

& expression

- expression

˜ expression

sizeof expression

sizeof(type-name)

(type-name) expression

++ expression

-- expression

expression++

expression--

The! operator yields one if its operand is zero, and zero otherwise. It can be applied to pointers, spots,
or numbers, but its result is always an int.

The unary* operator takes a pointer and yields the object it points to. If its operand has type “pointer to
. . .”, the result has type “. . .”, and is an lvalue. You can also apply* to an operand of type “spot”, and the
result is a number (a buffer position).

The unary& operator takes an lvalue and returns a pointer to it. It is the inverse of the* operator, and its
result has type “pointer to . . .” if its operand has type “. . .”. (You cannot construct a spot by applying the&
operator to a position. Use thealloc_spot() primitive described on page 344.)

The unary- and˜ operators work only on numbers. The first negates the given number, and the second
flips all its bits, changing ones to zeros and zeros to ones.

Thesizeof operator yields the size in bytes of an object. You can specify the object as an expression
or with a type name (described on page 311). In the latter case,sizeof returns the size in bytes of an
object of that type. Characters require one byte, shorts two bytes, and ints four bytes. An array of 10 ints
requires 40 bytes, and this is the numbersizeof(int [10]) will give, not 10.

An expression with a parenthesized type name before it is acast. The cast converts the expression to the
named type using the rules beginning on page 317, and the result is of that type. Specify the type using a
type name, described on page 311.

The++ and-- operators increment and decrement their lvalue operands. If the operator appears before
its operand, the value of the expression is the new value of the operand. The expression(++var) is the
same as(var += 1), and(--var) is the same as(var -= 1). You can apply these operators to
pointers, in which case they work as described under pointer addition below.

If the ++ or -- operators appear after their operand, the operand is changed in the same way, but the
value of the expression is the value of the operandbeforethe change. Thus the expressionvar++ has the
same value asvar, butvar has a different value when you reference it the next time.

9.11. EXPRESSIONS 321

9.11.3 Simple Binary Operators

expression:

expression+ expression

expression- expression

expression* expression

expression/ expression

expression% expression

expression== expression

expression!= expression

expression< expression

expression> expression

expression<= expression

expression>= expression

expression&& expression

expression|| expression

expression& expression

expression| expression

expression̂ expression

expression<< expression

expression>> expression

The binary+ operator, when applied to numbers, yields the sum of the numbers. One of its operands
may also be a pointer to an object in an array. In this case, the result is a pointer to the same array, offset by
the number to another object in the array. For example, ifp points to an object in an array,p + 1 points to
the next object in the array andp - 1 points to the previous object, regardless of the object’s type.

The binary- operator, when applied to numbers, yields the difference of the numbers. If the first
operand is a pointer and the second is a number, the rules for addition of pointers and numbers apply. For
example, ifp is a pointer,p - 3 is the same asp + -3.

Both operands may also be pointers to objects in the same array. In this case the result is the difference
between them, measured in objects. For example, ifarr is an array of ten ints,p1 points to the third int,
andp2 points to the eighth, thenp1 - p2 yields the int -5. The result is undefined if the operands are
pointers to different arrays.

The binary* operator is for multiplication, and the/ operator is for division. The latter truncates
toward 0 if its operands are positive, but the direction of truncation is undefined if either operand is negative.
The% operator provides the remainder of the division of its operands, andx % y is always equal tox -
(x / y) * y. All three operators take only numbers and yield ints.

The== operator yields one if its arguments are equal and zero otherwise. The arguments must either
both be numbers, both spots, or both pointers to objects of the same type. However, if one argument is the
constant zero, the other may be a spot or any type of pointer, and the expression yields one if the pointer is
null, and zero otherwise. The!= operator is just like the== operator, but returns one where== would
return zero, and zero where== would return one. The result of either operator is always an int.

The<, >, <=, and>= operators have a value of one when the first operand is less than, greater than, less
than or equal to, or greater than or equal to (respectively) the second operand. The operands may both be
numbers, they may be pointers to the same array, or one may be a pointer or spot and the other zero. In the
last case, Epsilon returns values based on the convention that a null pointer or spot is equal to zero and a
non-null one is greater than zero. The result is undefined if the operands are pointers to different arrays of

322 CHAPTER 9. EPSILON EXTENSION LANGUAGE

the same type, and it is an error if they are pointers to different types of objects, or if one is a spot and the
other is neither a spot nor zero.

The&& operator yields one if both operands are nonzero, and zero otherwise. Each operand may be a
pointer, spot, or number. Moreover, the first operand is evaluated first, and if it is zero, the second operand
will not be evaluated. The result is an int.

The|| operator yields one if either of its operands are nonzero, and zero if both are zero. Each operand
may be a pointer, spot, or number. The first operand is evaluated first, and if it is nonzero, the second
operand will not be evaluated. The result is an int.

The& operator yields the bitwise AND of its numeric operands. The| andˆ operators yields the
bitwise OR and XOR (respectively) of their numeric operands. The result for all three is an int. A bit in the
result of an AND is on if both corresponding bits in its operands are on. A bit in the result of an OR is on if
either of the corresponding bits in its operands are on. A bit in the result of an XOR is on if one of the
corresponding bits in its operands is on and the other is off.

The<< operator yields the first operand with its bits shifted to the left the number of times given by the
right operand. The>> operator works similarly, but shifts to the right. The former fills with zero bits, and
the latter fills with one bits if the first operand was negative, and zero bits otherwise. If the second operand is
negative or greater than 31, the result is undefined. Both operands must be numbers, and the result is an int.

9.11.4 Assignment Operators

expression:
expression= expression
expression modify-operator expression

modify-operator:
+=

-=

*=

/=

%=

&=

|=

ˆ=

<<=

>>=

The plain assignment operator= takes an lvalue (see page 319) as its first operand. The object referred
to by the lvalue is given the value of the second operand. The types of the operands may both be numbers,
spots, pointers to the same type of object, or compatible structures. If the first operand is a pointer or spot
and the second is the constant zero, the pointer or spot is made null. The value of the expression is the new
value of the first operand, and it has the same type.

The other kinds of assignment operators are often used simply as abbreviations. For example, ifa is a
variable,a += (b) is the same asa = a + (b). However, the first operand of an assignment is only
evaluated once, so if it has side effects, they will only occur once.

For example, supposea is an array of integers with values 10, 20, 30, and so forth. Supposep() is a
function that will return a pointer to the first element ofa the first time it’s called, then a pointer to the
second element, and so forth. After the statement*p() += 3;, a will contain 13, 20, 30. After*p() =
*p() + 3;, however,a is certain not to contain 13, 20, 30, sincep() will never return a pointer to the

9.11. EXPRESSIONS 323

same element ofa twice. Because the order of evaluation is unspecified with these operators, the exact
result of the latter statement is undefined (either 10, 13, 30 or 23, 20, 30).

The result of all these assignment statements is the new value of the first operand, and will have the
same type. The special rules for mixing pointers and ints with the+ and- operators also apply here.

9.11.5 Function Calls

expression:

expression()

expression(expression-list)

expression-list:

expression

expression, expression-list

An expression followed by a parenthesized list of expressions (arguments) is a function call. Usually
the first expression is the name of a function, but it can also be an expression yielding a function. (The only
operator that yields a function is the unary* when applied to a function pointer.) The type of the result is the
type of the returned value. If the function returns no value, the expression must appear in a place where its
value is not used. You may call any function recursively.

If an identifier that has not been previously declared appears as the name of the function, it is implicitly
declared to be a function returning an int.

Each argument is evaluated and a copy of its value is passed to the function. Character and short
arguments are converted to ints in the process. Aside from this, the number and type of arguments must
match the definition of the function. The order of evaluation of the arguments to a function is undefined.

Since only a copy of each parameter is passed to the function, a simple variable cannot be altered if its
name only appears as the argument to a function. To alter a variable, pass a pointer to it, and have the
function modify the object pointed to. Since an array is converted to a pointer whenever its name occurs, an
array that is passed to a function can indeed be altered by the function. Numbers, spots, and pointers may be
parameters, but structures, unions, or functions cannot be. Pointers to such things are allowed, of course.

An EEL function can call not just other EEL functions, but also any of Epsilon’s built-in functions,
known as primitives. These are listed in the next chapter. An EEL function can also call a keyboard macro
as a function. The word “function” refers to any of the various types of routines that a command written in
EEL can call. These include other commands or subroutines (themselves written in EEL), primitives that are
built into Epsilon and cannot be changed, and keyboard macros (see page 123). Textual macros that are
defined with the#define preprocessor statement arenot functions.

Each function may require a certain number of arguments and may return a value of a particular type.
Keyboard macros, however, never take arguments or return a value.

9.11.6 Miscellaneous Operators

expression:

expression? expression: expression

expression, expression

expression[expression]

expression-> identifier

expression. identifier

324 CHAPTER 9. EPSILON EXTENSION LANGUAGE

The conditional operator? : has three operands. The first operand is always evaluated first. If nonzero,
the second operand is evaluated, and that is the value of the result. Otherwise, the third operand is evaluated,
and that is the value of the result. Exactly one of the second and third operands is evaluated. The first
operand may be a number, spot, or pointer. The second and third operands may either both be numbers, both
spots, both pointers to the same type of object, or one may be a pointer or spot and the other the constant
zero. In the first case the result is an int, and in the last two cases the result is a spot or a pointer of the same
type.

The, operator first evaluates its first argument and throws away the result. It then evaluates its second
argument, and the result has that value and type. In any context where a comma has a special meaning (such
as in a list of arguments), EEL assumes that any commas it finds are used for that special meaning.

The[] operator is EEL’s subscripting operator. Because of the special way that addition of a pointer
and a number works, we can define the subscripting operator in terms of other operators. The expression
e1[e2] is the same as*((e1)+(e2)), and since addition is commutative, also the same ase2[e1]. In
practice, subscripting works in the expected way. Note that the first object in an array has subscript 0,
however. One of the operands must be a pointer and the other a number. The type of the result is that of the
pointed-to object.

The. operator disassembles structures or unions. Its operand is an lvalue which is a structure or union.
After the. an identifier naming one of the operand’s members must appear. The result is an lvalue referring
to that member.

The-> operator is an abbreviation for a dereference (unary*) followed by a member selection as
above. Its operand is a pointer to a structure or union, and it is followed by the name of one of the structure’s
or union’s members. The result is an lvalue referring to that member. The expression
strptr->membername is the same as the expression(*strptr).membername.

9.12 Constant Expressions

A constant expression is an expression which does not contain certain things. It may not have references to
variables, string constants, or function calls. No subexpressions may have a type of spot, structure, union,
array, or pointer. It may have numeric constants, character constants, and any operators that act on them, and
thesizeof operator may appear with any operand.

The term “the constant zero” means a constant expression whose value is zero, not necessarily a
numeric constant.

9.13 Global Definitions

program:

global-definition

global-definition program

global-definition:

function-definition

global-variable-definition

keytable-definition

typedef-definition

color-class-definition

9.13. GLOBAL DEFINITIONS 325

Each file of EEL code consists of a series of definitions for global variables and functions. Global
variable definitions have the same format as local variable definitions. The first definition of a global
variable Epsilon receives determines the initial value of the variable, and later initializations have no effect,
unless you use thevolatile keyword when defining the variable (see page 312). If the first definition
provides no explicit initialization, the variable is filled with zeros or null pointers as appropriate, depending
on its type.

You can declare any global variable (except a key table or color class) to be buffer-specific by placing
the keywordbuffer before the type specifier. When the definition is first read in, its initializer determines
the value of the variable for each buffer that then exists, and also the default value of the variable. Whenever
you create a new buffer (and hence a new copy of the buffer-specific variable), the variable’s value in that
buffer is set to the default value.

Similarly, you can declare any global variable except a key table or color class to be window-specific by
placing the keywordwindow before the type specifier. When the definition is first read in, its initializer
determines the value of the variable for each window that then exists, and also the default value of the
variable. Whenever you split a window in two, the new window inherits its initial value for the
window-specific variable from the original window. Epsilon uses the default value of a window-specific
variable when it creates the first tiled window while starting up, and when it creates pop-up windows.

Epsilon’swrite-state command writes a new state file containing all variables, EEL functions, macros,
colors, and so forth that Epsilon knows about. The file includes the current values of all numeric variables,
all global character array variables, and any structures or unions containing just these types. But Epsilon
doesn’t save the values of variables containing pointers or spots, and sets these to zero as it writes a state file.
You can put thezeroed keyword before the definition of a variable of any type to tell Epsilon to zero that
variable when it writes a state file.

In commands likeset-variable, Epsilon distinguishes between user variables and system variables, and
only shows the former in its list of variables you can set. By default, each global variable you define is a
system variable that users will not see. Put theuser keyword before a variable’s definition to make the
variable a user variable.

9.13.1 Key Tables

keytable-definition:

keytable keytable-list;

keytable-list:

identifier

identifier, keytable-list

A key table is a set of bindings, one for each key on the keyboard, with keys modified by control, alt,
and shift counted as separate keys. Various mouse actions and system events are also represented by special
key codes. Each entry in the key table contains a short integer, which is an index into the name table. In
other words, each entry corresponds to a named Epsilon object, either a command, subroutine, keyboard
macro, or another key table.

You can declare a key table by using thekeytable keyword in place of the type specifier in a global
variable definition. A key table definition can contain no initialization, justkeytable followed by a list of
comma-separated key table names and a semicolon. A key table acts like an array ofNUMKEYS short ints,
but you can also use it in theon part of a function definition (as described below). (The macroNUMKEYS,
the number of possible keys, is defined in eel.h.)

326 CHAPTER 9. EPSILON EXTENSION LANGUAGE

9.13.2 Color Classes

color-class-definition:

color_class color-class-list;

color_scheme color-scheme-list;

color-class-list:

color-class-item

color-class-item, color-class-list

color-class-item:

identifier

identifiercolor_scheme string-constant color-pair

identifierf color-scheme-spec-listg

identifier color-pair

color-scheme-spec-list:

color-scheme-spec

color-scheme-spec color-scheme-spec-list

color-scheme-spec:

color_scheme string-constant color-pair;

color-scheme-list:

color-scheme-item

color-scheme-item, color-scheme-list

color-scheme-item:

string-constant

string-constantcolor_class identifier color-pair

string-constantf color-class-spec-listg

color-class-spec-list:

color-class-spec

color-class-spec color-class-spec-list

color-class-spec:

color_class identifier color-pair;

color-pair:

= color_class identifier

constant-expression

constant-expressionon constant-expression

A color class specifies a particular pair of foreground and background colors Epsilon should use on a
certain part of the screen, or when displaying a certain type of text. For example, Epsilon uses the color
classc_keyword to display keywords in C-like languages. More precisely, the color class specifies which
foreground/background pair of colors to display under each defined color scheme. If the user selects a
different color scheme, Epsilon will immediately begin displaying C keywords using thec_keyword color
pair defined for the new scheme.

Before you use a color class in an expression likeset_character_color(pos1, pos2,
color_class c_keyword);, you must declare the color class (outside of any function definition)
using thecolor_class keyword:

color_class c_keyword;

9.13. GLOBAL DEFINITIONS 327

When you declare a new color class, you may wish to specify the colors to use for a particular color
scheme using thecolor_scheme keyword:

color_class c_keyword
color_scheme "standard-gui" black on white;

color_class c_keyword
color_scheme "standard-color" green on black;

If you have many color definitions all for the same color class, you can use this syntax:

color_class c_keyword {
color_scheme "standard-gui" black on white;
color_scheme "standard-color" green on black;

};

Similarly, if you have many color definitions for the same color scheme, you can avoid repeating it by
writing:

color_scheme "standard-gui" {
color_class c_keyword black on white;
color_class c_function blue on white;
color_class c_identifier black on white;

};

To specify the particular foreground and background colors for a color class (using the syntax
foregroundon background), you can use these macros defined in eel.h:

#define black MAKE_RGB(0, 0, 0)
#define dark_red MAKE_RGB(128, 0, 0)
#define dark_green MAKE_RGB(0, 128, 0)
#define brown MAKE_RGB(128, 128, 0)
// etc.

See that file for the current list of named colors. These functions use theMAKE_RGB()macro,
providing particular values for red, green, and blue. You can use this macro yourself, in a color class
definition, to specify precise colors:

color_scheme "my-color-scheme" {
color_class c_keyword MAKE_RGB(223, 47, 192) on yellow;

};

There are several other macros useful in color definitions:

#define MAKE_RGB(rd,grn,bl) ((rd) + ((grn) << 8) + ((bl) << 16))
#define GETRED(rgb) ((rgb) & 0xff)
#define GETGREEN(rgb) (((rgb) >> 8) & 0xff)
#define GETBLUE(rgb) (((rgb) >> 16) & 0xff)
#define ETRANSPARENT (0x1000000L)

328 CHAPTER 9. EPSILON EXTENSION LANGUAGE

TheGETRED(), GETGREEN(), andGETBLUE() macros take a color expression created with
MAKE_RGB() and extract one of its three components, which are always numbers from 0 to 255.

TheETRANSPARENTmacro is a special code that may be used in place of a background color. It tells
Epsilon to substitute the background color of the"text" color class in the current color scheme. The
following three examples are all equivalent:

color_class text color_scheme "standard-gui" yellow on red;
color_class c_keyword color_scheme "standard-gui" blue on red;

color_class text color_scheme "standard-gui" yellow on red;
color_class c_keyword color_scheme "standard-gui" blue

on ETRANSPARENT;

color_class text color_scheme "standard-gui" yellow on red;
color_class c_keyword color_scheme "standard-gui" blue;

The last example works because you may omit theon backgroundpart from the syntaxforegroundon
background, and just specify a foreground color. Epsilon interprets this as if you typedon
transparent, and substitutes the background color specified for"text".

You can also specify that a particular color class is the same as a previously-defined color class, like this:

color_scheme "standard-gui" {
color_class text black on white;
color_class tex_text = color_class text;

};

When, for the current scheme, there’s no specific color information for a color class, Epsilon looks for a
default color class specification, one that’s not associated with any scheme:

color_class diff_added black on yellow;
color_class c_string cyan;
color_class c_charconst = color_class c_string;

The first definition above says that, in the absence of any color-scheme-specific setting for the
diff_added color class, it should be displayed as black text on a yellow background. The second says
that text in thec_string color class should be displayed using cyan text, on the default background for
the scheme (that defined for thetext color class). And the third says that text in thec_charconst color
class should be displayed the same as text in thec_string color class for that scheme.

Internally, Epsilon stores all color class settings that occur outside any color scheme in a special color
scheme, which is named"color-defaults".

9.13.3 Function Definitions

function-definition:
function-head block
function-head argument-decl-list block
ansi-function-head block
callable-function-head block

9.13. GLOBAL DEFINITIONS 329

callable-function-head:
typed-function-head
command typed-function-head
typed-function-headon binding-list
command typed-function-headon binding-list

binding-list:
keytable-name[constant-expression]
keytable-name[constant-expression] , binding-list

keytable-name:
identifier

typed-function-head:
identifier()
type-specifier identifier()

function-head:
identifier(argument-list)
type-specifier identifier(argument-list)

ansi-function-head:
identifier(ansi-argument-list)
type-specifier identifier(ansi-argument-list)

ansi-argument-list:
type-specifier declarator
type-specifier declarator, ansi-argument-list

argument-list:
identifier
identifier, argument-list

argument-decl-list:
type-specifier declarator-list;
type-specifier declarator-list; argument-decl-list

A function definition begins with a type specifier, the name of the function, and parentheses
surrounding a comma-separated list of arguments. Any bindings may be given here using theon keyword,
as described below. Declarations for the arguments then appear, and the body of the function follows. If the
command keyword appears before the type specifier, the function is a command, and Epsilon will do
completion on the function when it asks for the name of a command. A function may be a command only if
it has no arguments.

You may omit the type specifier before the function name, in which case the function’s type is int. You
may also omit the declaration for any argument, in which case the argument will be an int. Note that unlike
some languages such as Pascal, if there are no arguments, an empty pair of parentheses must still appear,
both in the definition and where you call the function.

You may also define functions using ANSI C/C++ syntax, in which type information for function
arguments appears with the argument names inside parentheses. These function headers have the same
effect:

average(int count, short *values) average(count, values)
short *values;

When you call a function, arguments of type char or short are automatically changed to ints. A
corresponding change happens to declarations of function arguments and return values. Additionally,

330 CHAPTER 9. EPSILON EXTENSION LANGUAGE

function arguments declared as an array of some type are changed to be a pointer to the same type, just as
array variables are changed to pointers to the start of the array when their names appear in expressions (see
page 319). For example, these two function headers have the same effect.

short average(count, values)
char count;
short values[];

average(count, values)
short *values;

The user can call any function which takes no arguments, or bind such a function to a key. Functions
which are normally invoked in this way can be made commands with thecommand keyword, but this is not
necessary. If you omit thecommand keyword, Epsilon will not perform command completion on the
function’s name. Theon keyword can appear after the (empty) parentheses of a function’s argument list, to
provide bindings for the function. Each binding consists of a key table name, followed by a constant (the
key number) in square brackets[]. There may be several bindings following theon keyword, separated
by commas. You must have previously declared the key table name in the same file (or an#included file).
The binding takes effect when you load the function.

Sometimes it is necessary to declare an identifier as a function, although the function is actually defined
in a separately compiled source file. For example, you must declare a function before you use a pointer to
that function. Also, the EEL compiler must know that a function returns a non-numeric type if its return
value is used. Any declaration of an identifier with typefunction returning . . .is a function declaration.
Function declarations may appear anywhere a local or global variable declaration is legal. So long as the
identifier is not masked by a local variable of the same name, the declaration has effect until the end of the
file.

Any function namedwhen_loading() is automatically executed when you load the bytecode file it
appears in into Epsilon. There may be any number ofwhen_loading() functions defined in a file, and
they execute in order, while the file is being loaded. Such functions are deleted as soon as they return. They
may take no arguments.

9.14 Differences Between EEL And C

� Global variables may not be initialized with any expression involving pointers. This includes strings,
which may only be used to directly initialize a declared array of characters. That is,

char example[] = "A string.";

is legal, while

char *example = "A string.";

is not.

� There are no static variables or functions. All local variables vanish when the function returns, and all
global objects have names that separately compiled files can refer to.

� The C reserved word “extern” does not exist. In EEL, you may define variables multiple times with no
problems, as long as they are declared to have the same type. The first definition read into Epsilon
provides the initialization of the variable, and further initializations have no effect. However, if the
variable is later declared with a different size, the size changes and the new initialization takes effect.
To declare a function without defining it in a particular source file, see page 330.

9.15. SYNTAX SUMMARY 331

� The C types “long”, “enum”, “void”, “float”, and “double” do not exist. Ints and shorts are always
signed. Chars are always unsigned. There are no C bit fields. The C reserved words “long”, “float”,
and “double” are not reserved in EEL.

� EEL provides the basic data typespot, and understands color class expressions and declarations
using thecolor_class andcolor_scheme keywords.

� You may not cast between pointers and ints, except that function pointers may be cast to shorts, and
vice versa. The constant zero may be cast to any pointer type. A pointer may be cast to a pointer of
another type, with the exception of function pointers.

� You can use the reserved wordkeytable to declare empty key tables, as in

keytable reg_tab, cx_tab;

Local key tables are not permitted.

� The reserved wordcommand is syntactically like a storage class. Use it to indicate that the function is
normally called by the user, so command completion will work. The user can also call other functions
(as long as they have no arguments) but the completion facility on command names ignores them.

� After the head of any function definition with no arguments, you can use the reserved wordon to give
a binding. It is followed by the name of a key table already declared, and an index (constant int
expression) in square brackets. There may be more than one (separated by commas). For example,

command visit_file() on cx_tab[CTRL(’V’)]

� You can use the reserved wordbuffer as a storage class for global variables. It declares a variable
to have a different value for each buffer, plus a default value. As you switch between buffers, a
reference to a buffer-specific variable will refer to a different value.

� You can also use the reserved wordwindow as a storage class for global variables. This declares the
variable to have a different value for each window, plus a default value. As you switch between
windows, a reference to a window-specific variable will refer to a different value.

� The reserved wordszeroed anduser do not exist in C. See page 325. The reserved word
volatile does exist in ANSI C, but serves a different purpose in EEL. See page 312.

� The EEL statementssave_var andsave_spot do not exist in C. See page 316.

� In each compile, an include file with a certain name is only read once, even if there are several
#include directives that request it.

9.15 Syntax Summary

program:
global-definition
global-definition program

global-definition:
function-definition
global-variable-definition
keytable-definition
typedef-definition

332 CHAPTER 9. EPSILON EXTENSION LANGUAGE

color-class-definition
typedef-definition:

typedef type-specifier declarator-list;
color-class-definition:

color_class color-class-list;
color_scheme color-scheme-list;

color-class-list:
color-class-item
color-class-item, color-class-list

color-class-item:
identifier
identifiercolor_scheme string-constant color-pair
identifierf color-scheme-spec-listg
identifier color-pair

color-scheme-spec-list:
color-scheme-spec
color-scheme-spec color-scheme-spec-list

color-scheme-spec:
color_scheme string-constant color-pair;

color-scheme-list:
color-scheme-item
color-scheme-item, color-scheme-list

color-scheme-item:
string-constant
string-constantcolor_class identifier color-pair
string-constantf color-class-spec-listg

color-class-spec-list:
color-class-spec
color-class-spec color-class-spec-list

color-class-spec:
color_class identifier color-pair;

color-pair:
constant-expression
constant-expressionon constant-expression

keytable-definition:
keytable keytable-list;

keytable-list:
identifier
identifier, keytable-list

global-variable-definition:
type-specifier global-declarator-list;
global-modifier-list global-declarator-list;
global-modifier-list type-specifier global-declarator-list;

global-modifier-list:
global-modifier

9.15. SYNTAX SUMMARY 333

global-modifier global-modifier-list
global-modifier:

buffer

window

zeroed

user

volatile

declarator-list:
declarator
declarator, declarator-list

declarator:
identifier
(declarator)
* declarator
declarator[constant-expression]
declarator[]

declarator()
global-declarator-list:

global-declarator
global-declarator, global-declarator-list

global-declarator:
declarator

declarator= string-constant
declarator= initializer

initializer:
constant-expression
string-constant
f initializer-list g
f initializer-list , g

initializer-list:
initializer
initializer , initializer-list

type-specifier:
char

short

int

struct struct-or-union-specifier
union struct-or-union-specifier
spot

typedef-name
typedef-name:

identifier
struct-or-union-specifier:

struct-or-union-tag
struct-or-union-tagf member-listg

334 CHAPTER 9. EPSILON EXTENSION LANGUAGE

f member-listg
struct-or-union-tag:

identifier
member-list:

type-specifier declarator-list;
type-specifier declarator-list; member-list

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator[constant-expression]
abstract-declarator[]

abstract-declarator()
abstract-declarator(ansi-argument-list)

function-definition:
function-head block
function-head argument-decl-list block
ansi-function-head block
callable-function-head block

callable-function-head:

typed-function-head
command typed-function-head
typed-function-headon binding-list
command typed-function-headon binding-list

binding-list:
keytable-name[constant-expression]
keytable-name[constant-expression] , binding-list

keytable-name:
identifier

typed-function-head:
identifier()
type-specifier identifier()

function-head:
identifier(argument-list)
type-specifier identifier(argument-list)

ansi-function-head:
identifier(ansi-argument-list)
type-specifier identifier(ansi-argument-list)

ansi-argument-list:
type-specifier declarator
type-specifier declarator, ansi-argument-list

argument-list:
identifier

9.15. SYNTAX SUMMARY 335

identifier, argument-list
argument-decl-list:

type-specifier declarator-list;
type-specifier declarator-list; argument-decl-list

block:
f local-declaration-list statement-listg
f local-declaration-listg
f statement-listg
f g

local-declaration-list:
local-variable-definition
typedef-definition
local-declaration-list local-declaration-list

local-variable-definition:
type-specifier local-declarator-list;

local-declarator-list:
local-declarator
local-declarator, local-declarator-list

local-declarator:
declarator
declarator= expression

statement-list:

statement
statement statement-list

statement:
expression;
if (expression) statement
if (expression) statementelse statement
while (expression) statement
do statementwhile (expression);
for (opt-expression; opt-expression; opt-expression) statement
switch (expression) statement
case constant-expression: statement
default: statement
break;

continue;

return;

return expression;
save_var save-list;
save_spot save-list;
goto label;
label: statement
;

block
save-list:

336 CHAPTER 9. EPSILON EXTENSION LANGUAGE

save-item
save-item, save-list

save-item:
identifier
identifier= expression
identifier modify-operator expression
identifier++
identifier--

label:
identifier

opt-expression:
empty
expression

expression:
numeric-constant
string-constant
identifier
identifier.default
color_class identifier
(expression)
! expression
* expression

& expression
- expression
˜ expression
sizeof expression
sizeof(type-name)
(type-name) expression
++ expression
-- expression
expression++
expression--
expression+ expression
expression- expression
expression* expression
expression/ expression
expression% expression
expression== expression
expression!= expression
expression< expression
expression> expression
expression<= expression
expression>= expression
expression&& expression
expression|| expression

9.15. SYNTAX SUMMARY 337

expression& expression
expression| expression
expression̂ expression
expression<< expression
expression>> expression
expression= expression
expression modify-operator expression
expression? expression: expression
expression, expression
expression()
expression(expression-list)
expression[expression]
expression. identifier
expression-> identifier

modify-operator:
+=

-=

*=

/=

%=

&=

|=

ˆ=

<<=

>>=

expression-list:
expression
expression, expression-list

constant-expression:
numeric-constant
(constant-expression)
! constant-expression
- constant-expression
˜ constant-expression
sizeof constant-expression
sizeof(type-name)
constant-expression+ constant-expression
constant-expression- constant-expression
constant-expression* constant-expression
constant-expression/ constant-expression
constant-expression% constant-expression
constant-expression== constant-expression
constant-expression!= constant-expression
constant-expression< constant-expression
constant-expression> constant-expression

338 CHAPTER 9. EPSILON EXTENSION LANGUAGE

constant-expression<= constant-expression

constant-expression>= constant-expression
constant-expression&& constant-expression

constant-expression|| constant-expression
constant-expression& constant-expression

constant-expression| constant-expression
constant-expression̂constant-expression

constant-expression<< constant-expression

constant-expression>> constant-expression
constant-expression? constant-expression: constant-expression

constant-expression, constant-expression

9.15. SYNTAX SUMMARY 339

Chapter 10

Primitives and EEL
Subroutines

341

In this chapter, we describe all EEL primitives, as well as a few useful EEL subroutines. In Epsilon, the term
“primitive” refers to a function or variable that is not written or defined in EEL, but rather built into Epsilon.

Each section discusses items that pertain to a particular topic, and begins with EEL declarations for the
items discussed in that section. If we implemented an item as an EEL subroutine, the declaration often
includes a comment that identifies the EEL source file defining the item.

Some EEL primitives have optional parameters. For example, you can call theget_tail() primitive
as eitherget_tail(fname, 1) or get_tail(fname). Any missing parameter automatically takes a
value of zero. In this manual, we indicate an optional parameter by showing a? before it.

When writing EEL extensions, an easy way to look up the documentation on the primitive or subroutine
at point is to press F1 FhEnteri.

10.1 Buffer Primitives

10.1.1 Changing Buffer Contents

insert(int ch)
user buffer int point;

An Epsilonbuffercontains text that you can edit. Most of the primitives in this section act on, or refer
to, one of the buffers designated as thecurrent buffer.

Theinsert() primitive inserts a single character into the current buffer. Its argument says what
character to insert. The buffer’s insertion point, or just point, refers to the particular position in each buffer
where insertions occur.

The int variable namedpoint stores this position. Its value denotes the number of characters from the
beginning of the buffer to the spot at which insertions happen. For example, a value of zero forpoint
means that insertions would occur at the beginning of the buffer. A value of one forpoint means that
insertions would occur after the first character, etc.

To change the insertion point, you can assign a new value topoint. For example, the statement

point = 3;

makes insertions occur after the third character in the buffer, assuming the buffer has at least 3 characters. If
you setpoint to a value less than zero,point takes the value zero. Similarly, if you setpoint to a value
greater than the size of the buffer, its value becomes the number of characters in the buffer.

When the current buffer changes, the value of the variablepoint automatically changes with it. We
call variables with this behaviorbuffer-specificvariables. See page 443.

int size()

The primitive functionsize() returns the number of characters in the current buffer. You cannot set
the size directly: you can change the size of the buffer only by inserting or deleting characters. For this
reason, we implementedsize() as a function, not a variable likepoint.

The variablepoint refers not to a character position, but rather to a character boundary, a place
between characters (or at the beginning or end of a buffer). The legal values for point range from zero to
size(). We will refer to a value in this range, inclusive of the ends, as aposition. A position is a place
between characters in a buffer, or at the beginning of the buffer, or at the end. The value of a position is the
number of characters before it in the buffer. In EEL, ints (integers) hold positions.

342 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

When Epsilon inserts a character, it goes before point, not after it. If Epsilon didn’t work this way,
inserting a, then b, then c would result in cba, not abc.

delete(int pos1, int pos2)
int delete_if_highlighted()

Thedelete() primitive deletes all characters between the two positions supplied as arguments to it.
The order of the arguments doesn’t matter.

Thedelete() primitive doesn’t save deleted text in a kill buffer. The kill commands themselves
manage the kill buffers, and use thedelete() primitive to actually remove the text.

Commands that insert text often begin by calling thedelete_if_highlighted() subroutine. If
there’s a highlighted region, this subroutine deletes it and returns1. Otherwise (or if the
typing-deletes-highlight variable has been set to zero), it returns0.

replace(int pos, int ch)
int character(int pos)
int curchar()

Thereplace() primitive changes the character at positionpos to ch. The parameterpos refers to
the position before the character in question. Therefore, the value ofpos can range from0 to size()-1,
inclusively.

Thecharacter() primitive returns the character after the position specified by its argument,pos.
Thecurchar() returns the same value ascharacter(point). These two primitives return-1 when
the position involved isn’t valid, such as at the end of the buffer or before its start (whenpos is less than
zero). For example,character(size()) returns-1, as doescurchar() with point at the end of the
buffer.

stuff(char *str)
int bprintf(char *format, ...)
int buffer_printf(char *name, char *format, ...)
int buf_printf(int bnum, char *format, ...)

Thestuff() function inserts an entire string into the current buffer.

Thebprintf() function also inserts a string, but it takes a format string plus other arguments and
builds the string to insert using the rules on page 379. Thebuffer_printf() functions similarly, except
that it takes the name of the buffer into which to insert the string. It creates the buffer if necessary. Similarly,
buf_printf() takes a buffer number, and inserts the formatted string into that buffer. All of the
primitives described in this paragraph return the number of characters they inserted into the buffer.

10.1.2 Moving Text Between Buffers

xfer(char *buf, int from, int to)
buf_xfer(int bnum, int from, int to) /* buffer.e */
raw_xfer(int bnum, int from, int to)
buf_xfer_colors(int bnum, int from, int to)
grab_buffer(int bnum) /* buffer.e */

10.1. BUFFER PRIMITIVES 343

Thexfer() subroutine transfers characters from one buffer to another. It copies the characters
betweenfrom andto in the current buffer and inserts them at point in the named buffer. It positions the
mark in the named buffer just before the inserted characters, and positions itspoint right after the
insertion. The current buffer doesn’t change. Thebuf_xfer() subroutine works similarly, but accepts a
buffer number instead of a name. Both use theraw_xfer() primitive to transfer the text.

Thebuf_xfer_colors() subroutine is likebuf_xfer(), but copies any colors set by
set_character_color() as well.

Thegrab_buffer() subroutine copies text in the other direction. It inserts the text of buffer number
bnum into the current buffer before point, setting the mark before the inserted text.

10.1.3 Getting Text from a Buffer

grab(int pos1, int pos2, char *to)
grab_expanding(int pos1, int pos2, char **toptr, int minlen)
buf_grab_bytes(int buf, int from, int to, char *dest)

Thegrab() primitive copies characters from the buffer to a string. It takes the range of characters to
copy, and a character pointer indicating where to copy them. The buffer doesn’t change. The positions may
be in either order. The resulting string will be null-terminated.

Thegrab_expanding() subroutine is similar, but works with a dynamically allocated character
pointer, not a fixed-length character array. Pass a pointer to achar * variable, and the subroutine will
resize it as needed to hold the result. Thechar * variable may hold NULL initially. Theminlen
parameter provides a minimum allocation length for the result.

Thebuf_grab_bytes() subroutine copies characters in the specified range in the bufferbuf into
the character arraydest, in the same fashion asgrab().

grab_full_line(int bnum, char *str) /* buffer.e */
grab_line(int bnum, char *str) /* buffer.e */

Thegrab_full_line() subroutine copies the entire current line of buffer numberbnum into the
character arraystr. It doesn’t change point. Thegrab_line() subroutine copies the remainder of
bnum’s current line tostr, and moves to the start of the next line. Neither function copies thehNewlinei at
the end of the line, and each returns the number of characters copied.

int grab_numbers(int bnum, int *nums) /* buffer.e */

Thegrab_numbers() subroutine usesgrab_line() to retrieve a line from bufferbnum. Then it
breaks the line into words (separated by spaces and tabs), and tries to interpret each word as a number by
calling thenumtoi() subroutine. It puts the resulting numbers in the arraynums. The function returns the
number of words on the line.

int grab_string(int bnum, char *s, char *endmark) /* buffer.e */
int grab_string_expanding(int bnum, char **s,

char *endmark, int minlen)

Thegrab_string() subroutine copies from bufferbnum into s. It copies from the buffer’s current
position to the beginning of the next occurrence of the textendmark, and leaves the buffer’s point after that

344 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

text. It returns1, unless it couldn’t find theendmark text. In that case, it moves to the end of the buffer,
setss to the empty string, and returns0.

Thegrab_string_expanding() subroutine is similar, but works with dynamically allocated
character pointers, not fixed-length character arrays. Pass a pointer to achar * variable, and the
subroutine will resize it as needed to hold the result. Thechar * variable may hold NULL initially. The
minlen parameter provides a minimum allocation length for the result.

10.1.4 Spots

spot alloc_spot(?int left_ins)
free_spot(spot sp)
int spot_to_buffer(spot sp)

A place in the buffer is usually recorded and saved for later use as a count of the characters before that
place: this is a position, as described on page 341. Sometimes it is important for the stored location to
remain between the same pair of characters even if many changes are made to other parts of the buffer
(affecting the number of characters before the saved location).

Epsilon provides a type of variable called aspotfor this situation. The declaration

spot sp;

says that sp can refer to a spot. It doesn’t create a new spot itself, though.

Thealloc_spot() primitive creates a new spot and returns it, and thefree_spot() primitive
takes a spot and discards it. The spot thatalloc_spot() returns is initially set to point, and is associated
with the current buffer. Deleting a buffer frees all spots associated with it. If you try to free a spot whose
buffer has already been deleted, Epsilon will ignore the request, and will not signal an error.

Thespot_to_buffer() primitive takes a spot and returns the buffer number it was created for, or
-1 if the buffer no longer exists, or-2 if the buffer exists, but that particular spot has since been deleted.

If the left_ins parameter toalloc_spot() is nonzero, a left-inserting spot is created. If the
left_ins parameter is0, or is omitted, a right-inserting spot is created. The only difference between the
two types of spots is what they do when characters are inserted right where the spot is. A left-inserting spot
stays after such inserted characters, while a right-inserting spot stays before them. For example, imagine an
empty buffer, with all spots at 0. After five characters are inserted, any left-inserting spots will be at the end
of the buffer, while right-inserting spots will remain at the beginning.

A spot as returned byalloc_spot() behaves a little like a pointer to an int, in that you must
dereference it by writing*sp to obtain the position it currently refers to. For example:

fill_all() /* fill paragraphs, leave point alone */
{
spot oldpos = alloc_spot(), oldmark = alloc_spot();

*oldpos = point;
oldmark = mark; / save old values */
point = 0; /* make region be whole buffer */
mark = size();
fill_region(); /* fill paragraphs in region */
mark = *oldmark; /* restore values */
point = *oldpos;

10.1. BUFFER PRIMITIVES 345

free_spot(oldmark); /* free saving places */
free_spot(oldpos);
}

A simpler way to write the above subroutine uses EEL’ssave_spot keyword. Thesave_spot
keyword takes care of allocating spots, saving the original values, and restoring those values when the
subroutine exits. See page 316 for more onsave_spot.

fill_all() /* fill paragraphs, leave point alone */
{ /* uses save_spot */
save_spot point = 0; /* make region be whole buffer */
save_spot mark = size();
fill_region(); /* fill paragraphs in region */
}

Like a pointer, a spot variable can contain zero, andalloc_spot() is guaranteed never to return this
value. Epsilon signals an error if you try to dereference a spot which has been freed, or whose buffer no
longer exists.

buffer spot point_spot;
buffer spot mark_spot;
#define point *point_spot
#define mark *mark_spot
/* These variables are actually defined

differently. See below. */

Each new buffer begins with two spots,point_spot andmark_spot, set to the beginning of the
buffer.Point_spot is a left-inserting spot, whilemark_spot is a right-inserting spot. These spots are
created automatically with each new buffer, and you cannot free them. You can think of the built-in
variablespoint andmark as simply macros that yield*point_spot and*mark_spot, respectively.
That’s why you don’t need to put a* before each reference topoint.

user buffer int point; /* True definitions */
user buffer int mark;
spot get_spot(int which)
#define point_spot get_spot(0)
#define mark_spot get_spot(1)

Actually, whilepoint andmark could be defined as macros, as above, they’re not. Epsilon recognizes
them as built-in primitives for speed. On the other hand,point_spot andmark_spot actually are
macros! They use theget_spot() primitive, which has no function other than to return these two values.

do_set_mark(int val)

Thedo_set_mark() subroutine sets the current buffer’s mark to the specified value. It also records
the current virtual column (which, typically, should match the mark). The rectangle commands retrieve this,
so that in virtual mode you can copy rectangles that end in virtual space.

346 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

10.1.5 Narrowing

user buffer int narrow_start;
user buffer int narrow_end;
int narrow_position(int p) /* buffer.e */

Epsilon provides two primitive variables,narrow_start andnarrow_end, that restrict access to
the current buffer. The commandsnarrow-to-region andwiden-buffer, described on page 143, use these
variables. Epsilon ignores the firstnarrow_start characters and the lastnarrow_end characters of the
buffer. Usually, these variables have a value of zero, so no such restriction takes place. Characters outside of
the narrowed region will not appear on the screen, and will remain outside the control of normal Epsilon
commands.

If you try to set a primitive variable such aspoint to a position outside of the narrowed area, Epsilon
will change the value to one inside the narrowed area. For example, suppose the buffer contains one hundred
characters, with the first and last ten characters excluded, so only eighty appear on the screen. In this case,
size() will return one hundred, andnarrow_start andnarrow_end will each have a value of ten.
The statementpoint = 3; will give point a value of ten (the closest legal value), while the statement
point = 10000; will give point the value ninety. Epsilon adjusts the parameters of primitive
functions in the same way. Suppose, in the example above, you try to delete all the characters in the buffer,
using thedelete() primitive. Epsilon would take the statementdelete(0, size()); and
effectively change it todelete(10, 90); to delete only the characters inside the narrowed area.

Thenarrow_position() subroutine returns its argumentp, adjusted so that it’s inside the
narrowed buffer boundaries.

Writing the buffer to a file ignores narrowing. Reading a file into the buffer lifts any narrowing in effect
by settingnarrow_start andnarrow_end to zero.

10.1.6 Undo

int undo_op(int is_undo)
undo_mainloop()
undo_redisplay()
user buffer int undo_size;

With a nonzero argument, theundo_op() primitive undoes one basic operation like theundo
command, described on page 82. With an argument of zero, it acts likeredo. It returns a bit pattern
describing what types of operations were undone or redone. The bit codes are defined in codes.h.
UNDO_INSERT means that originally an insertion occurred, and it was either undone or redone. The
UNDO_DELETE andUNDO_REPLACE codes are similar.

Epsilon groups individual buffer changes into groups, and undoes one group at a time. While saving
changes for undoing, Epsilon begins a new group when it redisplays buffers or when it begins a new
command in the main loop. TheUNDO_REDISP code indicates the former happened, and
UNDO_MAINLOOP the latter.UNDO_MOVE indicates movement is being undone, andUNDO_END is used
when Epsilon could only undo part of a command. Ifundo_op() returns zero, the buffer was not
collecting undo information (see below).

Epsilon automatically starts a new undo group each time it does normal redisplay or passes through its
main loop, by calling either theundo_redisplay() or undo_mainloop() primitives, respectively.
You can call either of these primitives yourself to make Epsilon start a new undo group.

In addition to starting a new group, theundo_mainloop() primitive also makes the current buffer
start to collect undo information. When you first create a buffer, Epsilon doesn’t keep undo information for

10.1. BUFFER PRIMITIVES 347

it, so that “system” buffers don’t have this unnecessary overhead. Each time it passes through the main loop,
Epsilon callsundo_mainloop(), and this makes the current buffer start collecting undo information, if it
isn’t already, and if the buffer-specific variableundo_size is nonzero.

int undo_count(int is_undo)

Theundo_count() primitive takes a parameter that specifies whether undoing or redoing is involved,
like undo_op(). The primitive returns a value indicating how much undoing or redoing information is
saved. The number doesn’t correspond to a particular number of commands, but to their complexity.

user buffer int undo_flag;

In addition to buffer changes and movements, Epsilon can record other information in its list of
undoable operations. Each time you set theundo_flag variable, Epsilon inserts a “flag” in its undo list
with the particular value you specify. When Epsilon is undoing or redoing and encounters a flag, it
immediately ends the current group of undo operations and returns a code with theUNDO_FLAG bit on. It
puts the value of the flag it encountered in theundo_flag variable. Theyank-pop command uses flags1
and2 for undoing the previousyank.

10.1.7 Searching Primitives

user int matchstart;
user int matchend;
int search(int dir, char *str)
user short abort_searching;
#define ABORT_JUMP -1
#define ABORT_ERROR -2

The search primitives each look for the first occurrence of some text in a particular direction from point.
Use1 to specify forward,-1 to specify backward. They move point to the far end of the match, and set the
matchstart andmatchend variables to the near and far ends of the match, respectively. For example, if
the buffer contains “abcd” and you search backward from the end for “bc”, point andmatchend will be 1
(between the ‘a’ and the ‘b’) andmatchstart will be 3. If the search text does not appear in the buffer,
point goes to the appropriate end of the buffer. These primitives return1 if they find the text and0 if not.

The most basic searching function is thesearch() primitive. It takes a direction and a string, and
searches for the string. It returns1 if it finds the text, or0 if it does not.

If the user presses the abort key during searching, Epsilon’s behavior depends upon the value of the
abort_searching variable. If it’s0, the key is ignored and the search continues. If it’sABORT_JUMP
(the default), Epsilon aborts the search and jumps by calling thecheck_abort() primitive. If it’s
ABORT_ERROR, Epsilon aborts the search and returns the valueABORT_ERROR. Thesearch(),
re_search(), re_match(), andbuffer_sort() primitives all use theabort_searching
variable to control aborting.

Case Folding

user buffer short case_fold;
buffer char *_srch_case_map;

348 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

If the case-fold buffer-specific variable is nonzero, characters that match except for case count as a
match. Otherwise, only exact matches (including case) count.

Epsilon determines how to fold characters by looking up each character in the buffer-specific variable
_srch_case_map. The_srch_case_map variable is a pointer to an array of 256 characters. When
Epsilon must compare two characters, and case-folding is on, it runs each character through
_srch_case_map first. Most characters in this array map to themselves, but lower case letters are set to
map to upper case letters instead. For example,_srch_case_map[’a’] and
_srch_case_map[’A’] are both equal to ‘A’, so these characters match. Epsilon initializes the
_srch_case_map array in the file epsilon.e to reflect the characters available on a normal IBM display.
Since this variable is a buffer-specific pointer, you can have different rules for case folding in different
buffers.

Epsilon uses the_srch_case_map array for all its searching primitives, during sorting, and in the
primitivesstrfcmp(), strnfcmp(), andcharfcmp(), unless thecase_fold variable is0 in the
current buffer.

Regular Expression Searching

int re_search(int flags, char *pat)
int re_compile(int flags, char *pat)
int re_match()
#define RE_FORWARD 0
#define RE_REVERSE 2
#define RE_FIRST_END 4
#define RE_SHORTEST 8

Several searching primitives deal with a powerful kind of pattern known as aregular expression.
Regular expressions allow you to search for complex patterns. Regular expressions are strings formed
according to the rules on page 59.

There_search() primitive searches the buffer for one of these patterns. It operates like the
search() primitive, taking a direction and pattern and returning1 if it finds the pattern. It moves to the
far end of the pattern from the starting point, and setsmatchstart to the near end. If it doesn’t find the
pattern, or if the pattern is illegal, it returns0. In the latter case point doesn’t move, in the former point
moves to the end (or beginning) of the buffer.

When you specify a direction using1 or-1, Epsilon selects the first-ending, longest match, unless the
search string overrides this. However, instead of providing a direction (1 or -1) as the first parameter to
re_search() or re_compile(), you can provide a set of flags. These let you specify finding the
shortest possible match, for example, without altering the search string.

TheRE_FORWARD flag searches forward, while theRE_REVERSE flag searches backward. (If you
don’t include either, Epsilon searches forward.) TheRE_FIRST_END flag says to find a match that ends
first, rather than one that begins first. TheRE_SHORTEST flag says to find the shortest possible match,
rather than the longest. However, if the search string contains sequences that specify first-ending,
first-beginning, shortest, or longest matches, those sequences override any flags.

There_compile() primitive checks a pattern for legality. It takes the same arguments as
re_search() and returns1 if the pattern is illegal, otherwise0. There_match() primitive tells if the
last-compiled pattern matches at this location in the buffer, returning the far end of the match if it does, or
-1 if it does not.

int parse_string(int flags, char *pat, ?char *dest)
int matches_at(int pos, int dir, char *pat)

10.1. BUFFER PRIMITIVES 349

Theparse_string() primitive looks for a match starting at point, using the same rules as
re_match(). It takes a direction (or flags) and a pattern likere_compile(), and a character pointer. It
looks for a match of the pattern beginning at point, and returns the length of such a match, or zero if there
was no match.

The third argumentdest may be a null pointer, or may be omitted entirely. But if it’s a pointer to a
character array,parse_string() copies the characters of the match there, and moves point past them. If
the pattern does not match,dest isn’t modified.

Thematches_at() subroutine usesparse_string(). It accepts a regular expressionpat and
returns nonzero if the given pattern matches at a particular position in the buffer.

int find_group(int n, int open)

Thefind_group() primitive tells where in the buffer certain parts of the last pattern matched. It
counts opening parentheses used for grouping in the last pattern, numbered from 1, and returns the position
it was at when it reached a certain parenthesis. Ifopen is nonzero, it returns the position of then’th left
parenthesis, otherwise it returns the position of its matching right parenthesis. Ifn is zero, it returns
information on the whole pattern. Ifn is too large, or negative, the primitive aborts with an error message.

Searching Subroutines

int do_searching(int flags, char *str) /* search.e */

Thedo_searching() subroutine defined in search.e is handy when you want to use a variable to
determine the type of search. Aflags value of0 means perform a plain forward search. The flags
REVERSE, REGEX, andWORD specify a reverse search, a regular expression search, or a word search,
respectively. The subroutine normally performs case-folding if the buffer’scase_fold variable is
non-zero; passMODFOLD to force Epsilon to search without case-folding, or passMODFOLD andFOLD to
force Epsilon to case-fold. The above flags may be combined in any combination.

Thedo_searching() subroutine returns1 on a successful search, or0 if the search text was not
found. It can also returnDSABORT if the user aborted the search (see theabort_searching variable) or
DSBAD if the (regular expression) search pattern was invalid. If the search was successful, Epsilon moves to
just after the found text (or just before, for reverse searches); in all other cases point doesn’t change.

int word_search(int dir, char *str)
int is_word_char(int pos)
int check_buffer_word(int from, int to)
int narrowed_search(int flags, char *str, int limit)

If do_searching() needs to search in word mode, it calls theword_search() subroutine. This
function searches forstr, rejecting matches unless they are preceded and followed by non-word characters.
More precisely, it converts the text into a regular expression pattern, constructed so that each space in the
original pattern matches any sequence of whitespace characters, and each word in the pattern only matches
whole words.

When you combine word searching with regular expression searching, Epsilon uses the subroutines
is_word_char() andcheck_buffer_word() to check if each regular expression match constitutes
a complete word. Theis_word_char() subroutine tells if the character at a certain position in the buffer
is part of a word. Thecheck_buffer_word() subroutine returns nonzero if the characters before and
after the specified range are both non-word characters.

350 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Thenarrowed_search() subroutine is likedo_searching(), but takes a parameterlimit to
limit the search. Epsilon will only search a region of the buffer withinlimit characters of its starting
point. For example, if point is at 30000 and you callnarrowed_search() and specify a reverse search
with a limit of 1000, the match must occur between positions 29000 and 30000. If no such match is found,
point will be set to 29000 and the function will return 0.

string_replace(char *str, char *with, int flags)
show_replace(char *str, char *with, int flags)

Thestring_replace() subroutine allows you to do string replacements from within a function. It
accepts flags from the same list asdo_searching(). Provide theINCR flag if you want the subroutine
to display the number of matches it found, and the number that were replaced. Provide theQUERY flag to
ask the user to confirm each replacement. This subroutine sets the variablesreplace-num-found and
replace-num-changed to indicate the total number of replacements it found, and the number the user
elected to change.

If you want to display what will be replaced without replacing anything, call theshow_replace()
subroutine. It takes the same parameters asstring_replace(), and displays a message in the echo
area. All Epsilon’s replacing commands call this subroutine to display their messages.

simple_re_replace(int dir, char *str, char *repl)

Thesimple_re_replace() subroutine performs a regular expression replacement on the current
buffer. It searches through the buffer, starting from the top, and passingdir andstr directly to the
re_search() primitive. It deletes each match and inserts the stringrepl instead. The replacement text
is inserted literally, with no interpolation. If you want to use#1 in your replacement text, get a count of the
matches, or other more involved things, callstring_replace() instead.

int search_read(char *str, char *prmpt, int flags)
int default_fold(int flags)
int get_search_string(char *pr, int flags)
char *default_search_string(int flags)

To ask the user for a search string, use thesearch_read() subroutine. Its parameterstr provides
an initial search string, and it returns a set of flags which you can pass todo_searching(). It takes an
initial set of flags, which you can use to start the user in one of the searching modes. Call
default_fold() with any flags before callingsearch_read(). It will turn on any needed flags
relating to case-folding, based on the value of thecase_fold variable, and return a modified set of flags.

The function leaves the string in either the_default_search or the_default_regex_search
variable, depending upon the searching flags it returns. You can call thedefault_search_string()
subroutine with that set of searching flags and it will return a pointer to the appropriate one of these.
Depending on what the user types, thesearch_read() subroutine may perform searching itself, in
addition to returning the search string.

Theget_search_string() subroutine asks the user for a string to search for by calling
search_read().

buffer int (*search_continuation)();
int sample_search_continuation(int code, int flags, char *str)

10.1. BUFFER PRIMITIVES 351

In some modes a buffer may contain a single “record” out of many. Records may be swapped by
changing the narrowing on the buffer (as in Info mode), while in other modes the contents of the buffer may
be completely replaced with text from a different record.

A mode may wish to let users search from one record to the next, when no more matches can be found
in the current record. (This capability relates to searching by the user, with thesearch_read()
subroutine, not the primitive searching functions.)

A mode may set the buffer-specificsearch_continuation function pointer to a
search-continuation function if it wants this behavior. If it’s nonzero, the searching functions will call this
function to advance to a different record, or to remember or return to a particular record.

Epsilon assumes that the set of possible records have an implicit order to them, forming a list. And it
assumes that a record id, referring to a specific record, may be stored in a character array of length
FNAMELEN.

Thecode parameter indicates the desired operation. IfSCON_RECORD, the search-continuation
function must write a record id for the current record into the arraystr. If SCON_RESTORE, it must return
to the record identified by the previously-saved idstr. These operations should return zero. If
SCON_COMPARE, it must compare the current record with the id saved instr (according to the record
order), returning-1, 0, or1 depending on whether the current record is before, equal to, or after the saved
record, respectively.

Any othercode means to move to the next or previous record, according to whether theflags
parameter contains theREVERSE bit, and position to its start (or, for reverse searching, end). In this case,
code becomes a count, starting from 1, that indicates the number of record positionings done since the last
user keypress (for use in displaying progress messages). It should return1 on success, or0 if there were no
more records (and should remain at the original record in that case).

A search-continuation function may wish to pre-screen records, and skip over those that do not contain
the search string (but is not required to do so). If it chooses to do this, it can useflags andstr to call the
do_searching() subroutine; these specify the search being performed.

int col_search(char *str, int col) /* search.e */

Thecol_search() subroutine defined in search.e attempts to go to the beginning of the next line
containing a certain string starting in a certain column. It returns1 if the search is successful,0 otherwise.

int line_search(int dir, char *s) /* grep.e */
int prox_line_search(char *s) /* tags.e */

Theline_search() subroutine searches in directiondir for a line containing only the texts. It
returns1 if found, otherwise0.

Theprox_line_search() subroutine searches in the buffer for lines containing exactly the texts.
It goes to the start of the closest such line to point, and returns1. If there is no matching line, it returns0.

do_drop_matching_lines(int flags, char *pat, int drop)

Thedo_drop_matching_lines() subroutine deletes all lines after point in the current buffer but
those that contain the specified search pattern. The search flags say how to interpret the pattern. Ifdrop is
nonzero, the subroutine deletes lines that contain the pattern; ifdrop is zero it deletes all lines except those
that contain the pattern. Temporarily set thesort-status variable to zero to keep it from displaying a
line count summary.

352 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

replace_in_readonly_hook(int old_readonly)
replace_in_existing_hook(int old_readonly)

Thefile-query-replace command calls some hook functions as it goes through its list of buffers or files.
Just before it makes its first change in each buffer (or asks the user whether to make the change, if it’s still in
query mode), it calls either thereplace_in_existing_hook() subroutine (if the buffer or file was
already loaded before running the command) or thereplace_in_readonly_hook() (if
file-query-replace had to read the file itself). Thefile-query-replace command temporarily zeroes the
readonly-warning variable; it passes the original value of this variable as a parameter to each hook.

The default version ofreplace_in_existing_hook() does nothing. The default version of
replace_in_readonly_hook()warns about the file being read-only by calling
do_readonly_warning().

10.1.8 Moving by Lines

int nl_forward()
int nl_reverse()
to_begin_line() /* eel.h macro */
to_end_line() /* eel.h macro */

Thenl_forward() andnl_reverse() primitives quickly search for newline characters in the
direction you specify. Thenl_forward() primitive is the same assearch(1, "n n"), while
nl_reverse() is the same assearch(-1, "n n"), wheren n means the newline character (see
page 303). These primitives do not setmatchstart or matchend, but otherwise work the same as the
previous searching primitives, returning1 if they find a newline and0 if they don’t.

The eel.h file defines textual macros namedto_begin_line() andto_end_line() that make it
easy to go to the beginning or end of the current line. They simply search in the appropriate direction for a
newline character and back up over it if the search succeeds.

int give_begin_line() /* basic.e */
int give_end_line() /* basic.e */

Thegive_begin_line() subroutine returns the buffer position of the beginning of the current line,
and thegive_end_line() subroutine returns the position of its end. Neither moves point.

go_line(int num) /* basic.e */
int lines_between(int from, int to, ?int abort_ok)
count_lines_in_buf(int buf, int abortok)
int all_blanks(int from, int to) /* indent.e */

The EEL subroutinego_line() defined in basic.e uses thenl_forward() primitive to go to a
certain line in the buffer.go_line(2), for example, goes to the beginning of the second line in the buffer.

Thelines_between() primitive returns the number of newline characters in the part of the buffer
betweenfrom andto. If abort_ok is nonzero, the user can abort from this primitive, otherwise Epsilon
ignores the abort key.

Thecount_lines_in_buf() subroutine returns the number of newline characters in the buffer
buf. If abortok is nonzero and the user press the abort key, the subroutine uses thecheck_abort()
primitive to abort.

Theall_blanks() subroutine returns1 if the characters betweenfrom andto are all whitespace
characters (space, tab, or newline),0 otherwise.

10.1. BUFFER PRIMITIVES 353

10.1.9 Other Movement Functions

int move_level(int dir, char *findch,
char *otherch, int show, int stop_on_key)

buffer int (*mode_move_level)();
int c_move_level(int dir, int stop_on_key)
int html_move_level(int dir, int stop_on_key)
int default_move_level(int dir, char *findch,

char *otherch)

Several subroutines move through text counting and matching various sorts of delimiters. The
move_level() subroutine takes a directiondir which may be1 or -1, and two sets of delimiters. The
routine searches for any one of the characters infindch. Upon finding one, it continues searching in the
same direction for the character in the same position inotherch, skipping over matched pairs of these
characters in its search.

For example, iffindch was">])" anddir was-1, move_level() would search backwards for
one of these three characters. If it found a ‘)’ first, it would then select the third character ofotherch,
which might be a ‘(’. It would then continue searching for a ‘(’. But if it found additional ‘)’ characters
before reaching that ‘(’, it would need to find additional ‘(’ characters before stopping.

The subroutine returns1 to indicate that it found a match, and leaves point on the far side of the match
(like commands such asforward-level). If no match can be found, the subroutine returns0. Additionally, if
its parametershow is nonzero, it displays an “Unmatched delimiter” message. When no characters in
findch can be found in the specified direction, it sets point to the far end of the buffer and returns1. If
stop_on_key is nonzero, the subroutine will occasionally check for user key presses, and abort its search
if the user has pressed a key. It returns-2 in this case and doesn’t change point.

Certain modes define a replacement level matcher that understands more of the syntax of that mode’s
language. They do this by setting the buffer-specific function pointer variablemode_move_level to a
function such asc_move_level(). Themove_level() subroutine will call this function instead of
doing its normal processing when this variable is nonzero in the current buffer.

Any such function will receive onlydir andstop_on_key parameters. (It should already know
which delimiters are significant in its language.) It should return the buffer position it reached (but not
actually move there), if it found a pair of matched delimiters, or if it reached one end of the buffer without
finding any suitable delimiters. If should return-1 if it detected an unmatched delimiter, or-2 if a keypress
made it abort.

Thedefault_move_level() function is whatmove_level() calls when no mode-specific
function is available. It takes parameters likemove_level(), and returns-1 or a buffer position like
c_move_level(). A mode-specific function may wish to call this function, specifying a set of delimiters
suitable for that language. Thehtml_move_level() subroutine, for example, does just that.

int give_position(int (*cmd)())

Thegive_position() subroutine runs the subroutinecmd, which (typically) moves to a new
position in the buffer. Thegive_position() subroutine returns this new position, but restores point to
its original value. For example,give_position(forward_word) returns the buffer position of the
end of the current word. EEL requires thatcmd be declared before you call it, via a line likeint cmd();,
unless it’s defined in the same file, before thegive_position() call.

354 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

10.1.10 Sorting Primitives

buffer_sort(char *newbuf, ?int col)
do_buffer_sort(char *newbuf, int col, int rev)
sort_another(char *buf, int col, int rev)
do_sort_region(int from, int to, int col, int rev)
char sort_status;

The EEL primitivebuffer_sort() sorts the lines of the current buffer alphabetically. It does not
modify the buffer, but rather inserts a sorted copy into the named buffer (which must be different). It
performs each comparison starting at columncol, which is optional and defaults to 0 (the first column).
The sorting order is determined by the_srch_case_map array (see page 348).

If the variablesort_status is nonzero, Epsilon will display progress messages as the sort
progresses. Otherwise, no status messages appear.

Thedo_buffer_sort() subroutine is similar, but also takes a parameterrev that says whether to
perform a reverse sort. If the parameterrev is nonzero, Epsilon performs a reverse sort (by making a copy
of the current_srch_case_map array with an inverted order).

Thesort_another() subroutine takes the name of a buffer and sorts it in place. The parameter
col specifies the column to sort on, andrev, if nonzero, requests a reverse sort.

Thedo_sort_region() subroutine sorts a portion of the current buffer in place. Thefrom andto
parameters specify the region to sort. Thecol parameter specifies the column to sort on, and therev
parameter, if nonzero, requests a reverse sort.

If the user presses the abort key during sorting, Epsilon’s behavior depends upon the value of the
abort_searching variable. If0, the key is ignored and the sort will run to completion. If
ABORT_JUMP, Epsilon aborts the sort and jumps by calling thecheck_abort() primitive. If
ABORT_ERROR, Epsilon aborts the sort and returnsABORT_ERROR. Whenever Epsilon aborts a sort,
nothing gets inserted in the newbuf buffer. (For the subroutines that sort in place, the buffer is not changed.)
Except when aborted, thebuffer_sort() primitive and all the sorting subroutines described above
return0.

10.1.11 Other Formatting Functions

right_align_columns(char *pat)

Theright_align_columns() subroutine locates all lines containing a match for the regular
expression patternpat. It notes the ending column of each match. (It assumes thatpat occurs no more
than one per line.)

Then, if some matches end at an earlier column than others, it adds indentation before each match as
needed, so all matches will end at the same column.

columnize_buffer_text(int buf, int width, int margin)

Thecolumnize_buffer_text() subroutine takes the lines in the bufferbuf and reformats them
into columns. It leaves a margin between columns ofmargin spaces, and chooses the number of columns
so that the resulting buffer is at mostwidth characters wide (unless an original line in the buffer is already
wider thanwidth).

do_buffer_to_hex(char *b, char transp[256])

10.1. BUFFER PRIMITIVES 355

Thedo_buffer_to_hex() primitive writes a hex view of the current buffer to the bufferb,
creating or emptying it first. It ignores any narrowing in the original buffer. It uses the 256 bytetransp
array to help construct the last column of the hex view; each character from the buffer will be replaced by
the character at that offset in thetransp array.

10.1.12 Comparing

int compare_buffer_text(int buf1, int pos1,
int buf2, int pos2, int fold)

int buffers_identical(int a, int b)

Thecompare_buffer_text() primitive compares two buffers, specified by buffer numbers,
starting at the given offsets within each. Iffold is nonzero, Epsilon performs case-folding as in searching
before comparing each character, using the case-folding rules of the current buffer. The primitive returns the
number of characters that matched before the first mismatch.

Thebuffers_identical() subroutine checks to see if two buffers, specified by their buffer
numbers, are identical. It returns nonzero if the buffers are identical, zero if they differ. If neither buffer
exists, they’re considered identical; if one exists, they’re different.

do_uniq(int incl_uniq, int incl_dups, int talk)

Thedo_uniq() subroutine defined in uniq.e goes through the current buffer comparing each line to
the next, and deleting each line unless it meets certain conditions.

If incl_uniq is nonzero, lines that aren’t immediately followed by an identical line will be preserved.
If incl_dups is nonzero, the first copy of each line that is immediately followed by one or more identical
lines will be preserved. (The duplicate lines that follow will always be deleted.)

If talk is nonzero, the subroutine will display status messages as it proceeds.

do_compare_sorted(int b1, int b2, char *only1,
char *only2, char *both)

Thedo_compare_sorted() subroutine works like thecompare-sorted-windows command, but
lets you specify the two buffers to compare, and the names of the three result buffers. Any of the result
buffer names may beNULL, and the subroutine won’t generate data for that buffer.

int tokenize_lines(int buf1, int **lines1, int *len1,
int buf2, int **lines2, int *len2)

int lcs(int *lines1, int len1, int *lines2, int len2, char *outbuf)

These primitives help to compute a minimum set of differences between the lines of two buffersbuf1
andbuf2. See the implementation of thediff command for an example of their use.

Call thetokenize_lines() primitive first. It begins by counting the lines in each buffer (placing
the results inlen1 andlen2). Then it uses therealloc() primitive to make room in the arrays passed
by reference aslines1 andlines2, which may be null at the start. Each array will have room for one
token (unique integer) for each line of its buffer. (The arrays may be freed after callinglcs(), or reused in
later calls.)

Thetokenize_lines() primitive then fills in the arrays with unique tokens, chosen so that two
lines will have the same token if and only if they’re identical.

356 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Thelcs() primitive takes the resulting arrays and line counts, and writes a list of shared line ranges to
the specified buffer, one per line, in ascending order. Each line range consists of a line number for the first
buffer, a line number for the second (both 0-based) and a line count. For instance, a line “49 42 7” indicates
that the seven lines starting at line 49 in the first buffer match the seven lines starting at line 42 in the second
(counting lines from 0).

int lcs_char(int buf1, int from1, int to1,
int buf2, int from2, int to2, char *outbuf)

Thelcs_char() primitive is a character-oriented version of thetokenize_lines() andlcs()
primitives described above. It compares ranges of characters in a pair of buffers.

It writes a list of shared character ranges to the specified buffer, one per line, in ascending order. Each
character range consists of a character offset for the first buffer relative tofrom1, a character offset for the
second buffer relative tofrom2, and a character count. For instance, a line “49 42 7” in the output buffer
indicates that the seven characters in the rangefrom1 + 47 to from1 + 47 + 7 in the first buffer
match the seven characters in the rangefrom2 + 42 to from2 + 42 + 7 in the second.

10.1.13 Managing Buffers

int create(char *buf)
char *bufnum_to_name(int bnum)
int name_to_bufnum(char *bname)
int zap(char *buf)
buf_zap(int bnum)
int change_buffer_name(char *newname)

Thecreate() primitive makes a new buffer. It takes the name of the buffer to create. If the buffer
already exists, nothing happens. In either case, it returns the buffer number of the buffer.

Some primitives let you specify a buffer by name; others let you specify a buffer by number. Epsilon
tries never to reuse buffer numbers, so EEL functions can look a buffer up by its buffer number to see if a
particular buffer still exists. Functions that accept a buffer number generally start withbuf_.

Use thebufnum_to_name() primitive to convert from a buffer number to the buffer’s name. If no
such buffer exists, it returns a null pointer. Thename_to_bufnum() primitive takes a buffer name, and
gives you the corresponding buffer number. If no such buffer exists, it returns zero.

Thezap() primitive creates a buffer if necessary, but empties it of all characters if the buffer already
exists. So callingzap() always results in an empty buffer. Thezap() primitive returns the buffer number
of the buffer, whether or not it needed to create the buffer. Thebuf_zap() primitive works likezap(),
except the former takes a buffer number instead of a buffer name, and signals an error if no buffer with that
number exists. Unlikezap(), buf_zap() cannot create a buffer. Neither primitive switches to the
emptied buffer.

Thechange_buffer_name() primitive renames the current buffer to the indicated name. If there
is already a buffer with the new name, the primitive returns0, otherwise the buffer is renamed and the
primitive returns1.

int exist(char *buf)
int buf_exist(int bnum)
delete_buffer(char *buf)
delete_user_buffer(char *buf)

10.1. BUFFER PRIMITIVES 357

buf_delete(int bnum)
drop_buffer(char *buf) /* buffer.e */
char *temp_buf() /* basic.e */
int tmp_buf() /* basic.e */

Theexist() primitive tells whether a buffer with a particular name exists. It returns1 if the buffer
exists,0 if not. Thebuf_exist() does the same thing, but takes a buffer number instead of a buffer
name.

Thedelete_buffer() primitive removes a buffer with a given name. It also removes all windows
associated with the buffer. Thebuf_delete() primitive does the same thing, but takes a buffer number.
Epsilon signals an error if the buffer does not exist, if it contains a running process, or if one of the buffer’s
windows could not be deleted. If the buffer might have syntax highlighting in it, use the
delete_user_buffer() subroutine instead; it cleans up some data needed by syntax highlighting.

Thedrop_buffer() subroutine deletes the buffer, but queries the user first like thekill-buffer
command if the buffer contains unsaved changes.

The EEL subroutinetemp_buf(), defined in basic.e, uses theexist() primitive to create an
unused name for a temporary buffer. It returns the name of the empty buffer it creates. Thetmp_buf()
subroutine creates a temporary buffer liketemp_buf(), but returns its number instead of its name.

buffer char *bufname;
buffer int bufnum;

Thebufname variable returns the name of the current buffer, and thebufnum variable gives its
number. Setting either switches to a different buffer. If the indicated buffer does not exist, nothing happens.
Use this method of switching buffers only to temporarily switch to a new buffer; use theto_buffer() or
to_buffer_num() subroutines described on page 367 to change the buffer a window will display.

To set thebufname variable, use the syntaxbufname = new value;. Don’t usestrcpy(), for
example, to modify it.

int buffer_size(char *buf)
int buf_size(int bnum)
int get_buf_point(int buf)
set_buf_point(int buf, int pos)

Thebuffer_size() andbuf_size() subroutines returns the size in characters of the indicated
buffer (specified by its name or number). Theget_buf_point() subroutine returns the value of point in
the indicated buffer. Theset_buf_point() subroutine sets point in the specified buffer to the value
pos. These are all defined in buffer.e.

10.1.14 Catching Buffer Changes

user buffer short call_on_modify;
on_modify() /* buffer.e */
zeroed buffer (*buffer_on_modify)();
buffer char _buf_readonly;
check_modify(int buf)

358 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

If the buffer-specificcall_on_modify variable has a nonzero value in a particular buffer, whenever
any primitive tries to modify that buffer, Epsilon calls the EEL subroutineon_modify() first. By default,
that subroutine calls thenormal_on_modify() subroutine, which aborts the modification if the
buffer-specific variable_buf_readonly is nonzero, indicating a read-only buffer, and does various
similar things.

But if thebuffer_on_modify buffer-specific function pointer is nonzero for that buffer,
on_modify() instead calls the subroutine it indicates. That subroutine may wish to call
normal_on_modify() itself.

An on_modify() function can abort the modification or set variables. But if it plans to return, it must
not create or delete buffers, or permanently switch buffers.

One ofnormal_on_modify()’s tasks is to handle read-only buffers. There are several types of
these, distinguished by the value of the_buf_readonly variable, which if nonzero indicates the buffer is
read-only. A value of1 means the user explicitly set the buffer read-only. The value2 means Epsilon
automatically set the buffer read-only because its corresponding file was read-only.

A value of3 indicates pager mode; this is just like a normal read-only buffer, but if the user action
causing the attempt at buffer modification happens to be the result of thehSpacei or hBackspacei keys,
Epsilon cancels the modification and pages forward or backward, respectively.

Thecheck_modify() primitive runs theon_modify() function on a specified buffer (if
call_on_modify is nonzero in that buffer). You can use this if you plan to modify a buffer later but want
any side effects to happen now. If the buffer is marked read-only, this function will abort with an error
message. If the buffer is in virtual mode and its cursor is positioned in virtual space, Epsilon will insert
whitespace characters to reach the virtual column. Because this can change the value of point, you should
call check_modify() before passing the values of spots to any function.

For example, suppose you write a subroutine to replace the previous character with a ‘+’, using a
statement likereplace(point - 1, ’+’);. Suppose point has the value 10, and appears at the end
of a line containing ‘abc’ (in column 3). Using virtual mode, the user might have positioned the cursor to
column 50, however. If you used the above statement, Epsilon would callreplace() with the value 9.
Before replacing, Epsilon would callon_modify(), which, in virtual mode, would insert tabs and spaces
to reach column 50, and move point to the end of the inserted text. Then Epsilon would replace the character
‘c’ at buffer position 9 with ‘+’. If you callcheck_modify(bufnum); first, however, Epsilon inserts its
tabs and spaces to reach column 50, andpoint - 1 correctly refers to the last space it inserted.

reset_modified_buffer_region(char *tag)
int modified_buffer_region(int *from, int *to, ?char *tag)

Sometimes an EEL function needs to know if a buffer has been modified since the last time it checked.
Epsilon can maintain this information using tagged buffer modification regions.

An EEL function first tells Epsilon to begin collecting this information for the current buffer by calling
thereset_modified_buffer_region() primitive and passing a unique tag name. (Epsilon’s syntax
highlighting uses a modified buffer region namedneeds-color, for instance.) Later it can call the
modified_buffer_region() primitive, passing the same tag name. Epsilon will set itsfrom andto
parameters to indicate the range of the buffer that has been modified since the first call.

For example, say a buffer contains six charactersabcdef when
reset_modified_buffer_region() is called. Then the user inserts and deletes some characters
resulting inabxyf. A modified_buffer_region()would now report that characters in the range 2
to 4 have been changed. If the buffer contains many disjoint changes,from will indicate the start of the first
change, andto the end of the last.

10.2. DISPLAY PRIMITIVES 359

Themodified_buffer_region() primitive returns0 if the buffer hasn’t been modified since the
lastreset_modified_buffer_region()with that tag. In this casefrom andto will be equal.
(They might also be equal if only deletion of text had occurred, but then the primitive wouldn’t have
returned0.) It returns1 if the buffer has been modified. Ifreset_modified_buffer_region() has
never been used with the specified tag in the current buffer, it returns-1, and sets thefrom andto
variables to indicate the whole buffer.

Thetag may be omitted when callingmodified_buffer_region(). In that case Epsilon uses
an internal tag that’s reset on each buffer display. So the primitive indicates which part of the current buffer
has been modified since the last buffer display.

10.1.15 Listing Buffers

char *buffer_list(int start)
int buf_list(int offset, int mode)

Thebuffer_list() primitive gets the name of each buffer in turn. Each time you call this
primitive, it returns the name of another buffer. It begins again when given a nonzero argument. When it has
returned the names of all the buffers since the last call with a nonzero argument, it returns a null pointer.

Thebuf_list() primitive can return the number of each existing buffer, one at a time, like
buffer_list(). Themode can be0, 1, or2, to position to the lowest-numbered buffer in the list, the
last buffer returned bybuf_list(), or the highest-numbered buffer, respectively. Theoffset lets you
advance from these buffers to lower or higher-numbered buffers, by providing a negative or positive offset.
Unlike buffer_list(), this primitive lets you back up or go through the list backwards.

For example, this code fragment displays the names of all buffers, one at a time, once forward and once
backward:

s = buffer_list(1);
do {

say("Forward %d: %s", name_to_bufnum(s), s);
} while (s = buffer_list(0));

i = buf_list(0, 2);
do {

say("Back %d: %s", i, bufnum_to_name(i));
} while (i = buf_list(-1, 1));
say("Done.");

10.2 Display Primitives

10.2.1 Creating & Destroying Windows

window_kill()
window_one()

Thewindow_kill() primitive removes the current window if possible, in the same way as the
kill-window command does. Thewindow_one() primitive eliminates all but the current window, as the
commandone-window does.

360 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

remove_window(int win)

Theremove_window() primitive deletes a window by handle or number. If you delete a tiled
window, Epsilon expands other windows as needed to fill its space. You cannot delete the last remaining
tiled window.

int give_window_space(int dir)
#define BLEFT 0 /* direction codes */
#define BTOP 1
#define BRIGHT 2
#define BBOTTOM 3

Thegive_window_space() primitive deletes the current window. It expands adjacent windows in
the specified direction into the newly available space, returning 0. If there are no windows in the specified
direction, it does nothing and returns 1.

window_split(int orientation)
#define HORIZONTAL (0)
#define VERTICAL (1)

Thewindow_split() primitive makes two windows from the current window, like the commands
split-window andsplit-window-vertically do. The argument towindow_split() tells whether to make
the new windows appear one on top of the other (with argumentHORIZONTAL) or side-by-side (with
argumentVERTICAL). The standard EEL header file, eel.h, defines the macrosHORIZONTAL and
VERTICAL. The primitive returns zero if it could not split the window, otherwise nonzero. When you split
the window, Epsilon automatically remembers to call theprepare_windows() andbuild_mode()
subroutines during the next redisplay.

user short window_handle;
user short window_number;
next_user_window(int dir)

You may refer to a window in two ways: by itswindow handleor by itswindow number.

Epsilon assigns a unique window handle to a window when it creates the window. This window handle
stays with the window for the duration of that window’s lifetime. To get the window handle of the current
window, use thewindow_handle primitive.

The window number, on the other hand, denotes the window’s current position in the window order.
You can think of the window order as the position of a window in a list of windows. Initially the list has only
one window. When you split a window, the two child windows replace it in the list. The top or left window
comes before the bottom or right window. When you delete a window, that window leaves the list. The
window in the upper left has window number0. Pop-up windows always come after tiled windows in this
order, with the most recently created (and therefore topmost) pop-up window last. Thewindow_number
primitive gives the window number of the current window.

Epsilon treats windows in a dialog much like pop-up windows, assigning each a window number and
window handle. The stacking order of dialogs is independent of their window handles, however. Deleting all
the windows on a dialog makes Epsilon remove the dialog. (Epsilon doesn’t count windows with the
system_window flag set when determining if you’ve deleted the last window.)

To change to a different window, you can set either thewindow_handle or window_number
variables. Epsilon then makes the indicated window become the current window. Epsilon interprets
window_numbermodulo the number of windows, so window number-1 refers to the last window.

10.2. DISPLAY PRIMITIVES 361

Many primitives that require you to specify a window will accept either its handle or its number. Use
window_handle to remember a particular window, since its number can change as you add or delete
windows.

You can increment or decrement thewindow_number variable to cycle through the list of available
windows. But it’s usually better to use thenext_user_window() subroutine, passing it1 to go to the
next window or-1 to go to the previous one. This will skip over system windows.

int number_of_windows()
int number_of_popups()
int number_of_user_windows()
int is_window(int win)
#define ISTILED 1
#define ISPOPUP 2

Thenumber_of_windows() primitive returns the total number of windows, and the
number_of_popups() primitive returns the number of pop-up windows. The
number_of_user_windows() subroutine returns the total number of windows, excluding system
windows.

Theis_window() primitive accepts a window handle or window number. It returnsISTILED if the
value refers to a conventional tiled window,ISPOPUP if the value refers to a pop-up window or a window
in a dialog, or0 if the value does not refer to a window.

10.2.2 Window Resizing Primitives

user window short window_height;
user window short window_width;
int text_height()
int text_width()

Thewindow_height variable contains the height of the current window in lines, including any mode
line or borders. Setting it changes the size of the window. Each window must have at least one line of height.
Thewindow_width variable contains the width of the current window, counting any borders the window
may have. If you set these variables to illegal values, Epsilon will adjust them to the closest legal values.

Thetext_height() andtext_width() primitives, on the other hand, exclude borders and mode
lines from their calculations, returning only the number of lines or columns of the window available for the
display of text.

int window_edge(int orien, int botright)
#define TOPLEFT (0)
#define BOTTOMRIGHT (1)

Thewindow_edge() primitive tells you where on the screen the current window appears. For the
first parameter, specify eitherHORIZONTAL or VERTICAL, to get the column or row, respectively. For the
second parameter, provide eitherTOPLEFT or BOTTOMRIGHT, to specify the corner. Counting starts at the
upper left corner of the screen, which has0 for both coordinates.

362 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

10.2.3 Preserving Window Arrangements

struct window_info {
short left, top, right, bottom;
short textcolor, hbordcolor;
short vbordcolor, titlecolor;
short borders, other, bufnum;
int point, dpoint;
/* primitives fill in before this line */
int dcolumn;
short prevbuf;

};

get_window_info(int win, struct window_info *p)
low_window_info(int win, struct window_info *p)
window_create(int first, struct window_info *p)
low_window_create(int first, struct window_info *p)
select_low_window(int wnum, int top, int bot,

int lines, int cols)

Epsilon has several primitives that are useful for recording a particular window configuration and
reconstructing it later.

Theget_window_info() subroutine fills a structure with information on the specified window.
The information includes the window’s size and position, its selected colors, and so forth. It uses the
low_window_info() primitive to collect some of the information, then fills in the rest itself by
inspecting the window.

After callingget_window_info() on each tiled window (obtaining a series of structures, each
holding information on one window), you can restore that window configuration using the
window_create() subroutine. It takes a pointer to a structure thatget_window_info() filled in,
and a flag that must be nonzero if this is the first window in the new configuration. It uses the
low_window_create() primitive to create the window. Thepoint or dpoint members of the
structure may be-1 when you callwindow_create() or low_window_create(), and Epsilon will
provide default values forpoint andwindow_start in the new window, based on values stored with the
buffer. The window-creating functions remain in the window they create, so you can modify its
window-specific variables.

After a series ofwindow_create()’s, you must use theselect_low_window() primitive to
switch to one of the created windows (specifying it by window number or handle, as usual).

Usingwindow_create() directly modifies windows, and Epsilon doesn’t check that the resulting
window configuration is legal. For example, you can define a set of tiled windows that leave gaps on the
screen, overlap, or extend past the screen borders. The result of creating an illegal window configuration is
undefined.

The first time you callwindow_create(), pass it a nonzero flag, and Epsilon will (internally) delete
all tiled windows, and create the first window. Then callwindow_create() again, as needed, to create
the remaining windows (pass it a zero flag). Finally, you must call theselect_low_window()
primitive. Once you begin usingwindow_create(), Epsilon will not be able to refresh the screen
correctly until you call theselect_low_window() primitive to exit window-creation. Thetop and
bot parameters specify the new values of theavoid-top-lines andavoid-bottom-lines
variables, and set the variables to the indicated values while finishing window creation. Thelines and
cols parameters specify the size of the screen that was used to construct the old window configuration. All

10.2. DISPLAY PRIMITIVES 363

windows defined usinglow_window_create() are based on that screen size. When you call
select_low_window(), Epsilon resizes all the windows you’ve defined so that they fit the current
screen size.

save_screen(struct screen_info *p)
restore_screen(struct screen_info *p)

Thesave_screen() subroutine saves Epsilon’s window configuration in astruct
screen_info structure. The first time you call this subroutine on an instance of thescreen_info
structure, make sure itswins member is zero. Therestore_screen() subroutine restores Epsilon’s
window configuration from such a structure.

10.2.4 Pop-up Windows

int add_popup(column, row, width, height, border, bnum)
/* macros for defining a window’s borders */
/* BORD(BTOP, BSINGLE) puts single line on top */

#define BLEFT 0
#define BTOP 1
#define BRIGHT 2
#define BBOTTOM 3
#define BNONE 0
#define BBLANK 1
#define BSINGLE 2
#define BDOUBLE 3
#define BORD(side, val) (((val) & 3) << ((side) * 2))
#define GET_BORD(side, bord) ((bord >> (side * 2)) & 3)
#define LR_BORD(val) (BORD(BLEFT, (val)) + BORD(BRIGHT, (val)))
#define TB_BORD(val) (BORD(BTOP, (val)) + BORD(BBOTTOM, (val)))
#define ALL_BORD(val) (LR_BORD(val) + TB_BORD(val))

Theadd_popup() primitive creates a new pop-up window. It accepts thecolumn androw of the
upper left corner of the new window, and thewidth andheight of the window (including any borders).
Theborder parameter contains a code saying what sort of borders the window should have, and thebnum
parameter gives the buffer number of the buffer to display in the window. The primitive returns the handle of
the new window, or-1 if the specified buffer did not exist, so Epsilon couldn’t create the window. If the
pop-up window is to become part of a dialog (see page 470), its size, position and border will be determined
by the dialog, not the values passed toadd_popup().

You can define the borders of a window using macros from codes.h. For each of the four sides, you can
specify no border, a blank border, a border drawn with a single line, or a border drawn with a double line,
using the codesBNONE, BBLANK, BSINGLE, orBDOUBLE, respectively. Specify the side to receive the
border with the macrosBLEFT, BTOP, BRIGHT, andBBOTTOM. You can make a specification for a given
side using theBORD() macro, writingBORD(BBOTTOM, BDOUBLE) to put a double-line border at the
bottom of the window. Add the specifications for each side to get the complete border code.

You can use other macros to simplify the border specification. WriteLR_BORD(BSINGLE) +
TB_BORD(BDOUBLE) to produce a window with single-line borders on the left and right, and double-line
borders above and below. WriteALL_BORD(BNONE) for a window with no borders at all, and the most
room for text.

364 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

You can use theGET_BORD() macro to extract (from a complete border code) the specification for one
of its sides. For example, to find the border code for the left-side border of a window with a border value of
bval, writeGET_BORD(BLEFT, bval). If the window has a double-line border on that side, the macro
would yieldBDOUBLE.

int window_at_coords(int row, int col, ?int screen)

Thewindow_at_coords() primitive provides the handle of the topmost window at a given set of
screen coordinates. The primitive returns-1 if no window occupies that part of the screen. The screen
number parameter can be zero or omitted to refer to the main screen, but it is usually a screen number from
themouse_screen primitive.

int window_to_screen(int win)

Thewindow_to_screen() primitive takes a window handle and returns its screen number.
Windows that are part of a dialog box have nonzero screen numbers; in this version other windows always
have a screen number of zero.

int screen_to_window(int screen)

Thescreen_to_window() primitive takes a screen number, as returned in the variable
mouse_screen, and returns the window handle associated with it. If the screen number is zero, there may
be several windows associated with it; Epsilon will choose the first one. In this version of Epsilon, nonzero
screen numbers uniquely specify a window.

user window int window_left;
user window int window_top;

Thewindow_left andwindow_top primitive variables provide screen coordinates for the current
window. You can set the coordinates of a pop-up window to move the window around. Epsilon ignores
attempts to set these variables in tiled windows.

10.2.5 Pop-up Window Subroutines

view_buffer(char *buf, int last) /* complete.e */
view_buf(int buf, int last) /* complete.e */

Several commands in Epsilon display information using theview_buffer() subroutine. It takes the
name of a buffer and displays it page by page in a pop-up window. Theview_buf() subroutine takes a
buffer number and does the same. Both take a parameterlast which says whether the command is
displaying the buffer as its last action.

If last is nonzero, Epsilon will create the window and then return. Epsilon’s main command loop will
take care of displaying the pop-up window, scrolling through it, and removing it when the user’s done
examining it. If the user executes a command likefind-file while the pop-up window is still on the screen,
Epsilon will remove the pop-up and continue with the command.

If last is zero, the viewing subroutine will not return until the user has removed the pop-up window
(by pressinghSpacei or Ctrl-G, for example). The command can then continue with its processing. The user
won’t be able to execute a prompting command likefind-file while the pop-up window is still on the screen.

10.2. DISPLAY PRIMITIVES 365

view_linked_buf(int buf, int last, int (*linker)())
int linker(char *link) /* linker function prototype */

Epsilon uses a variation ofview_buf() to display some online help. The variation adds support for
simple hyperlinks. The user can select one of the links in a page of displayed text and follow it to go to
another page, or potentially to perform any other action. Theview_linked_buf() subroutine shows a
buffer with links.

The links are delimited with a Ctrl-A character before and a Ctrl-B character after each link. Epsilon’s
non-Windows documentation file edoc is in this format. (See page 449.) Theview_linked_buf()
subroutine will modify the buffer it receives, removing and highlighting the links before displaying it.

When the user follows a link, Epsilon will call the function pointerlinker passed as a parameter to
view_linked_buf(). Thelinker function, which may have any name, will receive the link text as a
parameter.

/* space at sides of viewed popup */
short _view_left = 2;
short _view_top = 2;
short _view_right = 2;
short _view_bottom = 6;

short _view_border = ALL_BORD(BSINGLE);
char *_view_title; /* title for viewed popup */
int view_loop(int win)

By default, the above subroutines create a pop-up window with no title and a single-line border, almost
filling the screen. The window begins two columns from the left border and stops two columns from the
right, and extends two lines from the top of the screen to six lines from the bottom. You can alter any of
these values by setting the variables_view_title, _view_border, _view_left, _view_top,
_view_right, and_view_bottom. Preserve the original default value using thesave_var keyword.
For example, this code fragment shows a buffer in a narrow window near the right edge of the screen labeled
“Results” (surrounding a title with spaces often makes it more attractive):

save_var _view_left = 40;
save_var _view_title = " Results ";
save_var _view_border = ALL_BORD(BDOUBLE);
view_buffer(buf, 1);

A command that displays a pop-up window may want more control over the creation and destruction of
the pop-up window thanview_buf() and similar subroutines provide. A command can instead create its
pop-up window itself, and callview_loop() to handle user interaction. Theview_loop() subroutine
takes the handle of the pop-up window to work with. The pop-up window may be a part of a dialog. (See the
display_dialog_box() primitive described on page 470.)

Theview_loop() subroutine lets the user scroll around in the window and watches for an
unrecognized key (an alphabetic key, for example) or a key that has a special meaning. It returns when the
user presses one of these keys or when the user says to exit. By default, the user can scroll off either end of
the buffer and this subroutine will return. Set thepaging-retains-view variable nonzero to prevent
this. Theview_loop() subroutine returns anINP_ code from eel.h to indicate which user action made it
exit. See that file for more information. The function that calledview_loop()may choose to call
view_loop() again, or to destroy the pop-up window and continue.

366 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

error_if_input(int abort) /* complete.e */
remove_final_view() /* complete.e */

If the user is entering a response to some prompt and gives another command that also requires a
response, Epsilon aborts the command to prevent confusion. Such commands should call
error_if_input(), which will abort if necessary. The subroutine also removes a viewed buffer, as
described above, by callingremove_final_view() if necessary. If itsabort parameter is nonzero, it
will attempt to abort the outer command as well, if aborting proves necessary.

10.2.6 Window Attributes

int get_wattrib(int win, int code)
set_wattrib(int win, int code, int val)
/* use these codes with get_wattrib() & set_wattrib() */
#define BLEFT 0
#define BTOP 1
#define BRIGHT 2
#define BBOTTOM 3
#define PBORDERS 4
#define PHORIZBORDCOLOR 5
#define PVERTBORDCOLOR 6
#define PTEXTCOLOR 7
#define PTITLECOLOR 8

Theget_wattrib() andset_wattrib() primitives let you examine and modify many of a
window’s attributes, such as its position, size, or color. Thewin parameter contains the handle or number of
the window to modify, and thecode parameter specifies a particular attribute.

For thecode parameter, you can specify one ofBLEFT, BTOP, BRIGHT, orBBOTTOM, to examine or
change the window’s size or position. They refer to the screen coordinate of the corresponding edge. You
can usePBORDERS to specify a new border code (see the description ofadd_popup() above). Or you
can set one of the window’s colors: each window has a particular color class it uses for its normal text
(outside of any highlighted regions), its horizontal borders, its vertical borders, and its title text. Use the
macrosPTEXTCOLOR, PHORIZBORDCOLOR, PVERTBORDCOLOR, andPTITLECOLOR, respectively, to
refer to these. Set them using a color class expression. (See page 89.) For example, the statement

set_wattrib(win, PTEXTCOLOR, color_class viewed_text);

makes the text in windowwin appear in the color the user selected for viewed text.

window char system_window;
window char invisible_window;

Setting the window-specific primitive variablesystem_window to a nonzero value designates the
current window as a system window. The user commands that switch windows will skip over system
windows. Setting the window-specific primitive variableinvisible_window to a nonzero value makes
a window whose text Epsilon won’t display (although it will display the border, if the window has one).
Epsilon won’t modify the part of the screen that would ordinarily display the window’s text.

10.2. DISPLAY PRIMITIVES 367

10.2.7 Buffer Text in Windows

to_buffer(char *buf) /* buffer.e */
to_buffer_num(int bnum) /* buffer.e */
window short window_bufnum;
switch_to_buffer(int bnum)
int give_prev_buf() /* buffer.e */
to_another_buffer(char *buf)
tiled_only() /* window.e */
int in_bufed() /* bufed.e */
quit_bufed() /* bufed.e */

Theto_buffer() subroutine defined in buffer.e connects the current window to the named buffer,
while to_buffer_num() does the same, but takes a buffer number. Both work by setting the
window_bufnum variable, first remembering the previous buffer displayed in the window so the user can
easily return to it. Thewindow_bufnum variable stores the buffer number of the buffer displayed in the
current window.

Both of these functions check the file date of the new buffer and warn the user if the buffer’s file has
been modified on disk. Theswitch_to_buffer() subroutine skips this checking.

Thegive_prev_buf() subroutine retrieves the saved buffer number of the previous buffer displayed
in the current window. If the previous buffer has been deleted, or there is no previous buffer for this window,
it returns the number of another recently-used buffer. If it can’t find any suitable buffer, it returns0.

Theto_another_buffer() subroutine makes sure thatbuf is not the current buffer. If it is, the
subroutine switches the current window to a different buffer. This subroutine is useful when you’re about to
delete a buffer.

Sometimes the user may issue a command that switches buffers, while in a bufed pop-up window, or
some other type of pop-up window. Issuingto_buffer() would switch the pop-up window to the new
buffer, rather than the underlying window. Such commands should call thetiled_only() subroutine
before switching buffers. This subroutine removes any bufed windows or other unwanted windows, and
returns to the original tiled window. It calls thequit_bufed() subroutine to remove bufed windows. If it
can’t remove some pop-up windows, it tries to abort the command that created them. Thequit_bufed()
subroutine uses thein_bufed() subroutine to determine if the current window is a bufed window.

user window int window_start;
user window int window_end;
fix_window_start() /* window.e */

Thewindow_start variable provides the buffer position of the first character displayed in the current
window. Epsilon’s redisplay sets this variable, but you can also set it manually to change what part of the
buffer appears in the window. When Epsilon updates the window after a command, it makes sure that point
is still somewhere on the screen, using the new value forwindow_start. If not, it alters
window_start so point is visible.

Thewindow_end variable provides the buffer position of the last character displayed in the window.
Epsilon’s redisplay sets this variable. Setting it does nothing.

Thefix_window_start() subroutine adjustswindow_start, if necessary, so that it occurs at
the beginning of a line.

int get_window_pos(int pos, int *row, int *col)
int window_line_to_position(int row)

368 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Theget_window_pos() function takes a buffer position and finds the window row and column that
displays the character at that position. It puts the row and column in the locations thatrow andcol point
to. It returns0 if it could find the position in the window, or a code saying why it could not.

A return value of1 means that the position you gave doesn’t appear in the window because it precedes
the first position displayed in the window. If the given position doesn’t appear in the window because it
follows the last position displayed in the window, the function returns2. A return value of3 means that the
position “appears” before the left edge of the screen (due to horizontal scrolling), and4 means that the
position “appears” too far to the right. It doesn’t change the locations thatrow andcol refer to when it
returns1 or 2.

Thewindow_line_to_position() primitive takes the number of a row in the current window,
and returns the buffer position of the first character displayed on that row. It returns-1 if the row number
provided is negative or greater than the number of rows in the window.

user int line_in_window;
user int column_in_window;

Theline_in_window andcolumn_in_window primitives give you the position of point in the
current window, as set by the lastrefresh(). Both variables start counting from0. If you switch
windows, Epsilon will not update these variables until the nextrefresh().

int window_extra_lines()
build_window()
window_to_fit(int max) /* window.e */
popup_near_window(int new, int old)

When buffer text doesn’t reach to the bottom of a window, Epsilon blanks the rest of the window. The
window_extra_lines() primitive gives the number of blank lines at the bottom of the window that
don’t correspond to any lines in the buffer.

Some of the functions that return information about the text displayed in a window only provide
information as of the last redisplay. Due to buffer changes, their information may now be outdated. The
build_window() primitive reconstructs the current window internally, updating Epsilon’s idea of which
lines of text go where in the window, how much will fit, and so forth. This primitive updates the value of
window_end. It may also modify thedisplay_column andwindow_start variables if displaying
the window as they indicate doesn’t get topoint. Thebuild_window() function also updates the
values returned by thewindow_line_to_position(),get_window_pos(), and
window_extra_lines() functions.

Use thewindow_to_fit() subroutine to ensure that a pop-up window is no taller than it needs to
be. It sets the window’s height so that it’s just big enough to hold the buffer’s text, but never more thanmax
lines tall. The subroutine has no effect on windows that form part of a dialog.

Thepopup_near_window() subroutine tries to move a pop-up window on the screen so it’s near
another window. It also adjusts the height of the pop-up window based on its contents, by calling
window_to_fit(). Thebufed command uses this to position its pop-up buffer list near the tiled window
from which you invoked it.

window_scroll(int lines)

Thewindow_scroll() primitive scrolls the text of the current window up or down. It takes an
argument saying how many lines up to scroll the current window. With a negative argument, this primitive
scrolls the window down. (See page 372 for information on scrolling text left or right.)

10.2. DISPLAY PRIMITIVES 369

10.2.8 Window Titles and Mode Lines

window_title(int win, int edge, int pos, char *title)
#define TITLECENTER (0)
#define TITLELEFT(offset) (1 + (offset))
#define TITLERIGHT(offset) (-(1 + (offset)))
make_title(char *result, char *title, int room)

You can position a title on the top or bottom border of a window using thewindow_title()
primitive. (Also see theset_window_caption() primitive described on page 471.) It takes the window
number inwin and the text to display intitle. (It makes a copy of the text, so you don’t need to make
sure it stays around after your function returns.) Theedge parameter must have the value ofBTOP or
BBOTTOM, depending on whether you want the title displayed on the top or bottom border of the window.

Construct thepos parameter using one of the macrosTITLELEFT(), TITLECENTER, or
TITLERIGHT(). TheTITLECENTER macro centers the title in the window. The other two take a number
which says how many characters away from the given border the title should appear. For example,
TITLERIGHT(3) puts the title three characters away from the right-hand edge of the window.

Epsilon interprets the percent character ‘%’ specially when it appears in the title of a window. Follow
the percent character with a character from the following list, and Epsilon will substitute the indicated value
for that sequence:

%c Epsilon substitutes the current column number, counting columns from 0.

%C Epsilon substitutes the current column number, counting columns from 1.

%d Epsilon substitutes the current display column, with a< before it, and a space after. However, if the
display column has a value of0 (meaning horizontal scrolling is enabled, but the window has not been
scrolled), or-1 (meaning the window wraps long lines), Epsilon substitutes nothing.

%D Epsilon substitutes the current display column, but if the display column is-1, Epsilon substitutes
nothing.

%l Epsilon substitutes the current line number.

%m Epsilon substitutes the text “More ”, but only if characters exist past the end of the window. If the
last character in the buffer appears in the window, Epsilon substitutes nothing.

%P Epsilon substitutes the percentage of point through the buffer, followed by a percent sign.

%p Epsilon substitutes the percentage of point through the buffer, followed by a percent sign. However, if
the bottom of the buffer appears in the window, Epsilon displays Bot instead. Epsilon displays Top if
the top of the buffer appears, and All if the entire buffer is visible.

%s Epsilon substitutes “* ” if the buffer’smodified flag has a nonzero value, otherwise nothing.

%S Epsilon substitutes “*” if the buffer’smodified flag has a nonzero value, otherwise nothing.

%h Epsilon substitutes the current hour in the range 1 to 12.

%H Epsilon substitutes the current hour in military time in the range 0 to 23.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

370 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

%a Epsilon substitutes “am” or “pm” as appropriate.

Note: For the current time, use a sequence like%2h:%02n %a for “3:45 pm” or%02H:%02n:%02e for
“15:45:21”.

%% Epsilon substitutes a literal “%” character.

%< Indicates that redisplay may omit text to the left, if all of the information will not fit.

%> Puts any following text as far to the right as possible.

With any of the numeric sequences, you can include a printf-style field width specifier between the%
and the letter. You can use the same kinds of field width specifiers as C’sprintf() function. In column 9,
for example, the sequence%4c expands to “ 9”, %04c expands to “0009”, and%-4c expands to “9
”.

You can expand title text in the same way as displaying it would, using themake_title() primitive.
It takes the title to expand, a character array where it will put the resulting text, and a width in which the title
must fit. It returns the actual length of the expanded text.

prepare_windows() /* disp.e */
window char _window_flags;
#define FORCE_MODE_LINE 1
#define NO_MODE_LINE 2
#define WANT_MODE_LINE 4

build_mode() /* disp.e */
assemble_mode_line(char *line) /* disp.e */
set_mode(char *mode) /* disp.e */
buffer char *major_mode; /* EEL variable */
user char mode_start[30];
user char mode_end[30];

Whenever Epsilon thinks a window’s mode line or title may be out of date, it arranges to call the
prepare_windows() andbuild_mode() subroutines during the next redisplay. The
prepare_windows() subroutine arranges for the correct sort of borders on each window. This
sometimes depends on the presence of other windows. For example, tiled windows get a right-hand border
only if there’s another window to their right. This subroutine will be called before text is displayed.

By default,prepare_windows() puts a mode line on all tiled windows, but not on any pop-up
windows. You can set flags in the window-specific_window_flags variable to change this. Set
FORCE_MODE_LINE if you want to put a mode line on a pop-up window, or setNO_MODE_LINE to
suppress a tiled window’s mode line. Theprepare_windows() subroutine interprets these flags, and
alters theWANT_MODE_LINE flag to tellbuild_mode() whether or not to put a mode line on the
window.

Thebuild_mode() subroutine calls theassemble_mode_line() subroutine to construct a
mode line, and then uses thewindow_title() primitive to install it.

Theassemble_mode_line() subroutine calls theset_mode() subroutine to construct the part
of the mode line between square brackets (the name of the current major mode and a list of minor modes).

While many changes to the mode line require a knowledge of EEL, you can do some simple
customizations by setting the variablesmode_start andmode_end. These specify the part of the mode
line before the buffer or file name (by default, just a space), and the part of the mode line after the square

10.2. DISPLAY PRIMITIVES 371

brackets (by default, an optional display column, a buffer percentage, a space, and an optional modification
star). Edit these variables withset-variable, using the percent character sequences listed above. For
example, if you wanted each mode line to start with a line and column number, you could setmode_start
to “ Line %l Col %c ”.

An EEL function can add text to the start of a particular buffer’s mode line by setting the buffer-specific
variablemode_extra. Call theset_mode_message() subroutine to do this. It takes a pointer to the
new text, orNULL to remove the current buffer’s extra text. Internet FTP’s use this to display the percent of
a file that’s been received (and similar data).

Theset_mode() subroutine gets the name of the major mode from the buffer-specificmajor_mode
variable, and adds the names of minor modes itself. You can add new minor modes by replacing this
function (see page 440).

display_more_msg(int win)

Thedisplay_more_msg() subroutine makes the bottom border of the windowwin display a
“More” message when there are characters past the end of the window, by defining a window title that uses
the%m sequence.

10.2.9 Normal Buffer Display

Epsilon provides many primitives for altering the screen contents. This section describes those relating to
the automatic display of buffers that happens after each command, as described below.

refresh()
maybe_refresh()

Therefresh() primitive does a standard screen refresh, showing the contents of all Epsilon
windows. Themaybe_refresh() primitive callsrefresh() only if there is no type-ahead. This is
usually preferred since it lets Epsilon catch up with the user’s typing more quickly. Epsilon calls the latter
primitive after each command executes.

user window char build_first;
user buffer char must_build_mode;
user char full_redraw;
user char all_must_build_mode;

Epsilon normally displays each window line by line, omitting lines that have not changed. When a
command has moved point out of the window, Epsilon must reposition the display point (the buffer position
at which to start displaying text) to return point to the window. However, Epsilon sometimes does not know
that repositioning is required until it has displayed the entire window. When it discovers that point is not in
the window, Epsilon moves the display point to a new position and immediately displays the window again.
Certain commands which would often cause this annoying behavior set thebuild_first variable to
prevent it.

When thebuild_first variable is set, the next redisplay constructs each window internally first,
checks that point is in the window, and only then displays it. The variable is then set back to zero. A
build_first redisplay is slower than a normal redisplay, but it never flashes an incorrect window.

Epsilon “precomputes” most of the text of each mode line, so it doesn’t have to figure out what to write
each time it updates the screen. Setting themust_build_mode variable to1 warns Epsilon that any

372 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

mode lines for the current buffer must be rebuilt. Themake_mode() subroutine in disp.e sets this to1,
and Epsilon rebuilds the mode lines of all windows displaying this buffer.

Setting theall_must_build_mode variable to1 is like settingmust_build_mode to 1 for all
buffers.

Setting thefull_redraw variable rebuilds all mode lines, as well as any precomputed information
Epsilon may have on window borders, screen colors, and so forth.

It is necessary to setfull_redraw when two parameters affecting the display have been changed.
Make thefull_redraw variable nonzero if the size of the tab character has changed, or if the display
class of any character has been changed via the_display_class array.

screen_messed()

Thescreen_messed() primitive causes the nextrefresh() to completely redraw the entire
screen.

user window int display_column;

The window-specific variabledisplay_column determines how Epsilon displays long lines. If
negative, Epsilon displays buffer lines too big to fit on one screen line on multiple screen lines, with an or
graphic character (see the_display_characters variable described below) to indicate that the line has
been wrapped. Ifdisplay_column is 0 or positive, Epsilon only displays the part of a line that fits on the
screen. Epsilon also skips over the initialdisplay-column columns of each line when displayed.
Horizontal scrolling works by adjusting the display column.

int next_screen_line(int n)
int prev_screen_line(int n)

Thenext_screen_line() primitive assumes point is at the beginning of a screen line, and finds
thenth screen line following that one by counting columns. It returns the position of the start of that line.

Theprev_screen_line() primitive is similar. It returns the start of thenth screen line before the
one point would be on. It does not assume that point is at the start of a screen line.

If Epsilon is scrolling long lines of text rather than wrapping them (becausedisplay_column is
greater than or equal to zero), these primitives go to the beginning of the appropriate line in the buffer, not
thedisplay_column’th column. In this mode,next_screen_line(1) is essentially the same as
nl_forward(), andprev_screen_line(0) is like to_begin_line().

Video Modes

user char screen_mode;

In the DOS and OS/2 versions, thescreen_mode primitive is set at startup to indicate what mode the
display screen is in. The value ofscreen_mode is derived from the Interrupt 10 BIOS routine (under
DOS), and is set according to the following table:

0 40 X 25 Black & White
1 40 X 25 Color
2 80 X 25 Black & White
3 80 X 25 Color
7 80 X 25 Monochrome

10.2. DISPLAY PRIMITIVES 373

short screen_cols;
short screen_lines;

Thescreen_cols andscreen_lines primitives contain the number of columns and lines on the
display. They are set when Epsilon starts up, using values provided by the operating system (or, for the
Windows version, by the registry or Epsilon’s .ini file). Don’t set these variables directly. Use the
resize_screen() primitive described below.

short want_cols;
short want_lines;

Thewant_cols andwant_lines primitives contain the values the user specified through the-vc
and-vl switches, respectively, described on page 15. If these variables are 0, it means the user did not
explicitly specify the number of lines or columns to display.

term_init() /* video.e */
term_cmd_line() /* video.e */
term_mode(int active) /* video.e */

Epsilon’s standard startup code calls the subroutineterm_init() when you start Epsilon, and
term_cmd_line()when it wants to switch to the video mode the user specified on the command line. (It
switches video modes based on the command lineafter it restores any saved session.) Theterm_mode()
subroutine controls switching when you exit Epsilon or run a subprocess. Its argument is1 when entering
Epsilon again (when ashell() call returns, for example) and0 when exiting. The default versions of
these functions implement the EGA and VGA support described on page 92.

resize_screen(int lines, int cols)
when_resizing() /* EEL subroutine */

The commands that change the screen size (see page 92) must do two things. First they must change the
mode of the display device so that a different number of lines or columns is displayed. Then they must tell
Epsilon to display a different number of lines or columns. They call theresize_screen() primitive to
do the latter. It scales all the windows to the new screen dimensions, and then sets thescreen_lines and
screen_cols variables to the new screen size.

After resizing the screen, the functions that switch video modes call thewhen_resizing()
subroutine. By default, this does nothing, but you can replace it to customize Epsilon’s behavior at this time.
(See page 440 to make sure your extension doesn’t interfere with other extensions.)

Character Display

buffer char *_display_class;
user buffer short tab_size;
char *_echo_display_class;

Modifying the character array_display_class lets you alter the way Epsilon displays characters.
There is one position in the array for each of the 256 possible characters in a buffer. The code at each
position determines how Epsilon displays the character when it appears in a buffer. This code is adisplay
code.

374 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Epsilon lets each character occupy one or more screen positions. For example, the Control-A character
is usually shown in two characters on the screen as “ˆA”. The number of columns thehTabi character
occupies depends on the column it starts in. Epsilon uses the display codes0 through6 to produce the
various multi-character representations it is capable of, as described below.

Besides these multi-character display codes, Epsilon provides a way to have one character display as
another. If the display code of a character is not one of the special display codes0 through6, Epsilon
interprets the display code as a graphics character. This graphics character becomes the single-column
representation.

For example, if the display code for ‘A’ is ‘B’ (that is, if the value of_display_class[’A’] is the
character ‘B’), wherever an ‘A’ appears in the buffer, a ‘B’ will appear on the screen when it is displayed.
The character is still really an ‘A’, however: only searches for ‘A’ will find it, an ‘A’ will be written if you
save the file, and so forth. This facility is especially useful for supporting national character sets.

If a display code is from0 to 6, it has a special meaning. By default, all characters have such a display
code. These numbers have been given names in the file codes.h, and we’ll use the names in this discussion
for clarity.

Epsilon displays a character with display codeBNORMAL as the character itself. If character 65, the
letter ’A’, has display codeBNORMAL it is the same as if it had display code 65.

Epsilon displays a character with display codeBTAB as a tab. The character is displayed as the number
of blanks necessary to reach the next tab stop. The buffer-specific primitive variabletab-size sets the
number of columns from one tab stop to the next. By default its value is eight.

A character with display codeBNEWLINE goes to the start of the next line when displayed, as newline
does normally.

Epsilon displays a character with display codeBC as a control character. It is displayed as theˆ
character, followed by the original character exclusive-or’ed with 64, and with the high bit stripped.BM and
BMC are similar, with the prefix being M- and M-ˆ, respectively.

Finally, Epsilon displays a character with display codeBHEX as a hexadecimal number in the form
‘xB7’. Specifically, the representation has the letter ’x’, then the two-character hexadecimal character code.
You can change many of the characters Epsilon uses for its representations of newlines, tabs, hex characters,
and so forth; see below.

By default, the tab character has codeBTAB, the newline character has codeBNEWLINE, and the other
control characters have codeBC. Control characters with the eighth bit set have codeBMC. All other
characters have codeBNORMAL.

The variable_display_class is actually a buffer-specific pointer to the array of display codes.
Normally, all these pointers refer to the same array, contained in the variable_std_disp_class defined
in cmdline.e. You can create other arrays if you wish to have different buffers display characters in different
ways. Whenever you change the_display_class variable,build_first must be set to make the
change take effect, as described above.

When displaying text in the echo area, Epsilon uses the display class array pointed to by the
_echo_display_class variable. It can have the same values as_display_class.

char _display_characters[];
buffer char *buffer_display_characters;

It is possible to change the characters Epsilon uses to display certain parts of the screen such as the
border between windows. Epsilon gets such characters from the_display_characters array. This
array contains the line-drawing characters that form window borders, the characters Epsilon uses in some of
the display modes set byset-show-graphic, the characters it uses to construct the scroll bar, and the

10.2. DISPLAY PRIMITIVES 375

characters Epsilon replaces for the graphical mouse cursor it normally uses in DOS. The
set-display-characters command may be used to set these characters.

If the buffer-specific variablebuffer_display_characters is non-null in a buffer, Epsilon uses
it in place of the_display_characters variable whenever it displays that buffer. You can use this to
provide a special window border, scroll bar, or similar for a particular buffer. Epsilon’schange-show-spaces
command uses this variable, too.

int expand_display(char *to, char *from)

Theexpand_display() primitive expands characters to the multicharacter representations they
would have if displayed on the screen. It returns the length of the result.

Character Widths and Columns

int display_width(int ch, int col)
move_to_column(int col)
int column_to_pos(int col)

The number of characters that fit on each screen line depends on the display codes of the characters in
the line. Epsilon moves characters with multi-character representations as a unit to the next screen line when
they don’t fit at the end of the previous one (except in horizontal scrolling mode). Tab characters also vary in
width depending upon the column they start in. There are several primitives that count screen columns using
display class information.

Thedisplay_width() primitive is the simplest. It returns the width a characterch would have if it
were at columncol. Themove_to_column() primitive moves to columncol in the current line, or to
the end of the line if it does not reach to columncol. Thecolumn_to_pos() subroutine accepts a
column number but doesn’t move point; instead it returns the buffer position of that column.

int horizontal(int pos)
int current_column()
int get_column(int pos) /* indent.e */
int get_indentation(int pos) /* indent.e */
to_column(int col) /* indent.e */
indent_to_column(int col) /* indent.e */
indent_like_tab() /* indent.e */

Thehorizontal() primitive returns the number of columns from point to positionpos. Point
doesn’t change. It must be beforepos. The primitive returns-1 if there is a character of display code
BNEWLINE between point andpos. This primitive assumes that point is in column0.

Thecurrent_column() primitive uses thehorizontal() primitive to return the number of the
current column.

Theget_column() subroutine returns the column number of a given buffer position. The
get_indentation() subroutine returns the indentation of the line containing positionpos.

Theto_column() subroutine indents so that the character immediately after point winds up in
columncol. It replaces any spaces and tabs before point with the new indentation. It doesn’t modify any
characters after point.

Theindent_to_column() subroutine indents so that the next non-whitespace character on the line
winds up in columncol. It replaces any spaces and tabs before or after point.

376 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Theindent_like_tab() subroutine indents like inserting ahTabi character at point would.
However, it respects theindent-with-tabs variable and avoids using tabs when the variable is zero. It
also converts spaces and tabs immediately before point so that they matchindent-with-tabs and use
the minimum number of characters.

force_to_column(int col) /* indent.e */

Theforce_to_column() subroutine tries to move to columncol. If the line doesn’t reach to that
column, the function indents out to the column. If the column occurs inside a tab character, the function
converts the tab to spaces.

user window short cursor_to_column;
to_virtual_column(int col) /* basic.e */
int virtual_column() /* basic.e */
int virtual_mark_column() /* basic.e */

The window-specificcursor_to_column variable lets you position the cursor in a part of a window
where there are no characters. It’s normally-1, and the cursor stays on the character after point. If it’s
non-negative in the current window, Epsilon puts the cursor at the specified column in the window instead.
Epsilon resetscursor_to_column to -1 whenever the buffer changes, or point moves from where it
was when you last setcursor_to_column. (Epsilon only checks these conditions when it redisplays the
window, so you can safely move point temporarily.)

Similarly, the window-specificmark_to_column variable lets you position the mark in a part of a
window where there are no characters. Epsilon uses this variable when it displays a region that runs to the
mark’s position, and swaps the variable withcursor_to_column when you exchange the point and
mark. It’s normally-1, so Epsilon highlights up to the actual buffer position of the mark. If it’s
non-negative in the current window, Epsilon highlights up to the specified column instead. Epsilon resets
mark_to_column to -1 just as described above forcursor_to_column.

Theto_virtual_column() subroutine positions the cursor to columncol on the current line. It
tries to simply move to the correct position in the buffer, but if no buffer character begins at that column, it
uses thecursor_to_column variable to get the cursor to the right place.

Thevirtual_column() subroutine provides the column the cursor would appear in: either the
value of thecursor_to_column variable, or (if it’s negative) the current column. Similarly, the
virtual_mark_column() subroutine provides the column for the mark, takingmark_to_column
into account.

tab_convert(int from, int to, int totabs)
hack_tabs(int offset)
int maybe_indent_rigidly(int rev)

Thetab_convert() subroutine converts tabs to spaces in the specified region when its parameter
totabs is zero. Whentotabs is nonzero, it converts spaces to tabs.

Thehack_tabs() subroutine converts tabs to spaces in theoffset columns following point. If
offset is negative, the function converts tabs in the columns preceding point.

Commands bound tohTabi often call themaybe_indent_rigidly() subroutine. If a region’s
been highlighted, this subroutine indents it using theindent-rigidly command and then returns nonzero.
Otherwise, it returns zero. If its parameterrev is nonzero, the subroutine unindents; a command bound to
Shift-hTabi often provides a nonzerorev, but for commands onhTabi this is typically zero.

10.2. DISPLAY PRIMITIVES 377

buffer int (*indenter)(); /* EEL variable */
user buffer int auto_indent; /* EEL variable */
prev_indenter() /* indent.e */

Thenormal-character command provides a hook for automatic line indentation when it inserts the
newline character. If the buffer-specific variableauto-indent is nonzero, thenormal-character
command will call the function pointed to by the variableindenter, a buffer-specific function pointer,
after inserting a newline character. By default, it calls theprev_indenter() subroutine, which indents
to the same indentation as the previous line.

10.2.10 Displaying Status Messages

int say(char *format, ...)
int sayput(char *format, ...)

Thesay() primitive displays text in the echo area. It takes a printf-style format string, and zero or
more other parameters, as described on page 379. Thesayput() primitive is similar, but it positions the
cursor at the end of the string. Each returns the number of characters displayed.

int note(char *format, ...)
int noteput(char *format, ...)
int unseen_msgs()
drop_pending_says()
short expire_message;

When you use thesay(), sayput(), orerror() primitives (error()’s description appears on
page 433) to display a message to the user, Epsilon ensures that it remains on the screen long enough for the
user to see it (thesee-delay variable controls just how long) by delaying future messages. Messages that
must remain on the screen for a certain length of time are calledtimed messages.

Thenote() andnoteput() primitives work likesay() andsayput(), respectively, but their
messages can be overwritten immediately. These untimed messages should be used for “status” messages
that don’t need to last (“95% done”, for example).

Epsilon copies the text of each timed message to the#messages# buffer. It doesn’t copy untimed
messages (but see theshow_text() primitive below).

Theunseen_msgs() primitive returns the number of unexpired timed messages. When the user
presses a key, and there are unseen messages, Epsilon immediately displays the most recent message waiting
to be displayed, and discards all pending timed messages.

Thedrop_pending_says() primitive makes Epsilon discard any timed messages that have not yet
been displayed. It also makes the current message be untimed (as if it were generated bynote(), not
say()), so that the nextsay(), note(), or similar will appear immediately. It returns0 if there were no
timed messages, or1 if there were (or the current message had not yet expired).

An EEL function sometimes needs to display some text in the echo area that is only valid until the user
performs some action. For instance, a command that displays the number of characters in the buffer might
wish to clear that count if the user inserts or deletes some characters. After displaying text with one of the
primitives above, an EEL function may set theexpire_message variable to 1 to tell Epsilon to clear that
text on the next user key.

int show_text(int column, int time, char *fmt, ...)

378 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Theshow_text() primitive is the most general command for displaying text in the echo area. Like
the other display primitives, it takes a printf-style format string, and returns the number of characters it
displayed.

When Epsilon displays text in the echo area, you can tell it to begin at a particular column, and Epsilon
will subdivide the echo area into two sections. You can then display different messages in each area
independently of one another. When it’s necessary to display a very long message, Epsilon will combine the
sections again and use the full display width. There are never more than two sections in the echo area.

In detail, theshow_text() primitive tells Epsilon to begin displaying text in the echo area at the
specified column, where the leftmost column is column0. Epsilon then clears the rest of that echo area
section, but doesn’t modify the other section.

Whenever you specify a column greater than zero inshow_text(), Epsilon will subdivide the echo
area at that column. It will clear any text to the right of the newly-displayed text, but not any text to its left.

Epsilon will recombine the sections of the echo area under two conditions: whenever you write text
starting in column0 that begins to overwrite the next section, and whenever you write the empty string""
at column0. When Epsilon recombines sections, it erases the entire echo area before writing the new text.

Specifying a column of-1 acts just like specifying column0, making Epsilon display the text at the
left margin, but it also tells Epsilon to position the cursor right after the text.

Thetime says how long in hundredths of a second Epsilon must display the message before moving
on and displaying the next message, if any. As with any timed message, when the user presses a key, Epsilon
immediately displays the last message waiting, skipping through any pending messages. A value of0 for
time means the message doesn’t have to remain for any fixed length of time. A value of-1 means that
Epsilon may not go on to the next message until it receives a keystroke; such messages will never time out.

Most of the other echo area display primitives are equivalent to some form ofshow_text(), as
shown in the following table:

note("abc") show_text(0, 0, "abc")
say("abc") show_text(0, see_delay, "abc")
noteput("abc") show_text(-1, 0, "abc")
sayput("abc") show_text(-1, see_delay, "abc")

Just as Epsilon copies timed messages created withsay() or sayput() to the#messages# buffer,
the text from ashow_text() call will be copied if its delay is nonzero. Epsilon treats adelay of 1
(hundredth of a second) the same as zero (it’s untimed), but still copies it to the#messages# buffer. A
column of-2 has a special meaning; Epsilon copies the resulting text to the#messages# buffer if delay
is nonzero, but doesn’t display it at all.

int mention(char *format, ...)
user char mention_delay;

Themention() primitive acts likesayput(), but displays its string only after Epsilon has paused
waiting for user input formention_delay tenths of a second. It doesn’t cause Epsilon to wait for input, it
just arranges things so that if Epsilon does wait for input and the required delay elapses, the message is
displayed and the wait continues. Writing to the echo area withsay() or the like cancels any pending
mention(). By default,mention_delay is 0.

int muldiv(int a, int b, int c)

Themuldiv() primitive takes its arguments and returns the valuea � b=c, performing this
computation using 64-bit arithmetic. It’s useful in such tasks as showing “percentage complete” while
operating on a large buffer. Simply writingpoint * 100 / size() in EEL would use 32-bit
arithmetic, as EEL always does, and on large buffers (over about 20 megabytes) the result would be wrong.

10.2. DISPLAY PRIMITIVES 379

10.2.11 Printf-style Format Strings

Primitives likesay() along with several others take a particular pattern of arguments. The first argument is
required. It is a character pointer called theformat string. The contents of the format string determine what
other arguments are necessary.

Characters in the format string are copied to the echo area except where a percent character ‘%’ appears.
The percent begins a sequence which interpolates the value of an additional argument into the text that will
appear in the echo area. The sequence has the following pattern, in which square brackets [] enclose
optional items:

% [-] [number] [. number] character

In this patternnumbermay be either a string of digits or the character ‘*’. If the latter, the next
argument provided to the primitive must be an int, and its value is used in place of the digits.

The meaning of the sequence depends on the final character:

c The next argument must be an int. (As explained previously, a character argument is changed to an int
when a function is called, so it’s fine here too.) The character with that ASCII code is inserted in the
displayed text. For example, if the argument is 65 or’A’, the letter A appears, since the code for A is
65.

d The next argument must be an int. A sequence of characters for the decimal representation of that number
is inserted in the displayed text. For example, if the argument is 65 the characters ‘6’ and ‘5’ are
produced.

x The next argument must be an int. A sequence of characters for the hexadecimal (base 16) representation
of that number is inserted in the displayed text. For example, if the argument is 65 the characters ‘4’
and ‘1’ are produced (since the hexadecimal number 0x41 is equal to 65 in base 10). No minus sign
appears with this representation.

o The next argument must be an int. A sequence of characters for the octal representation of that number is
inserted in the displayed text. For example, if the argument is 65 the three characters “101” are
produced (since the octal number 101 is equal to 65 in base 10). No minus sign appears with this
representation.

s The next argument, which must be a string, is copied to the displayed text.

q The next argument, which must be a string, is copied to the displayed text, but quoted for inclusion in a
regular expression. In other words, any characters from the original string that have a special meaning
in regular expressions are copied with a percent character (‘%’) before them. See page 59 for
information on regular expressions.

r The next argument (which must be a string containing a file name in absolute form) is copied to the
displayed text, after being converted to relative form. Epsilon calls therelative() primitive,
described on page 405, to do this.

The first number, if present, is the width of the field the argument will be printed in. At least that many
characters will be produced, and more if the argument will not fit in the given width. If no number is
present, exactly as many characters as are required will be used.

The extra space will normally be put before the characters generated from the argument. If a minus sign
is present before the first number, however, the space will be put at the end instead.

If the first number begins with the digit0, the extra space will be filled with zeros instead of spaces. A
minus sign before the first number is ignored in this case.

380 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

The second number, if present, is the maximum number of characters from the string that will be
displayed. For example, each of these lines displays the text, “Just an example”:

say("Just %.2s example", "another");

say("Just %.*s example", 7-5, "another");

It may be tempting to substitute a string variable for the first parameter ofsay(). For example, when
writing a function that displays its argumentmsg and pauses, it may seem natural to writesay(msg);.
This will work fine unlessmsg contains a ‘%’ character. In that case, you will probably get an error
message. Usesay("%s", msg); instead.

user char in_echo_area;

Thein_echo_area variable controls whether the cursor is positioned at point in the buffer, or in the
echo area at the bottom of the screen. Thesayput() primitive sets this variable,say() resets it, and it is
reset after each command.

10.2.12 Other Display Primitives

term_write(int col, int row, char *str, int count,
int colorclass, int clear)

term_write_attr(int col, int row, int chartowrite,
int attrtowrite)

term_clear()
term_position(int col, int row)

The following primitives provide low-level screen control. Theterm_clear() primitive clears the
screen. Theterm_position() primitive positions the cursor to the indicated row and column. The
term_write() primitive puts characters directly on the screen. It putscount characters fromstr on
the screen at therow andcolumn in the specifiedcolorclass. If clear is nonzero, it clears the rest of
the line. Theterm_write_attr() primitive writes a single character at the specified location on the
screen. Unliketerm_write(), which takes a color class, this primitive takes a raw
foreground/background color attribute pair. This primitive does nothing in Epsilon for Windows or under the
X windowing system. For all these primitives,row andcol start at 0, and the coordinate 0,0 refers to the
upper left corner of the screen. If a keyboard macro is running, theterm_ primitives are ignored.

fix_cursor() /* EEL subr. */
user int normal_cursor;
user int overwrite_cursor;
user int virtual_insert_cursor;
user int virtual_overwrite_cursor;
#define CURSOR_SHAPE(top, bot) ((top) * 1000 + (bot))
#define GUI_CURSOR_SHAPE(height, width, offset) \

((offset * 1000 + (height)) * 1000 + (width))
int cursor_shape;

During screen refresh, Epsilon calls the EEL subroutinefix_cursor() to set the shape of the cursor.
The subroutine chooses one of four variables depending upon the current modes, and copies its value into

10.2. DISPLAY PRIMITIVES 381

thecursor_shape variable, which holds the current cursor shape code. The Windows and X versions set
thegui_cursor_shape variable in a similar way, from a different set of four variables. All these
variables use values constructed by theGUI_CURSOR_SHAPE() orCURSOR_SHAPE() macros. See
page 88 for details on these variables.

windows_set_font(char *title, int fnt_code)

Under Windows, thewindows_set_font() primitive displays a font selection dialog, allowing the
user to pick a different font. It takes two parameters.Title specifies the title of the dialog box to display.
Thefnt_code says whether to set Epsilon’s main font (FNT_SCREEN), the font for printing
(FNT_PRINTER), or the font for Epsilon’s dialogs (FNT_DIALOG).

int using_oem_font(int screen)
char using_new_font;

Theusing_oem_font() primitive returns a nonzero value if the specified screen’s font uses the
OEM character set, rather than the ANSI/Windows character set. It takes a screen number. This primitive
always returns 1 under DOS and OS/2 and 0 under Unix. The primitive variableusing_new_font will
be nonzero whenever some screen’s font has been changed since the end of the last screen refresh (or when a
new screen has been created, for example by displaying a dialog).

10.2.13 Highlighted Regions

Epsilon can display portions of a buffer in a different color than the rest of the buffer. We call each such
portion a region. The most familiar region is the one between point and mark. Epsilon defines this region
automatically each time you create a new buffer. (Also see the description of character coloring on page
385.)

Epsilon can display a region in several ways. The most common method corresponds to the one you see
when you set the mark (by typing Ctrl-@) and then move around: Epsilon highlights each of the characters
between point and mark. If you use themark-rectangle command on Ctrl-X # to define a rectangular
region, the highlighting appears on all columns between point and mark, on all lines between point and
mark. The pop-up windows of the completion facility illustrate a third type of highlighting, where complete
lines appear highlighted. The header file codes.h defines these types of regions as (respectively)REGNORM,
REGRECT, andREGLINE. Epsilon won’t do any highlighting for a region that has type0.

A fourth type of highlighting,REGINCL, is similar toREGNORM, but includes an additional character at
the end of the region. If aREGNORM region runs between position 10 and position 20 in the buffer, Epsilon
would highlight the 10 characters between the two positions. But if the region were aREGINCL region, it
would include 11 characters: the characters at positions 10 and 20, and all the characters between.

int add_region(spot from, spot to, int color,
int type, ?int handle)

remove_region(int handle)
int modify_region(int handle, int code, int val)
window char _highlight_control;

You can define new regions withadd_region(). It takes a pair of spots, a color class expression
such ascolor_class highlight, a region display type (as described above), and, optionally, a
numeric “handle”. It returns a nonzero numeric handle which you can use to refer to the region later. You
can provide the spots in either order, and you may give the same spot twice (for example, in conjunction

382 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

with REGLINE, to always highlight a single line). See page 89 for basic information on color classes, and
page 319 for details on the syntax of color class expressions).

When you omit thehandle parameter toadd_region() (or provide ahandle of zero)
add_region() assigns an unused handle to the new region. You can also provide the handle of an
existing region, andadd_region()will assign the same handle to the new region. Any changes you make
to one region by usingmodify_region() will now apply to both, and a singleremove_region()
call will remove both. You can link any number of regions in the same buffer in this way. The special handle
value1 refers to the region between point and mark that Epsilon creates automatically.

Theremove_region() primitive takes a region handle, and deletes all regions with that handle. The
handle may belong to a region in another buffer. Epsilon signals an error if the handle doesn’t refer to any
region.

Themodify_region() primitive retrieves or sets some of the attributes of one or more regions. It
takes a region handle, a modify code (one ofMRSTART, MREND, MRCOLOR, MRTYPE, orMRCONTROL),
and a new value. If you provide a “new value” of-1, Epsilon will not change the attribute, but will simply
return its value. If you provide a new value other than-1, Epsilon will set that attribute of the region, and
will return its previous value.

The modify codesMRCOLOR andMRTYPE may be used to get or change a region’s color and display
type. The codesMRSTART andMREND may be used to set the two spots of a region; however, Epsilon will
not return the spot identifier for a region, but rather its current buffer position.

When several regions share the same handle, it’s possible they will have different color codes or display
types. In this case, which region’s code Epsilon returns is undefined.

You can set up a region to be “controlled” by any numeric global variable. Epsilon will display the
region only if the variable is nonzero. This is especially useful because the variable may be window-specific.
Since regions are associated with buffers, this is needed so that a buffer displayed in two windows can have
a region that appears in only one of them.

The standard region between point and mark is controlled by the window-specific character variable
_highlight_control. By default, other regions are not controlled by any variable. The modify code
MRCONTROL may be used withmodify_region() to associate a controlling variable with a region.
Provide the global variable’s name table index (obtainable throughfind_index()) as the value to set.

set_region_type() /* disp.e */
int region_type() /* disp.e */
highlight_on() /* disp.e */
highlight_off() /* disp.e */
int is_highlight_on() /* disp.e */

Several subroutines let you conveniently control highlighting of the standard region between point and
mark. To set the type of the region, call the subroutineset_region_type() with the region type code,
one ofREGNORM, REGRECT, REGLINE, orREGINCL. This doesn’t automatically turn on highlighting.
Call highlight_on() to turn on highlighting, orhighlight_off() to turn it off.

Theregion_type() subroutine returns the type of the current region, whether or not it’s currently
highlighted. Theis_highlight_on() subroutine returns the type of the current region, but only if it’s
highlighted. It returns0 if highlighting is off.

There are several subroutines that help you write functions that work with different types of regions. If
you’ve written a function that operates on the text of a normal Epsilon region, add the following lines at the
beginning of your function to make it work with inclusive regions and line regions as well:

save_spot point, mark;
fix_region();

10.2. DISPLAY PRIMITIVES 383

When the user has highlighted an inclusive or line region, thefix_region() subroutine will
repositionpoint andmark to form a normal Epsilon region with the same characters. (For example, in the
case of a line region, Epsilon moves point to the beginning of the line.) The function also swapspoint and
mark so thatpoint comes first (or equalsmark, if the region happens to be empty). This is often
convenient.

This procedure assumes your function doesn’t plan to modifypoint or mark, just the characters
between them, and it makes sure thatpoint andmark remain in the same place. If your function needs to
reposition the point or mark, try omitting thesave_spot line. Your function will be responsible for
determining where the point and mark wind up.

A function needs to do more work to operate on rectangular regions. If it’s built to operate on all the
characters in a region, without regard to rectangles or columns, the simplest approach may be to extract the
rectangle into a temporary buffer, modify it there, and then replace the rectangle in the original buffer.
Several Epsilon subroutines help you do this. For a concrete example, let’s look at the function
fill_rectangle(), defined in format.e. Thefill-region command calls this function when the current
region is rectangular.

// Fill paragraphs in rectangle between point and mark
// to marg columns (relative to rectangle’s width if <=0).
fill_rectangle(marg)
{

int width, orig = bufnum, b = tmp_buf();

width = extract_rectangle(b, 0);
save_var bufnum = b;
mark = 0;
margin_right = marg + (marg <= 0 ? width : 0);
do_fill_region();
xfer_rectangle(orig, width, 1);
buf_delete(b);

}

The function begins by allocating a temporary buffer usingtmp_buf(). Then it calls the
extract_rectangle() subroutine to copy the rectangle into the temporary buffer. This function
returns the width of the rectangle it copied. The call fromfill_rectangle() passes the destination
buffer number as the first parameter. Thenfill_rectangle() switches to the temporary buffer and
reformats the text. Finally, the subroutine copies the text back into its rectangle by calling
xfer_rectangle() and deletes the temporary buffer. If the operation you want to perform on the text in
the rectangle depends on any buffer-specific variables, be sure to copy them to the temporary buffer.

Now let’s look at the two rectangle-manipulating subroutinesfill_rectangle() calls in more
detail.

extract_rectangle(int copybuf, int remove)

Theextract_rectangle() subroutine operates on the region between point and mark in the
current buffer. It treats the region as a rectangle, whether or notregion_type() returnsREGRECT. It can
perform several different actions, depending upon its parameters. Ifcopybuf is nonzero, the subroutine
inserts a copy of the rectangle into the buffer with that buffer number. The buffer must already exist.

If remove is 1, the subroutine deletes the characters inside the rectangle. Ifremove is 2, the
subroutine replaces the characters with spaces. Ifremove is 0, the subroutine doesn’t change the original
rectangle.

384 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

The subroutine always leaves point at the upper left corner of the rectangle and mark at the lower right.
It return the width of the rectangle.

xfer_rectangle(int dest, int width, int overwrite)

Thexfer_rectangle() subroutine inserts the current buffer as a rectangle of the givenwidth into
buffer numberdest, starting atdest’s current point. Ifoverwrite is nonzero, the subroutine copies on
top of any existing columns. Otherwise it inserts new columns. In the destination buffer, it leaves point at
the top left corner of the new rectangle, and mark at the bottom right. The point remains at the same position
in the original buffer.

rectangle_standardize()

Functions that manipulate rectangles can sometimes use therectangle_standardize()
subroutine to simplify their logic. In a rectangular region, point may be at any one of the four corners of the
rectangle. This subroutine moves point and mark so they indicate the same region, but with point at the
lower right and mark at the upper left. It’s like the rectangular region equivalent of thefix_region()
subroutine.

do_shift_selects()

Commands bound to cursor keys typically select text when you hold down the shift key. They do this by
callingdo_shift_selects() as they start. This routine looks at the current state of the shift key and
whether or not highlighting is already on, and turns highlighting on or off as needed, possibly setting point.

While Epsilon is capable of treating the shifted cursor pad keys as completely different keys from their
unshifted counterparts, normally it sets itskeytran array to translate the shifted keys to their unshifted
versions. This means that if you change the binding ofhDowni, the shifted version of the key will change as
well. But this introduces a complication involving keyboard macros.

Keyboard macros don’t automatically record the state of the shift key, unless it figures into the character
that they record. (In other words, they distinguish5 from%, but they don’t distinguish shifted and unshifted
cursor pad keys.) So if you’re recording a macro when you use a shifted cursor key, this subroutine modifies
the key code of the cursor key by adding the bit flagEXTEND_SEL_KEY to it. Epsilon displays such shifted
keys with a notation likeE-<Down>.

make_line_highlight() /* complete.e */
remove_line_highlight() /* complete.e */

Themake_line_highlight() subroutine uses theadd_region() primitive to create a region
that highlights the current line of the current buffer. When Epsilon puts up a menu of options, it uses this
function to keep the current line highlighted. Theremove_line_highlight() subroutine gets rid of
such highlighting.

10.2.14 Character Coloring

You can set the color of individual characters using theset_character_color() primitive. At first
glance, this feature may seem similar to Epsilon’s mechanism for defining highlighted regions. Both let you
specify a range of characters and a color to display them with. But each has its own advantages.

10.2. DISPLAY PRIMITIVES 385

Region highlighting can highlight the text in different ways: as a rectangle, expanded to entire lines, and
so forth, while character coloring has no similar options. You can define a highlighted region that moves
around with the point, the mark, or any other spot. Character coloring always remains with the characters.

But when there are many colored regions, using character coloring is much faster than creating a
corresponding set of highlighted regions. If you define more than a few dozen highlighted regions, Epsilon’s
screen refreshes will begin to slow down. Character coloring, on the other hand, is designed to be very fast,
even when there are thousands of colored areas. Character coloring is also easier to use for many tasks,
since it doesn’t require the programmer to allocate spots to delimit the ends of the colored region, or delete
them when the region is no longer needed.

One more difference is the way you remove the coloring. For highlighted regions, you can turn off the
coloring temporarily by callingmodify_region(), or eliminate the region entirely by calling
remove_region(). To do either of these, you must supply the region’s handle, a value returned when
the region was first created. On the other hand, to remove character coloring, you can simply set the desired
range of characters to the special color-1. A program using character coloring doesn’t need to store a series
of handles to remove or modify the coloring.

Epsilon’s code coloring functions are built on top of the character coloring primitives described in this
section. See the next section for information on the higher-level functions that make code coloring work.

set_character_color(int pos1, int pos2, int color)

Theset_character_color() primitive makes Epsilon display characters betweenpos1 and
pos2 using the specified color class. Epsilon discards any previous color settings of characters in that range.

A color class of-1 means the text will be “uncolored”. To display uncolored text, Epsilon uses the
standard color classtext. When a buffer is first created, every character is uncolored.

When you insert text in a buffer, it takes on the color of the character immediately after it, or in the case
of the last character in the buffer, the character immediately before it. Characters inserted in an empty buffer
are initially uncolored. Copying text from one buffer to another does not automatically transfer the color;
Epsilon treats the new characters the same as any other inserted text. You can use the
buf_xfer_colors() subroutine to copy text from one buffer to another and retain its coloring. See
page 343.

Epsilon maintains the character colors set by this primitive independently of the highlighted regions
created byadd_region(). Themodify_region() primitive will never change what
get_character_color() returns, and similarly theset_character_color() primitive never
changes the attributes of a region you create withadd_region(). When Epsilon displays text, it
combines information from both sources to determine the final color of each character.

When displaying a buffer, Epsilon uses the following procedure when determining which color class to
use for a character:

� Make a list of all old-style highlighted regions that contain the character, and the color classes used
for each.

� Add the character’s color as set byset_character_color() to this list.

� Remove color classes of-1 from the list.

Next, Epsilon chooses a color class from the list:

� If the list of color classes is empty, use thetext color class.

386 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

� Otherwise, if the list contains thehighlight color class, use that.

� Otherwise, use the color class from the old-style highlighted region with the highest region number. If
there are no old-style highlighted regions in the list, the list must contain only one color class, so use
that.

� Finally, if we wound up selecting thetext color class, and thetext_color variable isn’t equal to
color_class text, use the color class in thetext_color variable instead of the
color_class text.

Notice that when a region using thehighlight color class overlaps another region, thehighlight
color class takes precedence.

short get_character_color(int pos, ?int *startp, ?int *endp)

Theget_character_color() primitive returns the color class for the character at the specified
buffer position, as set byset_character_color(), or-1 if the character is uncolored, and will be
displayed using the window’s default color class.

You can also use the primitive to determine the extent of a range of characters all in the same color. If
the optional pointer parametersstartp andendp are non-null, Epsilon fills in the locations they point to
with buffer positions. These specify the largest region of the buffer containing characters the same color as
the one atpos, and includingpos. For example, if the buffer contains a five-character word that has been
colored blue, the buffer is otherwise uncolored, andpos refers to the second character in the word, then
Epsilon will set*startp to pos - 1 and*endp to pos + 4.

set_tagged_region(char *tag, int from, int to, short val)
short get_tagged_region(char *tag, int pos, ?int *from, int *to)

The character coloring primitives above are actually built from a more general facility that allows you to
associate a set of attributes with a buffer range.

Each set of attributes consists of a tag (a unique string like"my-tag") and, for each character in the
buffer, a number that represents the attribute. Each buffer has its own set of tags, and each tag has its own
list of attributes, one for each character. (Epsilon stores the numbers in a way that’s efficient when many
adjacent characters have the same number, but nothing prevents each character from having a different
attribute.)

Theset_tagged_region() primitive sets the attribute of the characters in the rangefrom to to,
for the specified tag.

Theget_tagged_region() primitive gets the attribute of the character at positionpos in the
buffer. If you provide pointersfrom andto, Epsilon will fill these in to indicate the largest range of
characters adjacent topos that have the same attribute aspos. Characters whose attributes have never been
set for a given tag will have the attribute-1.

Epsilon’s character color primitivesset_character_color() andget_character_color()
use a built-in tagged region with a tag name of"colors".

10.2.15 Code Coloring Internals

Epsilon’s code coloring routines use the character coloring primitives above to do code coloring for various
languages like C, TeX, and HTML. There are some general purpose code coloring functions that manage

10.2. DISPLAY PRIMITIVES 387

code coloring and decide what sections of a buffer need to be colored. Then, for each language, there are
functions that know how to color text in that language.

The general purpose section maintains information on what parts of each buffer have already been
colored. It divides each buffer into sections that are already correctly colored, and sections that may not be
correctly colored. When the buffer changes, it moves its divisions so that the modified text is no longer
marked “correctly colored”. Whenever Epsilon displays part of a buffer, this part of code coloring recolors
sections of the buffer as needed, and marks them so they won’t be colored again unless the buffer changes.
Epsilon only displays the buffer after the appropriate section has been correctly colored. This part also
arranges to color additional sections of the buffer whenever Epsilon is idle, until the buffer has been
completely colored.

The other part of code coloring does the actual coloring of C, TeX, and HTML buffers. You can write
new EEL functions to tell Epsilon how to color other languages, and use the code coloring package’s
mechanisms for remembering which parts of the buffer have already been colored, and which need to be
recolored. This section describes how to do this. (Also see page 477.)

buffer int (*recolor_range)();
// how to color part of this buffer

buffer int (*recolor_from_here)();
// how to find a good starting pos

int color_c_range(int from, int to)
// how to color part of C buffer

int color_c_from_here(int safe)
// how to find starting pos in C buffer

buffer char coloring_flags;
#define COLOR_DO_COLORING 1
#define COLOR_IN_PROGRESS 2
#define COLOR_MINIMAL 4
#define COLOR_INVALIDATE_FORWARD 8
#define COLOR_INVALIDATE_BACKWARD 16
#define COLOR_INVALIDATE_RESETS 32
#define COLOR_RETAIN_NARROWING 64

You must first write two functions and make the buffer-specific function pointers refer to them, in each
buffer you want to color. For C/C++/EEL buffers, thec-mode command takes care of setting the function
pointers. It also contains the lines

if (want_code_coloring)
when_setting_want_code_coloring();

to actually turn on code coloring for the buffer if necessary.

The first function, which must be stored in the buffer-specificrecolor_range variable, does the
actual coloring of a part of the buffer. It takes two parametersfrom andto specifying the range of the
buffer that needs coloring. It colors at least the specified range, but it may go pastto and color more of the
buffer. It returns the buffer position it reached, indicating that all characters betweenfrom and its return
value are now correctly colored. In C buffers, therecolor_range function is named
color_c_range().

Therecolor_range function may decide to mark some characters in the range “uncolored”, by
callingset_character_color()with a color class of-1. Or it may assign particular color classes to
all parts of the range to be colored. But either way, it should make sure all characters in the given range are

388 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

correctly colored. Typically, a function begins by setting all characters betweenfrom andto to a default
color class, then searching for elements which should be colored differently. Be sure that if you extend the
range pastto, you color all the characters betweento and your new stopping point.

Epsilon remembers which parts of the buffer require coloring by using a tagged region (see page 386)
named “needs-color”. A coloring routine may decide, while parsing a buffer, that some later or earlier
section of the buffer requires coloring; if so, it can set theneeds-color attribute of that section to-1 to
indicate this, and Epsilon will recolor that section of the buffer the next time it’s needed. Or it can declare
that some other section of the buffer is already properly colored by setting that section’s attribute to0.

When the buffer’s modified, some of its coloring becomes invalid, and must be recomputed the next
time it’s needed. Normally Epsilon invalidates a few lines surrounding the changed section. Some language
modes tell Epsilon to automatically invalidate more of the buffer by setting flags in the buffer-specific
coloring_flags variable. (Other flags in this variable aren’t normally set by language modes; code
coloring uses them for bookkeeping purposes.)

COLOR_INVALIDATE_FORWARD indicates that after the user modifies a buffer, any syntax
highlighting information after the modified region should be invalidated.
COLOR_INVALIDATE_BACKWARD indicates that syntax highlighting information before the modified
region should be invalidated.

COLOR_INVALIDATE_RESETS tells Epsilon that whenever it invalidates syntax highlighting in a
region, it should also set the color of all text in that region to the default of-1.
COLOR_RETAIN_NARROWING indicates that coloring should respect any narrowing in effect (instead of
looking outside the narrowed area to parse the buffer in its entirety).

For many languages, starting to color at an arbitrary place in the buffer requires a lot of unnecessary
work. For example, the C language has comments that can span many lines. A coloring function must know
whether it’s inside a comment before it can begin coloring. Similarly, a coloring function that began looking
from the third character in the C identifierid37 might decide that it had seen a numeric constant, and
incorrectly color the buffer.

To simplify this problem, the coloring routines ensure that coloring begins at a safe place. We call a
buffer positionsafeif the code coloring function can color the buffer beginning at that point, without
looking at any earlier characters in the buffer.

When Epsilon calls the function inrecolor_range, the value offrom is always safe. Epsilon
expects the function’s return value to be safe as well; it must be OK to continue coloring from that point. For
C, this means the returned value must not lie inside a comment, a keyword, or any other lexical unit.
Moreover, inside the colored region, any boundary between characters set to different color classes must be
safe. If the colored region contains a keyword, for example, Epsilon assumes it can begin recoloring from
the start of that keyword. (If this isn’t true for a particular language, its coloring function can examine the
buffer itself to determine where to begin coloring.)

When Epsilon needs to color more of the buffer, it generally starts from a known safe place: either a
value returned by the buffer’srecolor_range function, or a boundary between characters of different
colors. But when Epsilon first begins working on a part of the buffer that hasn’t been colored before, it must
determine a safe starting point. The second function you must provide, stored in the
recolor_from_here buffer-specific function pointer, picks a new starting point. In C buffers, the
recolor_from_here function is namedcolor_c_from_here().

The buffer’srecolor_from_here function looks backward from point for a safe position and
returns it. This may involve a search back to the start of the buffer. If Epsilon knows of a safe position before
point in the buffer, it passes this as the parametersafe. (If not, Epsilon passes0, which is always safe.) The
function should respect the value of thecolor-look-back variable to limit searching on slow machines.

Epsilon provides two standardrecolor_from_here functions that coloring extensions can use. The
recolor_by_lines() subroutine is good for buffers where coloring is line-based, such as dired buffers.

10.2. DISPLAY PRIMITIVES 389

In such buffers the coloring needed for a line doesn’t depend at all on the contents of previous lines. The
recolor_from_top() subroutine has just the opposite effect; it forces Epsilon to start from the
beginning of the buffer (or an already-colored place). This may be all that’s needed if a mode’s coloring
function is very simple and quick.

Epsilon runs the code coloring functions while it’s refreshing the screen, so running the EEL debugger
on code coloring functions is difficult, since the debugger itself needs to refresh the screen. The best way to
debug such functions is to test them out by calling them explicitly, using test-bed functions like these:

command debug_color_region()
{

fix_region();
set_character_color(point, mark, color_class default);
point = color_algol_range(point, mark);

}

command debug_from_here()
{

point = color_algol_from_here(point);
}

The first command above tries to recolor the current region, and moves past the region it actually
colored. It begins by marking the region with a distinctive color (using the default color class), to help catch
missing coloring. The second command helps you test yourfrom_here function. It moves point
backwards to the nearest safe position. Once you’re satisfied that your new code-coloring functions work
correctly, you can then set therecolor_range andrecolor_from_here variables to refer to them.

buffer int (*when_displaying)();
recolor_partial_code(int from, int to)
char first_window_refresh;
drop_all_colored_regions()
drop_coloring(int buf)

Epsilon calls the EEL subroutine pointed to by the buffer-specific function pointer
when_displaying as it displays a window on the screen. It calls this subroutine once for each window,
after determining which part of the buffer will be displayed, but before putting text for that window on the
screen.

Epsilon sets thefirst_window_refresh variable prior to calling thewhen_displaying
subroutine to indicate whether or not this is the first time a particular buffer has been displayed during a
particular screen refresh. When a buffer appears in more than one window, Epsilon sets this variable to 1
before calling thewhen_displaying subroutine during the display of the first window, and sets it to zero
before calling that subroutine during the display of the remaining windows. Epsilon sets the variable to1 if
the buffer only appears in one window. The value is valid only during a call to the buffer’s
when_displaying subroutine.

In a buffer with code coloring turned on, thewhen_displaying variable points to a subroutine
namedrecolor_partial_code(). Epsilon passes two values to the subroutine that specify the range
of the buffer that was modified since the last time the buffer was displayed. The standard
recolor_partial_code() subroutine provided with Epsilon uses this information to discard any
saved coloring data for the modified region of the buffer in the data structures it maintains. It then calls the

390 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

two language-specific subroutines described at the beginning of this section as needed to color parts of the
buffer.

Thedrop_all_colored_regions() subroutine discards coloring information collected for the
current buffer. The next time Epsilon needs to display the buffer, it will begin coloring the buffer again. The
drop_coloring() subroutine is similar, but lets you specify the buffer number. It also discards some
data structures, so it’s more suitable when the buffer is about to be deleted.

10.2.16 Colors

user int selected_color_scheme;
short _our_mono_scheme;
short _our_color_scheme;
short _our_gui_scheme;
short _our_unixconsole_scheme;
short *get_color_scheme_variable()
window short window_color_scheme;

Epsilon stores color choices incolor schemevariables. A color scheme specifies the color combination
to use for each defined color class.

Epsilon’s standard color schemes are defined in the file stdcolor.e. See page 326 for the syntax of color
definitions. You can also create additional color schemes without loading an EEL file by using the
new_variable() primitive, providingNT_COLSCHEME as the second parameter. Epsilon stores color
schemes in its name table, just like variables and commands, so a color scheme may not have the same name
as a variable or other name table entry. (Color classes, on the other hand, have their own unique “name
space”.)

Theselected_color_scheme primitive variable contains the name table index of the color
scheme to use. Setting it changes the current color scheme. Each time Epsilon starts up, it sets this variable
from one of four other variables:_our_gui_scheme under Epsilon for Windows or in Epsilon for Unix
under X,_our_unixconsole_scheme if Epsilon for Unix is running in an xterm,
_our_mono_scheme if Epsilon is running on a monochrome display, or_our_color_scheme
otherwise. When you useset-color to select a different color scheme, Epsilon sets one of these variables, as
well asselected_color_scheme. Theget_color_scheme_variable() subroutine returns a
pointer to one of these variables, the one containing a color scheme index that’s appropriate for the current
environment. By default, these four variables refer to the color schemesstandard-gui, xterm-color,
standard-mono andstandard-color, respectively.

If the window-specific variablewindow_color_scheme is non-zero in a window, Epsilon uses its
value in place of theselected_color_scheme variable when displaying that window. Epsilon uses
this when displaying borderless windows, so that each window has an entirely different set of color class
settings. Also see the variabletext_color.

user char monochrome;

Themonochrome variable is nonzero if Epsilon believes it is running on a monochrome display.
Epsilon tries to determine this automatically, but the-vmono and-vcolor flags override this. See page 15.

set_color_pair(int colorclass, int foreground, int background)
int get_foreground_color(int colorclass, ?int raw)
int get_background_color(int colorclass, ?int raw)

10.2. DISPLAY PRIMITIVES 391

Theset_color_pair() primitive lets you set the colors to use for a particular color class within
the current color scheme. The first parameter is acolor_class expression (see page 319); the remaining
parameters are 32-bit numbers that specify the precise color to use. Use theMAKE_RGB() macro to
construct suitable numbers. See page 326.

Theget_foreground_color() andget_background_color() primitives let you retrieve
the colors specified for a given color class. Normally they return a specific foreground or background color,
after Epsilon has applied its rules for defaulting color specifications. (See page 326.) Specify a nonzeroraw
parameter, and Epsilon will return the color class’s actual setting. It may include one of the bits
ETRANSPARENT, ECOLOR_COPY, orECOLOR_UNKNOWN.

TheETRANSPARENTmacro is a special code that may be used in place of a background color. It tells
Epsilon to substitute the background color of the"text" color class in the current color scheme. You can
also use it for a foreground color, and Epsilon will substitute the foreground color of the"text" color
class.

TheECOLOR_UNKNOWNmacro in a foreground color indicates there’s no color information in the
current scheme for the specified color class.

TheECOLOR_COPY macro in a foreground color tells Epsilon that one color class is to borrow the
settings of another. The index of other color class replaces the color in the lower bits of the value; use the
COLOR_STRIP_ATTR()macro to extract it.

When Epsilon looks up the foreground and background settings of a color class, it uses this algorithm.

First it checks if the foreground color contains theECOLOR_UNKNOWN code. If so, it tries to retrieve
first a class-specific default, and then a scheme-specific default. First it looks for that color class in the
"color-defaults" color scheme. This scheme is where Epsilon records all color class specifications
that are declared outside any particular color scheme. If a particular color pair is specified as a default for
that class, Epsilon uses that. If the color class has no default, Epsilon switches to the color class named
"default" in the original color scheme and repeats the process.

Either the default setting for the color class or the original setting for the color class may use the
ECOLOR_COPY macro. If so, then Epsilon switches to the indicated color class and repeats the above
process. In the event that it detects a loop of color class cross-references or otherwise can’t resolve the
colors, it picks default colors.

Finally, if the resulting foreground or background colors use theETRANSPARENT bit, Epsilon
substitutes the foreground or background color from the"text" color class.

int alter_color(int colorclass, int color)
int rgb_to_attr(int rgb)
int attr_to_rgb(int attr)

Thealter_color() primitive is an older way to set colors. When the argumentcolor is -1,
Epsilon simply returns the color value for the specified color class. Any other value makes the color class
use that color. Epsilon then returns the previous color for that color class. (In Epsilon for Windows or under
the X windowing system, this function will return color codes, but ignores attempts to set colors. Use
set_color_pair() to do this.)

The colors themselves (the second parameter toalter_color()) are specified numerically. Each
number contains a foreground color, a background color, and an indication of whether blinking or
extra-bright characters are desired.

Thealter_color() function uses 4-bit color attributes to represent colors, the same as DOS and
OS/2 text mode do. The foreground color is stored in the low-order 4 bits of the 8-bit color attribute, and the
background color is in the high-order 4 bits. Epsilon uses a pair of 32-bit numbers to represent colors
internally, soalter_color() converts between the two representations as needed.

392 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

The functionsrgb_to_attr() andattr_to_rgb() can be used to perform the same conversion.
Thergb_to_attr() function takes a 32-bit RGB value and finds the nearest 4-bit attribute, using
Epsilon’s simple internal rules, whileattr_to_rgb() converts in the other direction.

int orig_screen_color()

Under DOS, Epsilon records the original color attribute of the screen before writing text to it. The
orig_screen_color() primitive returns this color code. If therestore-color-on-exit variable
is nonzero, Epsilon sets the color class it uses after you exit (color_class after_exiting) to this
color. See page 89.

int number_of_color_classes()
char *name_color_class(int colclass)

Thenumber_of_color_classes() primitive returns the number of defined color classes. The
name_color_class() primitive takes the numeric code of a color class (numbered from0 to
number_of_color_classes() - 1) and gives the name. For example, if the expression
color_class mode_line has the value3, then the expressionname_color_class(3) gives the
string"mode-line".

Each window on the screen can use different color classes for its text, its borders, and its titles (if any).
When a normal, tiled window is created, Epsilon sets its color selections from the color classes named
text, horiz_border, vert_border, andmode_line. When Epsilon creates a pop-up window, it
sets the window’s color selections from the color classestext, popup_border, andpopup_title.
See page 89 for a description of the other predefined color classes.

user window int text_color;

Thetext_color primitive contains the color class of normal text in the current window. You can get
and set the other color classes for a window using the functionsget_wattrib() andset_wattrib().

10.3 File Primitives

10.3.1 Reading Files

int file_read(char *file, int transl)

Thefile_read() primitive reads the named file into the current buffer, replacing the text that was
there. It returns an error code if an error occurred, or0 if the read was successful. Thetransl parameter
specifies the line translation to be done on the file. The buffer’stranslation-type variable will be set
to its value. Iftransl is FILETYPE_AUTO, Epsilon will examine the file as it’s read and set
translation-type to an appropriate translation type.

int new_file_read(char *name, int transl,
struct file_info *f_info,
int start, int max)

10.3. FILE PRIMITIVES 393

Thenew_file_read() primitive reads a file likefile_read() but provides more options. The
f_info parameter is a pointer to a structure, which Epsilon fills in with information on the file’s write date,
file type, and so forth. The structure has the same format as thecheck_file() primitive uses (see page
400). If thef_info parameter is null, Epsilon doesn’t get such information.

When Epsilon reads the file, it starts at offsetstart and reads at mostmax characters. You can use
this to read only part of a big file. Ifstart or max are negative, they are (individually) ignored: Epsilon
starts at the beginning, or reads the whole file, respectively. Thestart parameter refers to the file before
Epsilon stripshReturni’s, whilemax counts the characters after stripping.

int do_file_read(char *s, int transl) /* files.e */
buffer char _read_aborted;
int read_file(char *file, int transl) /* files.e */
int find_remote_file(char *file, int transl)
file_convert_read(int flags)
do_readonly_warning()
update_readonly_warning(struct file_info *p)

Instead of calling the above primitives directly, extensions typically call one of several subroutines, all
defined in files.e, that do things beyond simply reading in the file. Each takes the same two parameters as
file_read(), and returns either0 or an error code.

Thedo_file_read() subroutine records the file’s date and time, so Epsilon can later warn the user
that a file’s been modified on disk, if necessary. If the user aborted reading the file,do_file_read() sets
the_read_aborted variable nonzero. Epsilon then warns the user if he tries to save the partial file. This
subroutine also handles reading URL’s by calling thefind_remote_file() subroutine, and character
set translations such as OEM translations (see page 396) by callingfile_convert_read().

Theread_file() subroutine callsdo_file_read(), then displays either an error message, if a
read error occurred, or the message “New file.” It also handles callingdo_readonly_warning()when
it detects a read-only file, orupdate_readonly_warning() otherwise. (The latter can turn off a
buffer’s read-only attribute, if the file is no longer read-only.)

int find_in_other_buf(char *file, int transl) /* files.e */
call_mode(char *file) /* files.e */

Thefind_in_other_buf() subroutine makes up a unique buffer name for the file, based on its
name, and then callsread_file(). It then goes into the appropriate mode for the file, based on the file’s
extension, by calling thecall_mode() subroutine. (See page 71.)

int find_it(char *fname, int transl) /* files.e */
int look_file(char *fname) /* buffer.e */

Thefind_it() subroutine first looks in all existing buffers for the named file, just as thefind-file
command would. If it finds the file, it simply switches to that buffer. (It also checks the copy of the file on
disk, and warns the user if it’s been modified.) If the file isn’t already in a buffer, it calls
find_in_other_buf(), and returns0 or its error code. Thefind_it() subroutine uses the
look_file() subroutine to search through existing buffers for the file. Thelook_file() subroutine,
defined in buffer.e, returns0 if no buffer has the file. Otherwise, it returns1 and switches to the buffer by
settingbufnum.

int do_find(char *file, int transl) /* files.e */

394 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Finally, thedo_find() subroutine is at the top of this tree of file-reading functions. It checks to see if
its “file name” parameter is a directory. If it is (or if it’s a file pattern with wildcard characters), it calls
dired_one() to run dired on the pattern. If it’s a normal file,do_find() callsfind_it().

int err_file_read(char *file, int transl) /* files.e */

Use theerr_file_read() subroutine when you want to read a file that must exist, but you don’t
want all the extras that higher-level functions provide: checking file dates, choosing a buffer, setting up for
read-only files, and so forth. It callsfile_read() to read the file into the current buffer, and displays an
error message if the file couldn’t be read for any reason. It returns the error code, or0 if there were no errors.

10.3.2 Writing Files

int file_write(char *file, int transl)

Thefile_write() primitive attempts to write the current buffer to the named file. It returns0 if the
write was successful, or an error code if an error occurred. Thetransl parameter specifies the line
translation to be done while writing the file. See the description oftranslation-type below.

int new_file_write(char *name, int transl,
struct file_info *f_info,
int start, int max)

Thenew_file_write() primitive writes a file, likefile_write(), but provides more options.
Thef_info parameter is a pointer to a structure, which Epsilon fills in with information on the file’s write
date, file type, and so forth, just after it finishes writing the file. The structure has the same format as the
check_file() primitive uses (see page 400). If thef_info parameter is null, Epsilon doesn’t get such
information.

If start is negative (the usual case), the file will wind up with only what Epsilon writes to it.
Otherwise, Epsilon only rewrites a section of it, and the rest will not change. Epsilon begins writing at offset
start in the file. If themax parameter is non-negative, Epsilon writes only the specified number of
characters. (Epsilon counts the characters before adding anyhReturni characters.)

int do_save_file(int backup, int checkdate,
int getdate) /* files.e */

Thedo_save_file() subroutine saves the current buffer like thesave-file command, but lets you
skip some of the thingssave-file does. Set thebackup parameter to0 if you don’t want a backup file
created, even ifwant-backups is nonzero. Setcheckdate to 0 if you don’t want Epsilon to check that
the file on disk is unchanged since it was read. Setgetdate to 0 if you don’t want Epsilon to update its
notion of the file’s date, after the file has been written.

The function returns0 if the write was successful,1 if an error occurred, or2 if the function asked the
user to confirm a questionable write, and the user decided not to write the file after all.

int ask_save_buffer()
int warn_existing_file(char *s)

10.3. FILE PRIMITIVES 395

A command can call theask_save_buffer() subroutine before deleting a buffer with unsaved
changes. It asks the user if the buffer should be saved before it’s deleted, and returns non-zero if the user
asked that the buffer be saved. The caller is responsible for actually saving the file.

Before writing to a user-specified file, a command may call thewarn_existing_file()
subroutine. This will check if the file already exists and warn the user that it will be overwritten. The
subroutine returns zero if the file didn’t exist, or if the user said to go ahead and overwrite it, or nonzero if
the user said not to overwrite it.

10.3.3 Line Translation

user buffer int translation_type; /* EEL variable */

Epsilon normally deals with files with lines separated by thehNewlinei character. Windows, DOS and
OS/2, however, generally separate one line from the next with ahReturni character followed by ahNewlinei
character. For this reason, Epsilon normally removes allhReturni characters from a file when it’s read from
disk, and places ahReturni character before eachhNewlinei character when a buffer is written to disk, in
these environments. But Epsilon has several other line translation methods, specified by the buffer-specific
variabletranslation-type.

TheFILETYPE_BINARY translation type tells Epsilon not to modify the file at all when reading or
writing.

TheFILETYPE_MSDOS translation type tells Epsilon to removehReturni characters when reading a
file, and insert ahReturni character before eachhNewlinei when writing a file.

TheFILETYPE_UNIX translation type tells Epsilon not to modify the file at all when reading or
writing. It’s similar toFILETYPE_BINARY (but Epsilon copies buffer text to the system clipboard in a
different way).

TheFILETYPE_MAC translation type tells Epsilon to converthReturni characters tohNewlinei
characters when reading a file, and to converthNewlinei characters tohReturni characters when writing a
file.

TheFILETYPE_AUTO translation type tells Epsilon to examine the contents of a file as it’s read, and
determine the proper translation type using a heuristic. Epsilon then reads the file using that translation type,
and setstranslation-type to the new value. Normally this value is only used when reading a file, not
when writing one. If you try to write a file and specify a translation type ofFILETYPE_AUTO, it will
behave the same asFILETYPE_MSDOS (except in Epsilon for Unix, where it’s the same as
FILETYPE_UNIX.

Most functions for reading or writing a file take one of the above values as atransl parameter.

user short default_translation_type;
user short new_buffer_translation_type;
int ask_line_translate()

A user can set thedefault-translation-type variable to one of the above values to force
Epsilon to use a specific translation when it reads an existing file. If this variable is set to its default value of
FILETYPE_AUTO, Epsilon examines the file to determine a translation method, but setting this variable to
any other value forces Epsilon to use that line translation method for all files.

When Epsilon creates a new buffer, it sets the buffer’stranslation-type variable to the value of
thenew-buffer-translation-type variable. Epsilon does the same when you try to read a file that
doesn’t exist. You can set this variable if you want Epsilon to examine existing files to determine their

396 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

translation type, but create new files with a specific translation type. By default this variable is set to
FILETYPE_AUTO, so the type for new buffers becomesFILETYPE_UNIX in Epsilon for Unix, and
FILETYPE_MSDOS elsewhere.

Theask_line_translate() subroutine defined in files.e helps to select the desired translation
method. Many commands that read a user-specified file call it. If a numeric prefix argument was not
specified, it returns the value of thedefault-translation-type variable. But if a numeric prefix
argument was specified, it prompts the user for the desired translation type.

10.3.4 Character Encoding Conversions

int file_convert_write(char *file, int trans,
struct file_info *f_info)

int save_remote_file(char *fname, int trans,
struct file_info *finfo)

buffer char *(*file_io_converter)();
char *oem_file_converter(int func)
zeroed char *(*new_file_io_converter)();

Thedo_save_file() subroutine uses thefile_convert_write() subroutine to actually write
the file. Likenew_file_write(), it takes a file name, a line translation code as described under
translation-type below, and a structure which Epsilon will fill with information on the file’s write
date, file type, and so forth. Seedo_save_file() above for details.

Unlike primitives such asnew_file_write(), thefile_convert_write() subroutine knows
how to handle URL files by calling thesave_remote_file() subroutine. It also takes care of the
translation needed for OEM files that were read via thefind-oem-file command, and Unicode files.

The OEM and Unicode translations are handled by a facility that can also handle other types of
translation. Thefile_convert_write() primitive looks for a buffer-specific variable
file_io_converter. This variable can be null, for no special translation, or it can contain a function
pointer. For OEM files, for example, it points to the subroutineoem_file_converter().

Any such subroutine will be called with a code indicating the desired action. The codes are defined in
eel.h. The codeFILE_CONVERT_READ tells the subroutine to translate the text in the current buffer as
appropriate when reading a file. The codeFILE_CONVERT_WRITE tells the subroutine to translate the
buffer as appropriate when writing a file.

Before actually performing a conversion, Epsilon will call the subroutine to ask if the conversion is safe
(reversible), by passing theFILE_CONVERT_ASK in addition to one of the above flags. A conversion is
reversible, and therefore safe, if the conversion followed by the opposite conversion (for instance, ANSI=>
OEM => ANSI) yields the original text. If the conversion isn’t safe, the subroutine should ask the user for
permission to proceed.

The converter should then return a null pointer to cancel the read or write operation, or any other value
to let it proceed. You can add theFILE_CONVERT_QUIET flag, and the converter won’t ask the user for
confirmation, merely return a value indicating whether the conversion would be safe.

Whenever theFILE_CONVERT_ASK flag isn’t present, the subroutine should return the name of its
minor mode—Epsilon will display this in the mode line. The OEM converter returns" OEM".

When creating a new buffer, file-reading subroutines initialize thefile_io_converter variable by
copying the value ofnew_file_io_converter. Commands likefind-oem-file temporarily set this
variable to effect reading a file with OEM translation.

int perform_conversion(int buf, int flags)

10.3. FILE PRIMITIVES 397

Theperform_conversion() primitive converts between 16-bit Unicode UTF-16 encodings and
the 8-bit encodings Latin 1 and UTF-8. It converts the specified bufferbuf in place. Flags control its
behavior.

In UTF-8 format, any characters outside the range 0–127 are represented as multi-byte sequences of
graphic characters. Latin 1 format displays the proper glyph for characters in the range 128–255, unlike the
UTF-8 format, but it cannot represent characters outside the range 0–255.

With no flags set, the primitive converts from the UTF-16 LE encoding to the UTF-8 encoding. The
CONV_TO_16 flag makes it convert in the opposite direction, from an 8-bit encoding to a 16-bit one. The
CONV_LATIN1 flag makes it convert to or from Latin 1 instead of UTF-8.

The primitive returns-1 if it succeeded. If the buffer contained characters that could not be represented
in the new format, or byte sequences invalid in the old format, it generates default characters or skips past
the invalid text as appropriate, and returns the offset in the modified buffer of the first such difficulty. With
theCONV_TEST_ONLY flag, it does not modify the buffer, but only returns a result code indicating the
location of the problem, if any, in the unmodified buffer.

By default, the primitive converts to or from the UTF-16 LE (“little endian”) encoding. With the
CONV_BIG_ENDIAN flag, it generates or reads UTF-16 BE instead. However, if the conversion is from,
not to, a 16-bit format, and the buffer begins with a byte order mark (BOM) that indicates its endianness, the
primitive ignores theCONV_BIG_ENDIAN flag and uses the BOM to determine the endianness.

By default, the resulting buffer begins with a byte order mark (unless the translation is to Latin 1, which
defines no BOM). Add theCONV_OMIT_BOM flag to omit it.

Combine theCONV_REQUIRE_BOM flag withCONV_TEST_ONLY to have the primitive return an
error indication if the buffer lacks a suitable BOM.CONV_REQUIRE_BOM withoutCONV_TEST_ONLY
returns an error code if the buffer lacks a BOM, but converts anyway. For conversions from Latin 1,
CONV_REQUIRE_BOM has no effect. For conversions from UTF-16, if there’s a valid UTF-16 byte order
mark, but its endianness doesn’t match the specifiedCONV_BIG_ENDIAN flag,CONV_REQUIRE_BOM
won’t return an error indication; either UTF-16 LE or UTF-16 BE byte order marks will be accepted.

The primitive handles aborting by interpreting theabort_searching variable. Set it to 0 to have it
ignore the abort key and continue,ABORT_JUMP to have it jump by calling thecheck_abort()
primitive, orABORT_ERROR to have it stop the conversion and return anABORT_ERROR code.

10.3.5 More File Primitives

user buffer short modified;
int unsaved_buffers()
int is_unsaved_buffer()
int buffer_unchanged()

Epsilon maintains a variable that tells whether the buffer was modified since it was last saved to a file.
The buffer-specific variablemodified is set to1 each time the current buffer is modified. It is set to0 by
thefile_read(), file_write(), new_file_read(), andnew_file_write() primitives, if
they complete without error.

Theunsaved_buffers() subroutine defined in files.e returns1 if there are any modified buffers. It
doesn’t count empty buffers, or those with no associated file names. If an EEL program creates a buffer that
has an associated file name and is marked modified, but still doesn’t require saving, it can set the
buffer-specific variablediscardable_buffer nonzero to indicate that the current buffer doesn’t require
any such warning. Theunsaved_buffers() subroutine calls theis_unsaved_buffer()
subroutine to check on an individual buffer. It tells if the current buffer shouldn’t be deleted, and checks for

398 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

thediscardable_buffer variable as well as thebuffer-not-saveable variable and other special
kinds of buffers.

Thebuffer_unchanged() primitive returns a nonzero value if the current buffer has been modified
since the last call of therefresh() or maybe_refresh() primitives. It returns zero if the buffer has
not changed since that time. Epsilon callsmaybe_refresh() to display the screen after each command.

user buffer char *filename;
set_buffer_filename(char *file)

The file reading and writing functions are normally used with the file name associated with each buffer,
which is stored in the buffer-specificfilename variable. To set this variable, use the syntaxfilename
= new value;. Don’t usestrcpy(), for example, to modify it.

Theset_buffer_filename() subroutine defined in files.e sets the file name associated with the
current buffer. However, unlike simply setting the primitive variablefilename to the desired value, this
function also modifies the current buffer’s name to match the new file name, takes care of making sure the
file name is in absolute form, and updates the buffer’s access “timestamp”. Thebufed command uses this
timestamp to display buffers sorted by access time.

user int errno;
file_error(int code, char *file, char *unknown)
char no_popup_errors;

File primitives that fail often place an error code in theerrno variable. Thefile_error()
primitive takes an error code and a file name and displays to the user a textual version of the error message.
It also takes a message to print if the error code is unknown.

Under MS-Windows, thefile_error() primitive pops up a message box to report the error. If EEL
code sets this variable nonzero, Epsilon will display such messages in the echo area instead, as it does under
other operating systems.

int do_insert_file(char *file, int transl) /* files.e */
int write_part(char *file, int transl, int start, int end)

Thedo_insert_file() subroutine inserts a file into the current buffer, like theinsert-file
command. Thewrite_part() subroutine writes only part of the current buffer to a file. Each displays an
error message if the file could not be read or written, and returns either an error code or0.

locate_window(char *buf, char *file) /* buffer.e */
int buf_in_window(int bnum)

Thelocate_window() subroutine defined in window.e tries to display a given file or buffer by
changing windows. If either of the arguments is an empty string"" it will be ignored. If a buffer with the
specified name or a buffer displaying the specified file is shown in a window, the subroutine switches to that
window. Otherwise, it makes the current window show the indicated buffer, if any.

Thebuf_in_window() primitive finds a window that displays a given buffer, and returns its window
handle. It returns-1 if no window displays that buffer.

int delete_file(char *file)

10.3. FILE PRIMITIVES 399

Thedelete_file() primitive deletes a file. It returns0 if the deletion succeeded, and-1 if it
failed. Theerrno variable has a code describing the error in the latter case.

int rename_file(char *oldfile, char *newfile)

Therename_file() primitive changes a file’s name. It returns zero if the file was successfully
renamed, and nonzero otherwise. Theerrno variable has a code describing the error in the latter case. You
can use this primitive to rename a file to a different directory, but you cannot use it to move a file to a
different disk.

int copyfile(char *oldfile, char *newfile)

Thecopyfile() primitive makes a copy of the file namedoldfile, giving it the namenewfile,
without reading the entire file into memory at once. The copy has the same time and date as the original.
The primitive returns zero if it succeeds. If it fails to copy the file, it returns a nonzero value and setserrno
to indicate the error.

int make_backup(char *file, char *backupname)

Themake_backup() primitive does whatever is necessary to make a backup of a file. It takes the
name of the original file and the name of the desired backup file, and returns0 if the backup was made.
Otherwise, it puts an error code inerrno and returns a nonzero number. The primitive may simply rename
the file, if this can be accomplished without losing any special attributes or permissions the original file has.
If necessary, Epsilon copies the original file to its backup file.

make_temp_file(char *file, int freespace)

Themake_temp_file() primitive creates a temporary file. Epsilon uses the same algorithm here as
it does when creating its own temporary files, checking the free space of each directory listed in the swap
path looking for one with at leastfreespace bytes available. Once it has selected the directory, Epsilon
makes sure it can create a file with the chosen name, aborting with an error message if it cannot. Epsilon
then copies the name it has chosen for the temporary file into the character arrayfile.

int get_file_read_only(char *fname)
int set_file_read_only(char *fname, int val)
int set_file_opsys_attribute(char *fname, int attribute)

Theget_file_read_only() primitive returns1 if the file fname has been set read-only,0 if it’s
writable, or-1 if the file’s read-only status can’t be determined (perhaps because the file doesn’t exist). The
set_file_read_only() primitive sets the filefname read-only (ifval is nonzero) or writable (if
val is zero). It returns0 if an error occurred, otherwise nonzero.

Under Unix,set_file_read_only() sets the file writable for the current user, group and others,
as modified by the current umask setting (as if you’d just created the file). Other permission bits aren’t
modified.

Theset_file_opsys_attribute() primitive sets the raw attribute of a file. The precise
meaning of the attribute depends on the operating system: under Unix this sets the file’s permission bits,
while in other environments it can set such attributes as Hidden or System. The primitive returns nonzero if
it succeeds. See the opsysattr member of the structure set bycheck_file() to retrieve the raw attribute
of a file.

400 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

int is_directory(char *str)
int is_pattern(char *str)

Theis_directory() primitive takes a string, and asks the operating system if a directory by that
name exists. If so,is_directory() returns1; otherwise, it returns0. Also see thecheck_file()
primitive on page 400, and theis_remote_dir() subroutine on page 407.

Theis_pattern() primitive takes a string, and tells whether it forms a file pattern with wildcards
that may match several files. It returns2 if its file name argument contains the characters* or ?. These
characters are always wildcard characters and never part of a legal file name. The function returns1 if its
file name argument contains any of the following characters: left square-bracket, left curly-bracket, comma,
or semicolon. These characters can sometimes be part of a valid file name (depending upon the operating
system and file system in use), but are also used as file pattern characters in Epsilon. It returns3 if the file
name contains both types of characters, and it returns0 if the file name contains none of these characters.

user char file_pattern_wildcards;
#define FPAT_COMMA (1)
#define FPAT_SEMICOLON (2)
#define FPAT_SQUARE_BRACKET (4)
#define FPAT_CURLY_BRACE (8)
#define FPAT_ALL (FPAT_COMMA | FPAT_SEMICOLON \

| FPAT_SQUARE_BRACKET | FPAT_CURLY_BRACE)

You can control which of the characters[]fg; ; Epsilon will consider a wildcard character in file patterns
by setting thefile-pattern-wildcards variable. This affects thedo_dired(), is_pattern(),
file_match(), dired_standardize(),check_file(), andis_directory() primitives.
Each bit in the variable enables a different set of characters.

FPAT_COMMA enables the, character,FPAT_SEMICOLON enables the; character,
FPAT_SQUARE_BRACKET enables recognizing[] sequences, andFPAT_CURLY_BRACE lets Epsilon
recognizefg sequences. The default value enables all these characters.

10.3.6 File Properties

int check_file(char *file, ?struct file_info *f_info)

Thecheck_file() primitive gets miscellaneous information on a file or subdirectory from the
operating system. It returns codes defined by macros in codes.h. If its argumentfile denotes a pattern that
may match multiple files, it returnsCHECK_PATTERN. (Use thefile_match() primitive described on
page 466 to retrieve the matches.) Iffile names a directory or a file, it returnsCHECK_DIR or
CHECK_FILE, respectively. Iffile names a device, it returnsCHECK_DEVICE. If file has the form of
a URL, not a regular file, it returnsCHECK_URL.

Under operating systems that support it,check_file() returnsCHECK_PIPE for a named pipe and
CHECK_OTHER for an unrecognized special file. Otherwise, it returns0. If f_info has a non-null value,
check_file() fills the structure it points to with information on the file or directory, except when it
returns0 or CHECK_URL. The structure has the following format (defined in eel.h):

struct file_info { /* returned by check_file() */
int fsize; /* file size in bytes */
int opsysattr; /* system dependent attribute */
int raw_file_date_high;

10.3. FILE PRIMITIVES 401

/* opsys-dependent date: high 32 bits */
int raw_file_date_low; /* low 32 bits */
short year; /* file date: 1980-2099 */
short month; /* 1-12 */
short day; /* 1-31 */
short hour; /* 0-23 */
short minute; /* 0-59 */
short second; /* 0-59 */
char attr; /* epsilon standardized attribute */
char check_type; /* file/directory/device code */

};
#define ATTR_READONLY 1
#define ATTR_DIRECTORY 2

Thecheck_type member contains the same value ascheck_file()’s return code. Theattr
member contains two flags:ATTR_READONLY if the file cannot be written, orATTR_DIRECTORY if the
operating system says the file is actually a directory. Theopsysattr member contains a raw attribute
code from the operating system: the meaning of bits here depends on the operating system, and Epsilon
doesn’t interpret them. (See theset_file_opsys_attribute() primitive to set raw attribute codes
for a file.)

Epsilon also provides the timestamp of a file, in two formats. The interpreted format (year, month, etc.)
uses local time, and is intended to match the file timestamp shown in a directory listing. By contrast, in most
cases the raw timestamp (in seconds) won’t be affected by a change in time zones, the arrival of daylight
savings time, or similar things, as the interpreted format will be. Under some operating systems Epsilon
doesn’t provide a raw timestamp; these two fields will be zero in that case.

For the second parameter tocheck_file(), make sure you provide apointerto astruct
file_info, not the actual structure itself. You can omit this parameter entirely if you only want the
function’s return value.

unique_filename_identifier(char *fname, int id[3])
unique_file_ids_match(int a[3], int b[3])

Theunique_filename_identifier() primitive takes a file name and fills theid array with a
set of values that uniquely describe it. Two file names with the same array of values refer to the same file.
(This can happen under Unix due to symbolic or hard links.) If the primitive setsid[0] to zero, no unique
identifier was found; comparisons between two file names, one or both of which returnid[0]==0, must
assume that the names might or might not refer to the same file. At this writing only Epsilon for Unix
supports this feature; in other versions,unique_filename_identifier()will always setid[0] to
zero.

Theunique_file_ids_match() subroutine compares twoid arrays from
unique_filename_identifier(), returning nonzero if they indicate the two file names supplied to
unique_filename_identifier() refer to the same file, and zero if they do not, or Epsilon cannot
determine this.

int compare_dates(struct file_info *a,
struct file_info *b)

format_date(char *msg, int year, int month,
int day, int hour, int minute,
int second)

402 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Thecompare_dates() subroutine defined in filedate.e can be used to compare the dates in two
file_info structures. It returns0 if they have the same date and time, a negative number ifa is dated
earlier thanb, or positive ifa is dated later thanb.

Theformat_date() subroutine takes a date and converts it to text form.

int check_dates(int save) /* filedate.e */

Thecheck_dates() subroutine defined in filedate.e compares a file’s time and date on disk with the
date saved when the file was last read or written. If the file on disk has a later date, it warns the user and asks
what to do. Its parameter should be nonzero if Epsilon was about to save the file, otherwise zero. The
function returns nonzero if the user said not to save the file.

The following example command usescheck_file() to display the current file name and its date in
the echo area.

#include "eel.h"

command show_file_date()
{

struct file_info ts;

if (check_file(filename, &ts))
say("%s: %d/%d/%d", filename,

ts.month, ts.day, ts.year);
}

10.3.7 Low-level File Primitives

int lowopen(char *file, int mode)

The following primitives provide low-level access to files. Thelowopen() primitive takes the name
of a file and a mode code. It returns a “file handle” for use with the other primitives. The mode may be0 for
reading only,1 for writing only, or2 for both. If the file doesn’t exist already, the primitive will return an
error, unless you use mode3. Mode3 creates or empties the file first, and permits reading and writing.

int lowread(int handle, char *buffer, int count)
int lowwrite(int handle, char *buffer, int count)

Thelowread() primitive tries to read the specified number of characters, putting them in the
character arraybuffer, and returns the number of characters it was able to read. A value of0 indicates the
file has ended. Thelowwrite() primitive is similar. A return value different fromcount may indicate
that the disk is full.

int lowseek(int handle, int offset, int mode)
int lowclose(int handle)

Thelowseek() primitive repositions within the file. If the mode is0, it positions to theoffsetth
character in the file, if1 to theoffsetth character from the previous position, and if2 to theoffsetth
character from the end. The primitive returns the new offset within the file. Finally, thelowclose()
primitive closes the file. All these routines return-1 if an error occurred and seterrno with its code.

10.3. FILE PRIMITIVES 403

int lowaccess(char *fname, int mode)
#define LOWACC_R 4 /* file is readable. */
#define LOWACC_W 2 /* file is writable. */
#define LOWACC_X 1 /* file is executable. */

Under Unix, thelowaccess() primitive calls theaccess() system call, passing a file name and a
code indicating whether the file’s read access, write access or execute access should be tested (or zero if only
the file’s existence need be checked). It returns0 if the file is accessible for the specified purpose (can be
read, can be written, can be executed, exists), or-1 if not. Under non-Unix systems, the primitive always
returns-1.

10.3.8 Directories

int getcd(char *dir)
int chdir(char *dir)

Thegetcd() primitive returns the current directory, placing it in the provided string. The format is
B:nharoldnwork.

Thechdir() primitive sets the current directory. (It sets the current drive as well if its argument refers
to a drive. For example, invokingchdir("A:nletters"); sets the current drive to A, then sets the
current directory for drive A tonletters.chdir("A:"); sets only the current drive.) The result for this
primitive is0 if the attempt succeeded, and-1 if it failed. Theerrno variable is set with a code showing
the type of error in the latter case.

put_directory(char *dir) /* files.e subr. */
int get_buffer_directory(char *dir)

Theput_directory() subroutine copies the directory part of the file name associated with the
current buffer intodir. Normally the directory name will end with a path separator character like ‘/’ or ‘n’.
If the current buffer has no associated file name,dir will be set to the empty string.

Theget_buffer_directory() subroutine gets the default directory for the current buffer indir.
In most cases this is the directory part of the buffer’sfilename variable, but special buffers likedired
buffers have their own rules. The subroutine returns nonzero if the buffer had an associated directory. If the
buffer has no associated directory, the subroutine puts Epsilon’s current directory indir and returns0.

user char *process_current_directory;

Epsilon stores the concurrent process’s current directory in theprocess_current_directory
variable. Setting this variable switches the concurrent process to a different current directory. To set this
variable, use the syntaxprocess_current_directory = new value;. Don’t usestrcpy(),
for example, to modify it.

The Windows 95/98/ME and 3.1 versions of Epsilon only transmit current directory information to or
from the process when the process stops for console input. The DOS version transmits current directory
information immediately. Epsilon for OS/2 doesn’t transmit this information, and a subprocess’s current
directory isn’t accessible from Epsilon. Under Unix, Epsilon tries to retrieve the process’s current directory
whenever you access this variable, but setting it has no effect. Under NT/W2K/XP, Epsilon tries to detect
the process’s current directory from EEL code and set this variable. See the variable
use-process-current-directory for more details.

404 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

int mkdir(char *dir)
int rmdir(char *dir)

Themkdir() subroutine makes a new directory with the given name, and thermdir() subroutine
removes an empty directory with the given name. Each primitive returns0 on success and-1 on failure, and
setserrno in the latter case, as withchdir().

Dired Subroutines

int dired_one(char *files) /* dired.e */
int create_dired_listing(char *files)
int make_dired(char *files)
int do_remote_dired(char *files)
int do_dired(char *files)
int is_dired_buf() /* dired.e */

Thedired_one() subroutine takes a file name pattern as its argument and acts just like thedired
command does, making a dired buffer, filling it and putting it in dired mode. It puts its pattern in a standard
form and chooses a suitable buffer name, then calls thecreate_dired_listing() subroutine. This
function prepares the buffer and displays suitable messages, then callsmake_dired().

Themake_dired() subroutine handles FTP dired requests by callingdo_remote_dired(), and
passes local dired requests to thedo_dired() primitive to fill the buffer with directory information.

Each of these routines takes a file name with wildcard characters such as * and ?, and inserts in the
current buffer exactly what thedired command does (see page 108). Each returns0 normally, and1 if there
were no matches.

By default, thedo_dired() primitive ignores the abort key. To permit aborting a long file match, set
the primitive variableabort_file_matching usingsave_var to tell Epsilon what to do when the
user presses the abort key. See page 466 for details.

Theis_dired_buf() subroutine returns1 if the current buffer is a dired buffer, otherwise0.

dired_standardize(char *files)
standardize_remote_pathname(char *files)
remote_dirname_absolute(char *dir)
drop_dots(char *path)

Sometimes there are several interchangeable ways to write a particular file pattern. For example,
/dir1/dir2/* always makes the same list of files as/dir1/dir2/ or /dir1/dir2. The
dired_standardize() primitive converts a dired pattern to its simplest form, in place. In the example,
the last pattern is considered the simplest form.

Thestandardize_remote_pathname() subroutine is similar, but operates on FTP URL’s. It
calls several other subroutines to help.

Theremote_dirname_absolute() subroutine converts a relative remote pathname to an
absolute one in place. It performs an FTP operation to get the user’s home directory, then inserts it into the
given pathname.

Thedrop_dots() subroutine removes. and interprets.. in a pathname, modifying it in place. It
removes any.. components at the start of a path.

10.3. FILE PRIMITIVES 405

detect_dired_format()
zeroed buffer char dired_format;
#define DF_UNIX 1
#define DF_SIMPLE 2
#define DF_OLDNT 3
#define DF_VMS 4
int get_dired_item(char *prefix, int func)

Thedired command supports several different formats for directory listings. Besides the standard
format it uses for local directory listings, as generated by thedo_dired() primitive, it understands the
directory listings generated by FTP servers that run on Unix systems (and the many servers on other
operating systems that use the same format), as well as several others.

Thedetect_dired_format() subroutine determines the proper format by scanning a dired
buffer, and sets thedired_format variable as appropriate. A value of0 indicates the default, local
directory format. The other values represent other formats.

Various subroutines in dired use theget_dired_item() subroutine to help locate format-specific
functions or variables, to do tasks that depend on the particular format. The subroutine takes a prefix like
“dired-isdir-” and looks for a function nameddired_isdir_unix() (assuming the
dired_format variable indicates Unix). It returns the name table index of the function it found, if there
is one, or zero otherwise.

If its parameterfunc is nonzero, it looks only for functions; if zero, it looks only for variables. You can
use an expression like(* (int (*)()) i)() to call the function (assumingi is the value returned by
get_dired_item()), or an expression likeget_str_var(i) to get the value of a variable given its
index.

10.3.9 Manipulating File Names

absolute(char *file, ?char *dir)
relative(char *abs, char *rel, ?char *dir)
int is_relative(char *fname)

Because the current directory can change (either through use of thechdir() primitive described
above, or, under DOS or Windows, because another process has changed the directory), Epsilon normally
keeps file names in absolute pathname form, with all the defaults in the name made explicit. It converts a file
name to the appropriate relative pathname whenever it displays the name (for example, in the mode line).

Theabsolute() primitive takes a pointer to a character array containing a file name. It makes the
file name be an absolute pathname, with all the defaults made explicit. For example, if the default drive is
B:, the current directory is /harold/papers, thepath_sep variable is ‘n’ and the 80 character arrayfname
contains “proposal”; callingabsolute() with the argumentfname makesfname contain
“B:nharoldnpapersnproposal”.

The primitiverelative() does the reverse. It takes a file name in absolute form and puts an
equivalent relative file name in a character array. Unlikeabsolute(), which modifies its argument in
place,relative() makes a copy of the argument with the changes. If the default drive is B:, the current
directory isnharold and the 80 character arrayabs contains B:nharoldnpapersnproposal, calling
relative(abs, rel); puts “papersnproposal” in the string arrayrel. You can also get a relative file
name by using the%r format specifier in any Epsilon primitive that accepts a printf-style format string.

Therelative() andabsolute() primitives each take an optional additional argument, which
names a directory. Theabsolute() primitive assumes that any relative file names in its first argument are

406 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

relative to the directory named by the second argument. (If the second argument is missing or null, the
primitive assumes that relative file names are relative to the current directory.) Similarly, if you provide a
third argument to therelative() primitive, it makes file names relative to the specified directory, instead
of the current directory.

Note that in EEL string or character constants, then character begins an escape sequence, and you must
double it if the charactern is to appear in a string. Thus the DOS file namenharoldnpapers must appear in
an EEL program as the string"nnharoldnnpapers".

Theis_relative() primitive returns nonzero if the file name looks like a relative pathname, not an
absolute pathname. (It’s not intended for use with URL’s.)

char *get_tail(char *file, ?int dirok)

Theget_tail() primitive takes a string containing a file name and returns a pointer to a position in
the string after the name of the last directory. For example, suppose thatfile is the string
“/harold/papers/proposal”. Then

get_tail(file, 0)

would return a pointer to “proposal”. Since the pointer returned is to the original string, you can use this
primitive to modify that string. Using the above example, a subsequent

strcpy(get_tail(file, 0), "sample");

would makefile contain the string “/harold/papers/sample”. Thedirok argument says what to do with a
file name ending with a separator character ‘n’ or ‘/’. If dirok is nonzero the primitive returns a pointer to
right after the final separator character. Ifdirok is zero, however, the primitive returns a pointer to the first
character of the final directory name. (Iffile contains no directory name, the primitive returns a pointer to
its first character whendirok is zero.)

char *get_extension(char *file)

Theget_extension() primitive returns a pointer to the final extension of the file name given as its
argument. For example, an invocation of

get_extension("text.c")

would return a pointer to the “.c” part, andget_extension("text")would return a pointer to the null
character at the end of the string. Likeget_tail(), you can use this primitive to modify the string.

int is_path_separator(int ch)

Theis_path_separator() primitive tells if a character is one of the characters that separate
directory or drive names in a file name. It returns1 if the character is ‘n’ or ‘/’, 2 if the character is ‘:’,
otherwise0. Under Unix, it returns1 if the character is ‘/’, otherwise0.

user char path_sep;

Thepath_sep variable contains the preferred character for separating directory names. It is normally
‘n’ in non-Unix environments. You may change it to ‘/’ if you prefer Unix-style file names. Epsilon will
then display file names with ‘/’ instead of with ‘n’. (Epsilon for 32-bit Windows ignores this setting. So
does Epsilon for DOS, when running under Windows 95/98/ME. In these environments, Epsilon asks the
operating system to standardize all pathnames, and the operating system replaces any ‘/’ with ‘n’, making
this setting ineffective.) In Epsilon for Unix, this variable will be set to / and should not be changed.

10.3. FILE PRIMITIVES 407

add_final_slash(char *fname)
drop_final_slash(char *fname)

Theadd_final_slash() primitive adds a path separator character like / orn to the end offname,
if there isn’t one already. Thedrop_final_slash() primitive removes the last character offname if
it’s a path separator. These primitives never count: as a path separator.

int is_remote_file(char *fname)
int is_remote_dir(char *fname)

Theis_remote_file() primitive tells whetherfname looks like a valid URL. It returns1 if
fname starts with a service name like ftp://, http://, or telnet://, or 2 iffname appears to be an Emacs-style
remote file name like /hostname:filename.

Theis_remote_dir() subroutine is somewhat similar; it tries to determine if afname refers to a
remote directory (or a file pattern; either should be passed todired). It knows thatfname can’t be a remote
directory unless it’s a valid URL with a service type of ftp://. But then it has to guess, since it doesn’t want
to engage in a slow FTP conversation before returning with an answer. It assumes that a URL that ends in a /
character is a directory; it recognizes wildcard characters; it looks for the ˜notation that indicates a home
directory. If none of these indicates a directory name, it returns zero to indicate something other than a
remote directory.

get_executable_directory(char *dir)

Theget_executable_directory() function stores the full pathname of the directory
containing the Epsilon executable intodir.

look_up_tree(char *res, char *file, char *dir, char *stop)
int is_in_tree(char *file, char *tree) /* files.e subr. */

Thelook_up_tree() subroutine searches forfile in the given directorydir, its parent directory,
and so forth, until it finds a file namedfile or reaches the root directory. If it finds such a file, it returns
nonzero and puts the absolute pathname of the file into the character arrayres. If it doesn’t find a file with
the given name, it returns zero and leavesres set to the last file it looked for. Iffile is an absolute
pathname to begin with, it puts the same file name inres, and returns nonzero if that file exists. Ifdir is a
null pointer,look_up_tree() begins at the current directory. Ifstop is non-null, the function only
examines child directories of the directorystop. The function stops as soon as it reaches a directory other
thanstop or one of its subdirectories. This function assumes that all its parameters are in absolute
pathname form.

Theis_in_tree() subroutine returns nonzero if the pathnamefile is in the directory specified by
dir or one of its subdirectories. Both of its parameters must be in absolute pathname form.

user char path_list_char;

Thepath_list_char variable contains the character separating the directory names in a
configuration variable like EPSPATH. It is normally ‘;’, except under Unix, where it is ‘:’.

build_filename(char *result, char *pattern, char *file)

408 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Thebuild_filename() subroutine constructs file names from name templates (see page 99). It
copiespattern to result, replacing the various% template codes with parts offile, which it obtains
by calling the primitivesget_tail() andget_extension().

int fnamecmp(char *f1, char *f2) /* buffer.e */
int filename_rules(char *fname)

Thefnamecmp() subroutine compares two file names like thestrcmp() primitive, returning0 if
they’re equal, a positive number if the first comes before the second, or a negative number otherwise.
However, it does case-folding on the file names first if this is appropriate for the particular file systems.

Thefilename_rules() primitive asks the operating system if a certain file system is case-sensitive
or case-preserving, and returns other information too. It takes the name of any file or directory (which
doesn’t have to exist) on the file system, and returns a code whose values are represented by macros defined
in codes.h. See page 103 for more information on how Epsilon determines the appropriate code for each file
system.

TheFSYS_CASE_IGNORED code indicates a non-case-preserving file system like DOS. The
FSYS_CASE_PRESERVED code indicates a case-preserving file system like NTFS or VFAT. The
FSYS_CASE_SENSITIVE code indicates a case-sensitive file system like Unix. The
FSYS_CASE_UNKNOWN code indicates that Epsilon couldn’t determine anything about the file system.

The function also returns a bit flagFSYS_SHORT_NAMES, valid whenever any code but
FSYS_CASE_UNKNOWN is returned, that indicates whether only 8+3 names are supported. Use the mask
macroFSYS_CASE_MASK to strip off this bit: for example, the expression

(filename_rules(f) & FSYS_CASE_MASK) == FSYS_CASE_SENSITIVE

is nonzero if the file system is case-sensitive.

The primitive also may return a bit indicating the type of drive a file is located on, if Epsilon can
determine this.FSYS_NETWORK indicates the file is on a different computer and is being accessed over a
network.FSYS_CDROM indicates the file is on a CD-ROM disk.FSYS_REMOVABLE indicates the file is
on a removable medium like a floppy disk or Zip disk. AndFSYS_LOCAL indicates the file is on a local
(non-network) hard disk. At most one of the these bits will be present.

Epsilon for Unix returnsFSYS_CASE_SENSITIVE for all files, even if they happen to lie on a file
system that might use different rules natively. It can’t detect the type of drive a file is on either.

int ok_file_match(char *s) /* complete.e */

Theok_file_match() subroutine checks a file name to see if theignore_file_extensions
variable should exclude it from completion. It returns0 if the file name should be excluded, or1 if the file
name is acceptable.

char *lookpath(char *file, ?int curdir)
char *look_on_path(char *file, int flags, char *path, ?int skip)

Thelookpath() primitive looks in various standard Epsilon directories for a readable file with the
supplied name. As soon as Epsilon locates the file, it returns the file’s name. If it can’t find the file, it returns
a null pointer. See page 11 for more information on Epsilon’s searching rules. Thelook_on_path()
primitive is similar, but you can specify the path to use, and it offers some additional flexibility. These
primitives will be described together.

10.3. FILE PRIMITIVES 409

First (for either primitive), if the specified file name is an absolute pathname, Epsilon simply checks to
see if the file exists, and returns its name if it does, or a null pointer otherwise.

Next, if you calllookpath() with its optional parametercurdir nonzero (or if you call
look_on_path() with the flagPATH_ADD_CUR_DIR), Epsilon looks for the file in the current
directory. Ifcurdir is zero or omitted (orPATH_ADD_CUR_DIR isn’t specified), Epsilon skips this step
(unless the file name explicitly refers to the current directory, like “.nfilename”).

Thelookpath() primitive next looks for the file in the directory containing the Epsilon executable,
then (except in Epsilon for Unix) in the parent of that directory. If Epsilon’s executable is in a directory with
a name like c:nepsilonnbin, so searches for the file in c:nepsilonnbin, then in c:nepsilon. The-w4 and-w8
flags tell Epsilon to skip these two steps, respectively. Forlook_on_path(), you must specify the flag
PATH_ADD_EXE_DIR to search in the executable’s directory, andPATH_ADD_EXE_PARENT to search in
its parent.

If the file still cannot be found,lookpath() then locates the EPSPATH, the configuration variable
containing the list of directories for Epsilon to search in. (look_on_path() uses the path provided as a
parameter.) Epsilon looks in each of the directories in that path for a file with the given name, returning the
full pathname of the file if it finds it, and a null pointer otherwise. The path must use the appropriate syntax
for a directory list: directory names separated by colons under Unix, or by semicolons in other
environments. If there is no EPSPATH,lookpath() in Epsilon for Unix substitutes
˜/.epsilon:/usr/local/epsilonVER:/usr/local/epsilon:/opt/epsilon (where
VERis a version string like 10.02; other versions skip this step in that case.

If you supplylook_on_path() with an optionalskip parameter ofn, it will skip over the firstn
matches it finds (so long as its parameter is a relative pathname). You can use this to reject a file and look for
the next one on a path.

convert_to_8_3_filename(char *fname)

Under Windows, theconvert_to_8_3_filename() primitive modifies the given file name by
converting all long file names in fname to their short “8.3” file name aliases. Each component of a short file
name has no more than eight characters, a dot, and no more than three more characters. For example, the file
name “c:nWindowsnStart MenunProgramsnWindows Explorer.lnk” might be translated to an equivalent file
name of “c:nWindowsnSTARTM˜1nProgramsnWINDOW˜1.LNK”. This function operates on all versions
of Epsilon which support Windows-style long file names: the native 32-bit Windows version, and the DOS
version (except under NT 4.0). Other versions of Epsilon will not modify the file name.

10.3.10 Internet Primitives

int telnet_host(char *host, int port, char *buf)
telnet_send(int id, char *text)
do_telnet(char *host, int port, char *buf)
buffer int telnet_id;
int telnet_server_echoes(int id)

In 32-bit Windows and Unix versions, Epsilon provides various commands that use Internet FTP, Telnet
and similar protocols. This section documents how some parts of this interface work.

First, Epsilon provides the primitivestelnet_host() andtelnet_send() for use with the
Telnet protocol. Thetelnet_host() function establishes a connection to a host on the specified port,
and using the indicated buffer. It returns an identification code. Thetelnet_send() function can use
this code to send text to the host. Commands normally call thetelnet_host() function through the

410 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

do_telnet() subroutine, which records the telnet identification code in the buffer-specifictelnet_id
variable, and does other housekeeping tasks.

Thetelnet_server_echoes() primitive accepts a telnet identification code as above, and returns
1 if the server on that connection is currently set to echo characters sent to it, or0 if it is not.

int finger_user(char *user, char *host, char *buf)
int http_retrieve(char *resource, char *host, int port,

char *auth, char *buf, int flags)

Thefinger_user() primitive uses the Finger protocol to retrieve information on a particular user
(if the host is running a Finger server). It takes the user name, the host, and the name of a buffer in which to
put the results.

Thehttp_retrieve() primitive uses the HTTP protocol to retrieve a page from a web site. It takes
a resource name (the final part of a URL), a host, port, an authorization string (for password-protected
pages) and destination buffer name, plus a set of flags. TheHTTP_RETRIEVE_WAIT flag tells the function
not to return until the transfer is complete. Without this flag the function begins the transfer and lets it
continue in the background. TheHTTP_RETRIEVE_ONLY_HEADER flag tells the function to retrieve only
the header of the web page, not the body. Without this flag Epsilon will retrieve both; the first blank line
retrieved separates the two.

int ftp_op(char *buf, char *log, char *host, int port,
char *usr, char *pwd, char *file, int op)

int do_ftp_op(char *buf, char *host, char *port,
char *usr, char *pwd, char *file, int op)

Theftp_op() primitive uses the FTP protocol to send or retrieve files or get directory listings. It
takes the destination or source buffer name, the name of a log buffer, a host computer name and port
number, a user name and password, a file name, and an operation code that indicates what function it should
perform (see below).

Thedo_ftp_op() subroutine is similar toftp_op(), but it chooses the name of an appropriate
FTP Log buffer, instead of taking the name of one as a parameter. Also, it arranges for the appropriate
ftp_activity() function (see below) to be called, arranges for character-coloring the log buffer, and
initializes theftp_job structure that Epsilon uses to keep track of each FTP job.

TheFTP_RECV operation code retrieves the specified file and theFTP_SEND code writes the buffer to
the specified file name. TheFTP_LIST code retrieves a file listing from the host of files matching the
specified file pattern or directory name. TheFTP_MISC code indicates that the file name actually contains a
series of raw FTP commands to execute after connecting and logging in, separated by newline characters.
Epsilon will execute the commands one at a time.

You can combine one of the above codes with some bit flags that modify the operation. Use the
FTP_OP_MASK macro to mask off the bit flags below and extract one of the operation codes above.

Normallyftp_op() returns immediately, and each of these operations is carried out in the
background. Add the codeFTP_WAIT to any of the above codes, and the subroutine will not return until the
operation completes.

TheFTP_ASCII bit flag modifies theFTP_RECV andFTP_SEND operations. It tells Epsilon to
perform the transfer in ASCII mode. By default, all FTP operations use binary mode, and Epsilon performs
any needed line translation itself. But this doesn’t work on some host systems (VMS systems, for example).
See theftp-ascii-transfers variable for more information.

10.3. FILE PRIMITIVES 411

TheFTP_USE_CWD bit flag modifies how Epsilon uses the file name provided for operations like
FTP_RECV, FTP_SEND, andFTP_LIST. By default, Epsilon sends the file name to the host as-is. For
example, if you try to read a filedirname/another/myfile, Epsilon sends an FTP command like
RETR dirname/another/myfile. Some hosts (such as VMS) use a different format for directory
names than Epsilon’sdired directory editor understands. So with this flag, Epsilon breaks a file name apart,
and translates a request to read a file such asdirname/another/myfile into a series of commands to
change directories todirname, then toanother, and then to retrieve the filemyfile. The
ftp-compatible-dirs variable controls this.

int url_operation(char *file, int op)

Theurl_operation() subroutine parses a URL and begins an Internet operation with it. It takes
the URL and an operation code as described above forftp_op(). If the code isFTP_RECV, then the URL
may indicate a service type of telnet://, http://, or ftp://, but if the code isFTP_SEND or FTP_LIST, the
service type must be ftp://. It can modify the passed URL in place to put it in a standard form. It calls one of
the functionsdo_ftp_op(), http_retrieve(), ordo_telnet() to do its work.

ftp_misc_operation(char *url, char *cmd)

Theftp_misc_operation() subroutine uses thedo_ftp_op() subroutine to perform a series
of raw FTP commands. It takes an ftp:// URL (ignoring the file name part of it) connects to the host, logs in,
and then executes each of the newline-separated FTP commands incmd. Dired uses this function to delete
or move a group of files.

buffer int (*when_net_activity)();
net_activity(int activity, int buf, int from, int to)

As Epsilon performs Internet functions, it calls an EEL function to advise it of its progress. The
buffer-specific variablewhen_net_activity contains a function pointer to the function to call. Epsilon
uses the value of this variable in the destination buffer (or, in the case of theNET_LOG_WRITE and
NET_LOG_DONE codes below, the log buffer). If the variable is zero in a buffer, Epsilon won’t call any EEL
function as it proceeds.

The EEL function will always be called from within a call togetkey() or delay(), so it must save
any state information it needs to change, such as the current buffer, the position of point, and so forth, using
save_var. The subroutinenet_activity() shown above indicates what parameters the function
should take—there’s not actually a function by that name.

Theactivity parameter indicates the event that just occurred. A value ofNET_RECV indicates that
Epsilon has just received some characters and inserted them in a buffer. Thebuf parameter tells which
buffer is involved. Thefrom andto values indicate the new characters. A value ofNET_DONE means that
the net job running in bufferbuf has finished. The above are the only activity codes generated for HTTP,
Telnet, or Finger jobs.

FTP jobs have some more possible codes.NET_SEND indicates that another block of text has been
sent. In this case,from indicates that number of bytes sent already from bufferbuf, andto indicates the
total number of bytes to be sent. The codeNET_LOG_WRITE indicates that some more text has been
written to the log bufferbuf, in the rangefrom...to. Finally, the codeNET_LOG_DONE indicates that the
FTP operation has finished writing to the log buffer. It occurs right after aNET_DONE call on FTP jobs.

ftp_activity(int activity, int buf, int from, int to)
finger_activity(int activity, int buf, int from, int to)
telnet_activity(int activity, int buf, int from, int to)
buffer int (*buffer_ftp_activity)();

412 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

The file epsnet.e defines thewhen_net_activity functions shown above, which provide status
messages and similar things for each type of job. Theftp_activity() subroutine also calls a
subroutine itself, defined just like these functions, through the buffer-specific variable
buffer_ftp_activity. Thedired command uses this to arrange for normal FTP activity processing
when retrieving directory listings, but also some processing unique to dired.

int gethostname(char *host, ?int method)

Thegethostname() primitive setshost to the computer’s Internet host name and returns0. If it
can’t for any reason, it returns 1 and setshost to “?”. This primitive is only available under Unix and 32-bit
Windows.

Epsilon uses themethod parameter only under Windows. Ifmethod is 2, Epsilon asks Winsock for
the computer’s name. If Winsock is set to auto-dial on demand, it’s possible that this request will make it
dial. Any other value formethod makes Epsilon ask Windows itself for the computer’s name. These two
computer names are set in different places in the control panel and are often different.

Parsing URL’s

prepare_url_operation(char *file, int op, struct url_parts *parts)
get_password(char *res, char *host, char *usr)
int parse_url(char *url, struct url_parts *p)

Several subroutines handle parsing URL’s into their component parts. These parts are stored in a
url_parts structure, which has fields for a URL’s service (http, ftp, and so forth), host name, port, user
name if any, password if any, and the “file name”: the final part of a URL, that may be a file name, a web
page name or something else. Since an empty user name or password is legal, but is different from an
omitted one, there are also fields to specify if each of these is present.

Theprepare_url_operation() subroutine parses a URL and fills one of these structures. It
complains if it doesn’t recognize the service name, or if the service is something other than FTP but the
operation isn’t reading. The operation code is one of those used with theftp_op() subroutine described
on page 410. For example, it complains if you try to perform anFTP_LIST operation with a telnet:// URL.
It also prompts for a password if necessary, and saves the password for later use, by calling the
get_password() subroutine.

Theget_password() subroutine gets the password for a particular user/host combination. Specify
the user and host, and the subroutine will fill in the provided character arrayres with the password. The
first time it will prompt the user for the information; it will then store the information and return it without
prompting in future requests. The subroutine is careful to make sure the password never appears in a state
file or session file. To discard a particular remembered password, passNULL as the first parameter. The next
timeget_password() is asked for the password of that user on that host, it will prompt the user again.

Theprepare_url_operation() subroutine calls theparse_url() subroutine to actually
parse the URL into aurl_parts structure. The latter returns zero if the URL is invalid, or nonzero if it
appears to be legal.

int split_string(char *part1, char *cs, char *part2)
int reverse_split_string(char *part1, char *cs, char *part2)

Theparse_url() subroutine uses two helper subroutines. Thesplit_string() subroutine
divides a stringpart1 into two parts, by searching it for one of a set of delimiter characterscs. It finds the

10.4. OPERATING SYSTEM PRIMITIVES 413

first character inpart1 that appears incs. Then it copies the remainder ofpart1 to part2, and removes
the delimiter character and the remainder frompart1. It returns the delimiter character it found. If no
delimiter character appears inpart1, it setspart2 to "" and returns0. The
reverse_split_string() subroutine is almost identical; it just searches throughpart1 from the
other end, and splits the string at the last character inpart1 that appears incs.

char *get_url_file_part(char *url, int sep)

Theget_url_file_part() subroutine helps to parse URL’s. It takes a URL and returns a pointer
to a position within it where its file part begins. For example, in the URL
http://www.lugaru.com/why-lugaru.html, the subroutine returns a pointer to the start of
“why”. If sep is nonzero, the subroutine instead returns a pointer to the / just before “why”. If its parameter
is not a URL, the subroutine returns a pointer to its first character.

10.3.11 Tagging Internals

This section describes how to add tagging support to Epsilon for other languages. Epsilon already knows
how to find tags in C and EEL files, and in assembly languages files.

tag_suffix_ext() /* example function */
tag_suffix_none()
tag_suffix_default()

When Epsilon wants to add tags for a file, it looks at the file’s extension and constructs a function name
of the formtag_suffix_ext(), whereext is the extension. It tries to call this function to tag the file. If
the file has no extension, it tries to calltag_suffix_none(). If there is no function with the appropriate
name, Epsilon callstag_suffix_default() instead. Thus, to add tagging for a language that uses file
names ending in .xyz, define a function namedtag_suffix_xyz().

add_tag(char *func, int pos)

The tagging function will be called with point positioned at the start of the buffer to be tagged. (Epsilon
preserves the old value of point.) It should search through the buffer, looking for names it wishes to tag. To
add a tag, it should call the subroutineadd_tag(), passing it the tag name and the offset of the first
character of the name within the file. You can use the tagging functions for C and assembler as examples to
write your own tagging functions. They are in the source file tags.e.

Thepluck-tag command uses a regular expression pattern to parse an identifier in the buffer. By
default, it uses the pattern in the variabletag-pattern-default. A mode can define a variable like
tag-pattern-perl or tag-pattern-c to make Epsilon use a different pattern. (For instance, the
pattern for C mode says that identifiers can include :: to specify a class name.)

Epsilon constructs a variable name, liketag-pattern-perl, from the current mode’s name. If a
variable by that name exists,pluck-tag uses it in place oftag-pattern-default.

10.4 Operating System Primitives

10.4.1 System Primitives

struct disk_info {
short sects_per_cluster, bytes_per_sector;

414 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

short avail_clusters, tot_clusters;
};
disk_space(char *disk, struct disk_info *d_info) /* lowlevel.e */

Epsilon’sdisk_space() subroutine requests information about a particular disk drive from the
system. It takes the number of the drive (A is 1, B is 2, and so forth) and a pointer to adisk_info
structure as defined above (the declaration also appears in eel.h). The subroutine fills the structure with the
indicated information. (This subroutine is not available in Epsilon for Windows or Unix.)

char *getenv(char *name)
putenv(char *name)
char *verenv(char *name)

Use thegetenv() primitive to return entries from the environment. The primitive returns a null
pointer if no environment variablename exists. For example, after the DOS command “set
waldo=abcdef”, the expressiongetenv("waldo") will return the string “abcdef”.

Theputenv() primitive puts strings in the environment. Normally environment entries have the form
“NAME=definition”. This primitive manipulates Epsilon’s copy of the environment, which is passed on to
any program that Epsilon runs, but it doesn’t affect the environment you get when you exit from Epsilon.
The value of the argument toputenv() is evaluated later, when you actually invoke some other program
from within Epsilon. For this reason, it is important that the argument toputenv() not be a local variable.

Theverenv() primitive gets configuration variables. In Epsilon for Windows 3.1,verenv() looks
for entries in Epsilon’s lugeps.ini file, while Epsilon for 32-bit Windows looks in the system registry. Under
Unix, DOS and OS/2, it retrieves the variables from the environment, likegetenv().

Regardless of the operating system, this primitive looks for alternate, version-specific forms of the
specified configuration variable. For example, in version 7.0 of Epsilon,verenv("MYVAR") would return
the value of a variable named MYVAR70, if one existed. If not, it would try the name MYVAR7. If neither
existed, it would return the value of MYVAR (or a null pointer if none of these variables were found). See
page 9 for complete information on configuration variables.

short opsys;
#define OS_DOS 1 /* DOS or Windows */
#define OS_OS2 2 /* OS/2 */
#define OS_UNIX 3 /* Unix */

Theopsys variable tells which operating system version of Epsilon is running, using the macros
shown above and defined in codes.h. The primitive returns the same value for DOS and Windows; see the
next definition to distinguish these.

short is_gui;
#define IS_WIN32S 1 /* (not supported) */
#define IS_NT 2
#define IS_WIN95 3
#define IS_WIN31 4 /* 16-bit version always says this */

Theis_gui variable lets an EEL program determine if it’s running in a version of Epsilon that
provides dialogs. The variable is zero in the Unix, Win32 console, DOS and OS/2 versions of Epsilon, but
nonzero in the other Windows versions. The valuesIS_WIN32S, IS_NT, andIS_WIN95 indicate that the
32-bit version of Epsilon is running, and occur when the 32-bit version runs under Windows 3.1, Windows

10.4. OPERATING SYSTEM PRIMITIVES 415

NT/2000/XP, and Windows 95/98/ME, respectively. (Note that the 32-bit version doesn’t currently run
under Windows 3.1, so this value will not occur.) The 16-bit version of Epsilon for Windows always uses
the valueIS_WIN31, even if you happen to be running it under a 32-bit version of Windows.

short is_unix;
#define IS_UNIX_TERM 1
#define IS_UNIX_XWIN 2

Theis_unix variable is nonzero if Epsilon for Unix is running. It’s set to the constant
IS_UNIX_XWIN if Epsilon is running as an X program, orIS_UNIX_TERM if Epsilon is running as a
terminal program.

short is_win32;
#define IS_WIN32_GUI 1
#define IS_WIN32_CONSOLE 2

Theis_win32 variable is nonzero if a version of Epsilon for 32-bit Windows is running, either the
GUI version or the Win32 console version. The constantIS_WIN32_GUI represents the former. The
constantIS_WIN32_CONSOLE represents the latter.

int has_feature;

Epsilon provides thehas_feature variable so an EEL function can determine which facilities are
available in the current environment. Bits represent possible features. Often these indicate whether a certain
primitive is implemented.

FEAT_ANYCOLOR Epsilon can use all RGB colors, not just certain ones.
FEAT_GUI_DIALOGS display_dialog_box() is implemented.
FEAT_FILE_DIALOG common_file_dlg() is implemented.
FEAT_COLOR_DIALOG comm_dlg_color() is implemented.
FEAT_SEARCH_DIALOG find_dialog() is implemented.
FEAT_FONT_DIALOG windows_set_font() is implemented.
FEAT_SET_WIN_CAPTION set_window_caption() is implemented.
FEAT_OS_PRINTING print_window() is implemented.
FEAT_WINHELP win_help_string() and similar are implemented.
FEAT_OS_MENUS win_load_menu() and similar are implemented.
FEAT_ANSI_CHARS Does this system normally use ANSI fonts, not DOS/OEM?
FEAT_EEL_RESIZE_SCREEN Does EEL code control resizing the screen?
FEAT_INTERNET Are Epsilon’s Internet functions available?
FEAT_SET_FONT Can EEL set the font via variables?
FEAT_MULT_CONCUR Does Epsilon support multiple concurrent processes?
FEAT_DETECT_CONCUR_WAIT Can Epsilon learn that a concurrent process waits for input?
FEAT_EEL_COMPILE eel_compile() is implemented.
FEAT_LCS_PRIMITIVES lcs() and related are implemented.
FEAT_PROC_SEND_TEXT process_send_text() is implemented.

Figure 10.1: Bits in the has-feature variable.

416 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

ding()
maybe_ding(int want) /* disp.e */
user int want_bell; /* EEL variable */
user short beep_duration;
user short beep_frequency;

Theding() primitive produces a beeping sound, usually called the bell. It is useful for alerting the
user to some error. Instead of callingding() directly, however, EEL commands should call the
maybe_ding() subroutine defined in disp.e instead. It callsding() only if the variablewant_bell is
nonzero, and its parameter is nonzero. Pass one of thebell_on_ variables listed on page 94 as the
parameter. The sound thatding() makes is controlled by thebeep-duration andbeep-frequency
variables. See page 95.

int clipboard_available()
int buffer_to_clipboard(int buffer_number, int convert_newlines,

int clipboard_format)
int clipboard_to_buffer(int buffer_number, int convert_newlines,

int clipboard_format)

Theclipboard_available() primitive tells whether Epsilon can access the system clipboard in
this environment. It returns nonzero if the clipboard is available, or zero if not. Epsilon for Windows can
always access the clipboard. Epsilon for DOS can access the clipboard when running under some versions
of Windows. Epsilon for Unix can access the clipboard when it runs as an X program.

Thebuffer_to_clipboard() primitive copies the indicated buffer to the clipboard. A
clipboard_format of zero means use the default format; otherwise, it specifies a particular Windows
clipboard format code. Ifconvert_newlines is nonzero, Epsilon will add ahReturni character before
eachhNewlinei character it puts on the clipboard. This is the normal format for clipboard text. If
convert_newlines is zero, Epsilon will put an exact copy of the buffer on the clipboard.

Theclipboard_to_buffer() primitive replaces the contents of the given buffer with the text on
the clipboard. Theclipboard_format parameter has the same meaning as above. If
convert_newlines is nonzero, Epsilon will strip allhReturni characters from the clipboard text before
putting it in the buffer.

signal_suspend()

In Epsilon for Unix, thesignal_suspend() primitive suspends Epsilon’s job. Use the shell’s fg
command to resume it. When Epsilon runs as an X program, this primitive minimizes Epsilon instead.

10.4.2 Window System Primitives

All the primitives in this section are only available in Epsilon for Windows (except for a few that are also
available in Epsilon for Unix when running as an X window system program). Calling them from other
versions of Epsilon either does nothing, or produces an error message.

windows_maximize()
windows_minimize()
windows_restore()

10.4. OPERATING SYSTEM PRIMITIVES 417

In Epsilon for Windows (and in Unix under X), thewindows_maximize(),
windows_minimize(), andwindows_restore() primitives perform the indicated action on the
main Epsilon screen.

int drag_drop_result(char *file)
drag_drop_handler()
do_resume_client()

Epsilon uses thedrag_drop_result() primitive to retrieve the names of files dropped on an
Epsilon window using drag and drop, after receiving the event keyWIN_DRAG_DROP. Pass the primitive a
character array big enough to hold a file name. The primitive will return a nonzero value and fill the array
with the first file name. Call the primitive again to retrieve the next file name. When the function returns
zero, there are no more file names.

Epsilon uses this same method to retrieve server messages or DDE messages. When such a message
arrives from another program, Epsilon parses the message as if it were a command line and then adds each
file name to its list of drag-drop results.

When Epsilon returns theWIN_DRAG_DROP key, it also sets some mouse variables to indicate the
source of the files that can be retrieved throughdrag_drop_result(). It setsmouse_screen,
mouse_x, mouse_y, and similar variables to indicate exactly where the files were dropped. If the message
arrived via DDE or due to-add or-wait, thenmouse_screen will be -1.

Thedrag_drop_result() primitive returns 2 to indicate-wait was used to send the file name; 1
otherwise. If-wait was used in a client instance of Epsilon, thedo_resume_client() primitive may be
used to signal waiting clients that the user has finished editing the desired file and they may now resume.

Thedrag_drop_handler() subroutine in mouse.e handles theWIN_DRAG_DROP key. Don’t bind
this key to a subroutine with a different name; Epsilon requires that theWIN_DRAG_DROP key be bound to
a function nameddrag_drop_handler() for correct handling of drag-drop.

int dde_open(char *server, char *topic)
int dde_execute(int conv, char *msg, int timeout)
int dde_close(int conv)

Epsilon provides some primitives that you can use to send a DDE Execute message to another program
under Windows.

First calldde_open() to open a conversation, providing the name of a DDE server and the topic
name. It returns a conversation handle, or 0 if it couldn’t open the conversation for any reason.

To send each DDE message, calldde_execute(). Pass the conversation handle from
dde_open(), the DDE Execute message text to send, and a timeout value in milliseconds (10000, the
recommended value, waits 10 seconds for a response). The primitive returns nonzero if it successfully sent
the message.

Finally, calldde_close() when you’ve completed sending DDE Execute messages, passing the
conversation handle. It returns nonzero if it successfully closed the connection.

WinHelp Interface

int win_help_contents(char *file)

Thewin_help_contents() primitive displays the contents page of the specified Windows help
file. If thefile parameter is"", it uses Epsilon’s help file, displaying help on Epsilon. The function
returns a nonzero value if it was successful.

418 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

int win_help_string(char *file, char *key)

Thewin_help_string() primitive looks up the entry forkey in the specified Windows help file.
If the key parameter is"", it shows the list of possible keywords. If thefile parameter is"", it uses
Epsilon’s help file, displaying help on Epsilon. The function returns a nonzero value if it was successful.

windows_help_from(char *file, int show_contents)

Thewindows_help_from() subroutine wraps the above two subroutines. If there’s a suitable
highlighted region, it callswin_help_string() to display help on the keyword text in the highlighted
region. Otherwise, it either displays the help file’s contents topic (ifshow_contents is nonzero), or the
help file’s keyword index. Thewindows_help_from() subroutine also handles tasks like displaying an
error if the user isn’t running Epsilon for Windows.

The Menu Bar

int win_load_menu(char *file)
win_display_menu(int show)

Thewin_load_menu() primitive makes Epsilon read the specified menu file (normallygui.mnu),
replacing all previous menu definitions. See the comments in thegui.mnu file for details on its format.
Thewin_display_menu() primitive makes Epsilon display its menu bar, when itsshow parameter is
nonzero. Whenshow is zero, the primitive makes Epsilon remove the menu bar from the screen.

int win_menu_popup(char *menu_name)

Thewin_menu_popup() primitive pops up a context menu, as typically displayed by the right
mouse button. The menu name must match one of the menu tags defined in the filegui.mnu, usually the
tag"_popup".

invoke_menu(int letter)

Theinvoke_menu() primitive acts like typing Alt-letter in a normal Windows program. For
example,invoke_menu(’e’) pulls down the Edit menu.Invoke_menu(’ ’) pulls down the system
menu. Andinvoke_menu(0) highlights the first menu item, but doesn’t pull it down, like tapping and
releasing the Alt key in a typical Windows program. (Also see the variablealt-invokes-menu.)

The Tool Bar

toolbar_create()
toolbar_destroy()
toolbar_add_separator()
toolbar_add_button(char *icon, char *help, char *cmd)

Several primitives let you manipulate the tool bar. They only operate in the 32-bit Windows GUI
version. Thetoolbar_create() primitive creates a new, empty tool bar. Thetoolbar_destroy()
primitive hides the tool bar, deleting its contents. Thetoolbar_add_separator() primitive adds a
blank space between buttons to the end of the tool bar.

Thetoolbar_add_button() primitive adds a new button to the end of the tool bar. Thecmd
parameter contains the name of an EEL function to run. Thehelp parameter says what “tool tip” help text
to display, if the user positions the mouse cursor over the button. Theicon parameter specifies which icon
to use. In this version, it must be one of these standard names:

10.4. OPERATING SYSTEM PRIMITIVES 419

STD_CUT STD_PRINTPRE VIEW_DETAILS
STD_COPY STD_PROPERTIES VIEW_SORTNAME

STD_PASTE STD_HELP VIEW_SORTSIZE
STD_UNDO STD_FIND VIEW_SORTDATE

STD_REDOW STD_REPLACE VIEW_SORTTYPE

STD_DELETE STD_PRINT VIEW_PARENTFOLDER
STD_FILENEW VIEW_LARGEICONS VIEW_NETCONNECT

STD_FILEOPEN VIEW_SMALLICONS VIEW_NETDISCONNECT
STD_FILESAVE VIEW_LIST VIEW_NEWFOLDER

Run the commandsshow-standard-bitmaps or show-view-bitmaps to see what they look like. Run
the commandstandard-toolbar to restore the original tool bar.

user char want_toolbar;

Epsilon uses thewant_toolbar primitive variable to remember if the user wants a tool bar
displayed, in versions of Epsilon which support this.

Printing Primitives

struct print_options {
int flags; // Flags: see below.
int frompage; // The range of pages to print.
int topage;
int height;
int width;

};

/* Epsilon supports these printer flags. */
#define PD_SELECTION 0x00000001
#define PD_PAGENUMS 0x00000002
#define PD_PRINTSETUP 0x00000040

short select_printer(struct print_options *p)
page_setup_dialog()

In the Windows version of Epsilon, theselect_printer() primitive displays a dialog box that lets
the user choose a printer, select page numbers, and so forth. The flags and parameters are a subset of those
of the Windows API functionPrintDlg(). The primitive returns zero if the user canceled printing, or
nonzero if the user now wants to print. In the latter case, Epsilon will have filled in theheight andwidth
parameters of the provided structure with the number of characters that can fit on a page of text using the
selected printer.

Thepage_setup_dialog() displays the standard Windows page setup dialog, which you can use
to set printer margins or switch to a different printer.

short start_print_job(char *jobname)
short print_eject()
short end_print_job()

420 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

After using theselect_printer() primitive, an EEL program that wishes to print must execute
thestart_print_job() primitive. It takes a string specifying the name of this job in the print queue.
The EEL program can then print one or more pages, ending each page with a call toprint_eject().
After all pages have been printed, the EEL program must callend_print_job().

short print_line(char *str, ?int scheme)
short print_window(int win)
int create_invisible_window(int width, int height, int buf)

To actually produce output, two primitives are available. Theprint_line() primitive simply prints
the given line of text, and advances to the next line. It prints using the “text” color class in the current color
scheme. If the optional parameterscheme is nonzero, Epsilon uses that color scheme instead.

Theprint_window() primitive prints the contents of a special kind of Epsilon window. The
window must have been created by callingcreate_invisible_window(), passing it the desired
dimensions of the window, in characters, and the buffer it should display. The
create_invisible_window() primitive returns a window handle which can be passed to
print_window(). An EEL program can move through the buffer, letting different parts of the buffer
“show” in this window, to accomplish printing the entire buffer. The invisible window may be deleted using
thewindow_kill() primitive once the desired text has been printed.

10.4.3 Timing

int time_ms()
time_begin(TIMER *t, int len)
int time_done(TIMER *t)
int time_remaining(TIMER *t)

Thetime_ms() primitive returns the time in milliseconds since some arbitrary event in the past.
Eventually, the value resets to 0, but just when this occurs varies with the environment. In some cases, the
returned value resets to 0 once a day, while others only wrap around after longer periods.

Thetime_begin() andtime_done() primitives provide easier ways to time events. Both use the
TIMER data type, which is built into Epsilon. Thetime_begin() primitive takes a pointer to a TIMER
structure and a delay in hundredths of a second. It starts a timer contained in the TIMER structure. The
time_done() primitive takes a pointer to a TIMER that has previously been passed totime_begin()
and returns nonzero if and only if the indicated delay has elapsed. Thetime_remaining() primitive
returns the number of hundredths of a second until the delay of the provided timer elapses. If the delay has
already elapsed, the function returns zero. You can pass-1 to time_begin() to create a timer that will
never expire;time_remaining() will always return a large number for such a timer, and
time_done() will always return zero.

Also see thedelay() primitive on page 433.

struct time_info {
short year; /* file date: 1980-2099 */
short month; /* 1-12 */
short day; /* 1-31 */
short hour; /* 0-23 */
short minute; /* 0-59 */
short second; /* 0-59 */
short hundredth;/* 0-99 */

10.4. OPERATING SYSTEM PRIMITIVES 421

short day_of_week; /* 0=Sunday ... 6=Saturday */
};
time_and_day(struct time_info *t_info)

Thetime_and_day() primitive requests the current time and day from the operating system, and
fills in thetime_info structure defined above. The structure declaration also appears in eel.h.

Notice that thetime_and_day() primitive takes apointerto a structure, not the structure itself.
Here is an example command that prints out the time and date in the echo area.

#include "eel.h"

command what_time()
{

struct time_info ts;

time_and_day(&ts);
say("It’s %d:%d on %d/%d/%d.", ts.hour, ts.minute,

ts.month, ts.day, ts.year);
}

10.4.4 Interrupts (DOS Only)

typedef union {
struct { /* machine registers, for do_interrupt() */

short ax, bx, cx, dx;
short bp, si, di;
short es, ds;
short flags;

} w;
struct { /* byte versions of same registers */

char al, ah;
char bl, bh;
char cl, ch;
char dl, dh;

} b;
} M_REGS;

M_REGS m_regs;

#define CARRYFLAG 0x1
#define ZEROFLAG 0x40

#define DOS_SERVICES 0x21
#define VIDEO_IO 0x10

do_interrupt(int intnumber, M_REGS *regs)

Under DOS, thedo_interrupt() primitive executes the 8086 machine language instruction INT,
which causes a software interrupt. Application programs such as Epsilon use interrupts to communicate
with lower-level operating system software, such as DOS or BIOS. This primitive lets EEL programs

422 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

communicate directly with operating system software. The primitive sets the machine registers from the
values in theregs union. Then it executes an interrupt whose number isintnumber. When the interrupt
finishes, Epsilon stores the contents of the machine registers back into theregs union. It also stores the
contents of the flag word in the member namedflags.

In the following discussion we assume some familiarity with the 8086 architecture.

Thedisk_space() subroutine defined in lowlevel.e demonstrates the use of the
do_interrupt() primitive. It calls DOS to get information on the capacity of a disk, including how
much space is still available.

disk_space(disk, info) /* put information on disk in info */
struct disk_info *info;

{
m_regs.b.ah = 0x36;
/* get disk free space */

m_regs.b.dl = disk;
/* for this drive (0=default, 1=A, ...) */

do_interrupt(DOS_SERVICES, &m_regs);
info->sects_per_cluster = m_regs.w.ax;
/* -1 means invalid drive */

info->bytes_per_sector = m_regs.w.cx;
info->avail_clusters = m_regs.w.bx;
info->tot_clusters = m_regs.w.dx;

}

The function uses the global variablem_regs instead of declaring its own union with typeM_REGS.
Several functions use this variable, but they could each declare their own local variables instead.M_REGS is
defined as a union so that functions can refer to either the byte registers or the word registers without doing
bit arithmetic. Notice how this is done:.b.ah refers to the AH register, while.w.ax refers to the AX
register.

The DOS function requires the value 36 (hex) in register AH and the disk number in DL. The macro
DOS_SERVICES expands to 21 (hex), the number of the “DOS services” interrupt. In the call to
do_interrupt(), them_regs variable appears with& before it, since the primitive requires a pointer to
the register union. (This is actually a simplified version of thedisk_space() function, for illustrative
purposes.)

The next example shows how to pass EEL character pointers to DOS routines with the
do_interrupt() primitive. It shows how thedelete_file() function could have been written if it
were not a primitive.

#include "lowlevel.h"

del_file(name)
char *name;

{
EEL_PTR *x;

strlen(name); /* check addressability */
x = (EEL_PTR *)&name; /* ds:dx has name */
m_regs.w.ds = x->value.hiword;
m_regs.w.dx = x->value.loword;

10.4. OPERATING SYSTEM PRIMITIVES 423

m_regs.b.ah = 0x41; /* delete file function */
do_interrupt(DOS_SERVICES, &m_regs);
if (m_regs.w.flags & CARRYFLAG) {

errno = m_regs.w.ax; /* error occurred */
return -1;

} else
return 0;

}

Thedel_file() subroutine takes the name of a file and tries to delete it. It returns0 if successful
and-1 otherwise, and in the latter case it puts an error code in the variableerrno. The subroutine works
by calling the DOS function Delete File, which requires a pointer to the name of the file to delete in the
DS:DX register pair. Thus, it’s necessary to convert the EEL character pointer inname to a pair of short
integers suitable for putting in the machine registers. This can be done using the variablex, which we
declare in the example as typeEEL_PTR.

typedef struct eel_pointer { /* format of EEL pointer */
struct {

short loword, hiword;
} base, size, value;

} EEL_PTR;

TheEEL_PTR type is a structure representing the internal format of an EEL pointer (except for
function pointers, which are represented as short integers internally). An EEL pointer consists of a base, a
size, and a value. The base and value are standard 8086 32-bit pointers, and the size is an integer. Epsilon
compares the three fields to catch invalid pointer usage.

Whenever a function dereferences a pointer, Epsilon checks that the fields are consistent. That is, it
makes sure thatvalue is greater than or equal tobase, and thatvalue is less thanbase+size. Epsilon
will report an illegal dereference if these conditions are not met.

When Epsilon constructs a pointer, it sets the base field to the start of the block of storage within which
the pointer points, and sets the size field to the size of the block of storage, in bytes. Epsilon then sets the
value field to the actual address to which the pointer points. For example, if an EEL pointerp points to the
letter ‘c’ in the string"abcd" (which is terminated by a null byte), the size field ofp will contain a 5, the
base field will point to the ‘a’, and the value field will point to the ‘c’. Adding an integer top will change
only the value field. Notice that the modified version ofp is “consistent” according to the rules above
exactly when dereferencing it would be legal:*(p - 2), *(p - 1), *p, *(p + 1) and*(p + 2).
Also see theptrlen() primitive on page 442.

For ourdel_file() example, we need only the value field in the stringname. The function extracts
the value field via the “trick” of settingx to point at thename variable, and accessing its fields throughx, a
pointer to a structure whose fields match the internal structure of an EEL pointer. The variable serves as a
sort of X-ray that lets us see the fields inside an apparently solid pointer. The subroutine then extracts the
value part of the pointer as a pair of 16-bit numbers, and puts them in the correct machine register fields of
m_regs.

int get_pointer(EEL_PTR *p, int segment)
/* for get_pointer() calls */

#define OFFSET 0
#define SEGMENT 1

424 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

It’s better, though, to use the subroutineget_pointer() to disassemble a pointer in this way, as this
insulates you from changes in the format of a pointer. It takes a pointer and returns either its segment or its
offset (an argument controls which). The subroutine works by disassembling the pointer as described above.
Usingget_pointer(), the above program would become:

#include "lowlevel.h"

del_file(name)
char *name;

{
strlen(name); /* check addressability */
m_regs.w.ds = get_pointer(name, SEGMENT);
m_regs.w.dx = get_pointer(name, !SEGMENT);

/* ds:dx has name */
m_regs.b.ah = 0x41; /* delete file function */
do_interrupt(DOS_SERVICES, &m_regs);
if (m_regs.w.flags & CARRYFLAG) {

errno = m_regs.w.ax; /* error occurred */
return -1;

} else
return 0;

}

After thedo_interrupt() primitive, the subroutine checks to see if the file was deleted by
examining the carry flag. DOS will set this flag if it cannot delete the file for some reason. If it failed, the
subroutine must transfer the error code from where DOS puts it, in AX, to theerrno variable.

The only part of the subroutine that we haven’t explained is the call to thestrlen() primitive at the
beginning. This checks to make sure the file name is a proper string. Since DOS doesn’t know anything
about the rules for EEL pointers, it won’t necessarily report anything amiss ifname is a null pointer, or
illegal in some other way. Thestrlen() primitive happens to do just the right kind of check, so the
subroutine calls it. Ifname is invalid (a null pointer, not null-terminated, or whatever)strlen() will
abort the function with an appropriate message.

int peek(int segment, int offset)
poke(int segment, int offset, int value)

For low-level machine access under DOS, thepeek() primitive may be used to access any byte of
memory in the computer. It takes an 8086 segment and offset and returns the byte at that location. The
poke() primitive sets the byte at the given location.

10.4.5 Calling DLL’s (Windows Only)

int call_dll(char *dll_name, char *func_name,
char *ftype, char *args, ...)

Thecall_dll() primitive calls a function in a Windows DLL. The 32-bit version of Epsilon can
only call 32-bit DLL’s, while the 16-bit version can only call 16-bit DLL’s. Thedll_name parameter
specifies the DLL file name. Thefunc_name parameter specifies the name of the particular function you
want to call.

10.4. OPERATING SYSTEM PRIMITIVES 425

Theftype parameter specifies the routine’s calling convention. The characterC specifies the C calling
convention, whileP specifies the Pascal calling convention. Most Windows DLL’s use the Pascal calling
convention, but any function that accepts a variable number of parameters must use the C calling convention.

Theargs parameter specifies the type of each remaining parameter. Each letter inargs specifies the
type of one parameter, according to the following table.

Character Description
L unsigned long DWORD
I int INT, UINT, HWND, most other handles
S far char * LPSTR
P far void * LPVOID
R far void ** LPVOID *

In 16-bit Epsilon, theI character represents a 16-bit parameter, while in 32-bit Epsilon,I represents a
32-bit parameter, and is equivalent toL. L, S, P, andR always represent 32-bit parameters.

S represents a null-terminated string being sent to the DLL.P is passed similarly, but Epsilon will not
check the string for null termination. It’s useful when the string is an output parameter of the DLL, and may
not be null-terminated before the call, or when passing structure pointers to a DLL.

R indicates that a DLL function returns a pointer by reference. Epsilon will pass the pointer you supply
(if any) and retrieve the result. Use this for DLL functions that require a pointer to a pointer, and pass the
address of any EEL variable whose type is “pointer to ...” (other than “pointer to function”).

Here’s an example, usingcall_dll() to determine the main Windows directory:

#define GetWindowsDirectory(dir, size) (is_gui == IS_WIN31 \
? call_dll("kernel.dll", "GetWindowsDirectory", \

"p", "pi", dir, size) \
: call_dll("kernel32.dll", "GetWindowsDirectoryA", \

"p", "pi", dir, size))

char dir[FNAMELEN];

GetWindowsDirectory(dir, FNAMELEN);
say("The Windows directory is %s", dir);

A DLL function that exists in both 16-bit and 32-bit environments will usually be in different .dll files,
and will often go by a different name. Its parameters will often be different as well. In particular, remember
that a structure that includes int members will be a different size in the two environments. To write an EEL
interface to a DLL function that takes a pointer to such a structure, you’ll need to declare two different
versions of the structure, and pass the correct one to the DLL function, if you want your EEL interface to
work in both 16-bit and 32-bit environments.

After you call a function in a DLL, Epsilon keeps the DLL loaded to make future calls fast. You can
unload a DLL loaded bycall_dll() by including just the name of the DLL, and omitting the name of
any function or parameters. For example,call_dll("extras.dll"); unloads a DLL named
extras.dll.

char *make_pointer(int value)

Themake_pointer() primitive can be useful when interacting with system DLL’s. It takes a
machine address as a number, and returns an EEL pointer that may be used to access memory at that
address. No error checking will be done on the validity of the pointer.

426 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

10.4.6 Calling DLL’s (OS/2 Only)

typedef struct {
char *module, *proc;
short result, error, count, stack[10];

} DLLCALL;

DLLCALL dllcall;

do_interrupt(int ordinal, DLLCALL *call)

Under DOS, thedo_interrupt() primitive performs a software interrupt, requesting a service from
lower-level software like DOS or BIOS. Under OS/2, this primitive does the corresponding thing: it calls a
particular dynamic-link library routine. (OS/2 doesn’t use software interrupts to communicate with other
software.)

Thedo_interrupt() primitive takes an ordinal value and a pointer to a structure. The structure
contains the name of the library to be called, the name of the routine within that library, space for a return
value and an error code, a parameter count, and a list of parameters.

To use this function, first allocate a structure of the correct type (or use the predeclared global one
calleddllcall). Put a character pointer to the name of the library containing the routine to be called into
the structure. The library name has neither a directory name nor an extension. OS/2 will automatically
search for it along the LIBPATH defined by your config.sys file.

There are two ways to indicate which procedure in the library is to be called. You may either provide
the procedure’s ordinal number as the first parameter todo_interrupt(), or provide0 as the ordinal
number and pass the name as a string in the structure.

It is vital to specifycount, the number of parameters the procedure expects to receive. This is figured
in 2-byte words, so if the procedure expects a pointer and an additional word, that would be 3 parameters.
The parameters themselves then appear, with the first parameter in the array the first to be pushed.
Parameters past the value indicated incount are ignored.

Whendo_interrupt() is called, the values of theresult anderror members of the structure
are ignored. If the indicated routine can’t be invoked for some reason, Epsilon setserror to the OS/2 error
code that indicates why. Otherwise it’s set to zero, and Epsilon copies the return value it finds in the AX
register after the call toresult. If the routine returns a 32-bit result, its high word will be in thecount
member.

typedef struct eel_pointer { /* format of EEL pointer */
struct {

short loword, hiword;
} base, size, value;

} EEL_PTR;

int get_pointer(EEL_PTR *p, int segment)
/* for get_pointer() calls */

#define OFFSET 0
#define SEGMENT 1

Theget_pointer() subroutine defined in lowlevel.e is helpful if you want to pass an EEL pointer
to a routine. It takes an EEL pointer and returns either its segment or offset, depending on whether its
second parameter is nonzero or not. Normally, a routine takes the segment, then the offset.

10.4. OPERATING SYSTEM PRIMITIVES 427

os2call(char *module, int ordinal, char *proc, int count,
int s0, int s1, int s2, int s3, int s4, int s5)

For convenience, theos2call() subroutine provides a nicer interface to thedo_interrupt()
primitive. This subroutine loads its parameters into the global structuredllcall, then calls
do_interrupt().

Thedisk_space() function defined in lowlevel.e demonstrates the use of thedo_interrupt()
primitive. It calls OS/2 to get information on the capacity of a disk, including how much space is still
available.

disk_space(disk, info) /* put information on disk in info */
struct disk_info *info;

{
struct FSAllocate fsinfo;

os2call("DOSCALLS", DOSQFSINFO, "", 5, disk, 1,
get_pointer(&fsinfo, SEGMENT),
get_pointer(&fsinfo, !SEGMENT),
sizeof(fsinfo), 0);

info->sects_per_cluster = fsinfo.sec_per_unit;
info->bytes_per_sector = fsinfo.bytes_sec;
info->avail_clusters = fsinfo.avail_units;
info->tot_clusters = fsinfo.num_units;

}

Most OS/2 functions are in the DOSCALLS library. The DOSQFSINFO macro is defined as 76 in
lowlevel.h, using information from the file os2calls.doc, a human-readable version of the standard OS/2 file
os2.lib (called doscalls.lib in older versions of OS/2). Here’s how to call a function by name, not by ordinal:

os2call("VIOCALLS", 0, "VIOWRTNATTR", ...

The parameters to this system call (each followed by its length in words) are a disk number (1), a code
(1), a pointer to the data structure (2), and its size (1), for a total of 5 words. The final argument of 0 is a
place holder and will be ignored.

The pointer must be provided to OS/2 as two short integers: the segment and the offset. This can be
done using the subroutineget_pointer(). It takes a pointer and returns either its segment or its offset
(an argument controls which). The subroutine works by disassembling the pointer, using the typeEEL_PTR.

TheEEL_PTR type is a structure representing the internal format of an EEL pointer (except for
function pointers, which are represented as short integers internally). An EEL pointer consists of a base, a
size, and a value. The base and value are standard 8086 32-bit pointers, and the size is an integer. Epsilon
compares the three fields to catch invalid pointer usage.

Whenever a function dereferences a pointer, Epsilon checks that the fields are consistent. That is, it
makes sure thatvalue is greater than or equal tobase, and thatvalue is less thanbase+size. Epsilon
will report an illegal dereference if these conditions are not met.

When Epsilon constructs a pointer, it sets the base field to the start of the block of storage within which
the pointer points, and sets the size field to the size of the block of storage, in bytes. Epsilon then sets the
value field to the actual address to which the pointer points. For example, if an EEL pointerp points to the
letter ‘c’ in the string"abcd" (which is terminated by a null byte), the size field ofp will contain a 5, the
base field will point to the ‘a’, and the value field will point to the ‘c’. Adding an integer top will change
only the value field. Notice that the modified version ofp is “consistent” according to the rules above

428 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

exactly when dereferencing it would be legal:*(p - 2), *(p - 1), *p, *(p + 1) and*(p + 2).
Also see theptrlen() primitive on page 442.

10.4.7 Running a Process

int shell(char *program, char *cline, char *buf)

Theshell() primitive takes the name of an executable file (a program) and a command line, pushes
to the program, and gives it that command line. The primitive returns the result code of the wait() system
call, or-1 if an error occurred. In the latter case, the error number is inerrno.

The first argument toshell() is the name of the actual file a program is in, including any directory
prefix. (Under OS/2, Epsilon will always search for a command in the current directory and then along the
PATH, so it’s not necessary to provide the directory.) The second argument toshell() is the command
line to pass to the program.

If the first argument toshell() is an empty string"", Epsilon behaves differently. In this case,
Epsilon runs the appropriate shell command processor. (Note that"" is not the same as NULL, a pointer
whose value is 0.) If the second argument is also"", Epsilon runs the shell interactively, so that it prompts
for commands. Otherwise, Epsilon makes the shell run only the command line specified in the second
argument. Epsilon knows what flags to provide to the various standard shells to make them run interactively,
or execute a single command and return, but you can set these if necessary. You can also set the command
processor Epsilon should use. See page 116.

When you enter a DOS command outside of Epsilon, the command processor searches for the
command by appending .com or .exe and looking in various directories for it, but Epsilon does not provide
this service itself under DOS. However, the command processor itself provides a way to perform this search.
Simply execute the command processor instead of the desired program by using"" as the first argument,
and prepend the name of the program (not including .com or .exe) to the desired command line. The
command processor will then search for the program as usual. For example, to get the same result as typing

comp file1 file2

to the DOS command processor, use

shell("", "comp file1 file2", "");

instead of

shell("nnprogramsnncomp.com", "file1 file2", "");

(Note that you have to double then character if you want it to appear in an EEL string.) This technique
is also necessary to execute batch files, use internal commands like “dir”, or do command-line redirection.

The third argument toshell() controls whether the output of the program is to be captured. If"", no
capturing takes place. Otherwise the output is inserted in the specified buffer, replacing its previous contents.

In Epsilon for Windows, when all three arguments toshell() are"", Epsilon starts the program and
then immediately continues without waiting for it to finish. If any argument is nonempty, or in other
versions, Epsilon waits for the program to finish.

user char shell_shrinks;
set_shrinkname(char *path)

10.4. OPERATING SYSTEM PRIMITIVES 429

Under DOS,shell() examines theshell-shrinks variable, as described on page 116. If it’s
nonzero, Epsilon moves most of itself out of memory to give the other program more room. Epsilon does
this by copying itself to a file named eshrink (or to EMS or XMS memory, if there’s room). The
set_shrinkname() primitive gives Epsilon a list of directories to try when it creates its eshrink and
eshell files. (This primitive does nothing in non-DOS versions.) Each time you callset_shrinkname()
it replaces the previous list. Epsilon will approximate the amount of space it needs and try each directory on
the list to find one that has enough space free. If there are none suitable on that list, Epsilon will try the
directories on your swap path (see page 13). If none of these directories has enough free space, Epsilon will
ask you for a directory.

int do_push(char *cmdline, int cap, int show)

Thedo_push() subroutine is a convenient way to callshell(). It uses the command processor to
execute a command line (so the command line may contain redirection characters and the like). Ifcap is
nonzero, the subroutine will capture the output of the command to the process buffer. Ifshow is nonzero,
the subroutine will arrange to show the output to the user. How it does this depends oncap. To show
captured output, Epsilon displays the process buffer after the program finishes. To show non-captured
output, Epsilon (non-GUI versions only) waits for the user to press a key after the program finishes, before
restoring Epsilon’s screen. Ifshow is -1, Epsilon skips this step.

This subroutine interprets the variablestart-process-in-buffer-directory and takes care
of displaying an error to the user if the process couldn’t be run.

Concurrent Process Primitives

int concur_shell(char *program, char *cline,
?char *curdir, char *buf)

short another_process();
int is_process_buffer(int buf)

Theconcur_shell() primitive also takes a program and a command line, with the same rules as the
shell() primitive. It starts a concurrent process, with input and output connected to the buffer “process”,
just like thestart-process command described on page 117 does. If you specify a bufferbuf, it starts the
process in that buffer. (Some versions of Epsilon support only one process buffer; in them the buffer name,
if specified, must be “process”.) If you specify a directory name incurdir, Epsilon starts the process with
that current directory. The primitive returns0 if it could start the process. If it couldn’t, it returns an error
code.

Under DOS, a concurrent process runs only when Epsilon is waiting for you to press a key. The process
does not run at any other time (except during adelay()—see page 433). In other environments, Epsilon
only receives process output and sends it input at such times, but the process otherwise runs independently.

Theanother_process() primitive returns the number of active concurrent processes.

Theis_process_buffer() primitive returnsISPROC_CONCUR if the specified buffer holds an
active concurrent process,ISPROC_PIPE if the buf_pipe_text() primitive is sending output into it,
or 0 if no concurrent process is associated with that buffer.

user buffer int type_point;

Characters from the process go into the process buffer at a certain position that we call thetype point.
Thetype_point variable stores this position.

430 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

When a process tries to read a character of input, Epsilon stops the process until there is at least one
character following the type point, and when the process tries to read a line of input, Epsilon does not run
the process until a newline appears in the section of the buffer after the type point. When a concurrent
process is started by theconcur_shell() primitive, the type point is initially set to the value of point in
the specified buffer.

Internet commands for Telnet and FTP usetype_point much like a process buffer does, to
determine where to insert text into a buffer and where to read any text to be sent.

int process_input(?int buf)
#define PROCESS_INPUT_LINE 1
#define PROCESS_INPUT_CHAR 2
buffer int (*when_activity)();
concur_handler(int activity, int buf, int from, int to)

Theprocess_input() primitive returnsPROCESS_INPUT_LINE if the process is waiting for a
character,PROCESS_INPUT_CHAR if the process is waiting for a line of input, and0 if the process is
running or there is no process. It operates on the buffer named “process” if no buffer number is specified.

Whenever Epsilon receives process output or sends it input, it calls an EEL function. The
buffer-specificwhen_activity variable contains a function pointer to the function to call. If the variable
is zero in a buffer, Epsilon won’t call any EEL function as it proceeds. For a typical process buffer, the
when_activity variable points to theconcur_activity() subroutine.

Just after a concurrent process inserts output in a process buffer, it calls this subroutine, passing
NET_RECV as theactivity. Thefrom andto parameters mark the range of buffer text that was just
received from the process. Theconcur_activity() subroutine responds to this message by coloring
the inserted characters with thecolor_class process_output color, and similar tasks.

Epsilon calls this subroutine and passesNET_SEND when it detects that the concurrent process is now
ready for input, and again as it sends the input to the process. When the process becomes ready for input, the
subroutine will be called with afrom parameter of zero. When the process is sent a line of text, the
subroutine will be called with afrom of PROCESS_INPUT_LINE, and when the process is sent a single
character it will be called with afrom of PROCESS_INPUT_CHAR. In each case theto parameter will
indicate the beginning of the input text (the value oftype_point before the input begins).

Epsilon calls this subroutine and passesNET_DONE when the process exits. Itsfrom parameter will
hold the exit code, or 0 if Epsilon didn’t record this. Epsilon sets the buffer-specific
process_exit_status variable to the valuePROC_STATUS_RUNNING when a process starts, and
sets it to the process exit status (or 0) when the process exits.

Epsilon for Unix often cannot detect when a process is awaiting input. Thereforeprocess_input()
always returns zero, and aNET_SEND activity will typically not be signaled with afrom parameter of zero.

int process_send_text(int buf, char *text, int len)

Normally input to a process running in a concurrent process buffer comes from text the user inserts into
the buffer. Theprocess_send_text() primitive provides a way to send text directly to the process,
bypassing the buffer. This is especially useful for passwords, since if a password appears in the buffer it
might be seen, or retrieved with undo. The primitive sendslen characters fromtext to the process
associated with the bufferbuf.

The primitive only functions in certain operating system versions of Epsilon (currently Unix and 32-bit
Windows versions); check theFEAT_PROC_SEND_TEXT bit of thehas_feature variable to test if it
may be used.

10.4. OPERATING SYSTEM PRIMITIVES 431

int halt_process(?int hard_kill, int buf)

Thehalt_process() primitive has the same function as thestop-process command. A value of0
for hard_kill makes the primitive act the same asstop-process with no argument. Otherwise, it is
equivalent tostop-process with an argument. The function returns1 if it succeeds, and0 if it cannot signal
the process for some reason. The argument is ignored in the non-DOS versions, since there is only one
method for aborting a process. It operates on the buffer named “process” if no buffer number is specified.

int process_kill(?int buf)

In Epsilon for Windows and Epsilon for Unix, theprocess_kill() primitive disconnects Epsilon
from a running concurrent process, telling it to exit. The function returns1 if it succeeds, and0 if it cannot
kill the process for some reason. It operates on the buffer named “process” if no buffer number is specified.

Other Process Primitives

int pipe_text(char *input, char *output, char *cmdline,
char *curdir, int flags, int handler)

my_handler(int activity, int buf, int from, int to) // Sample.
int buf_pipe_text(int inputb, int outputb, char *cmdline,

char *curdir, int flags, ?int errorb)

Thepipe_text() subroutine runs the program specified bycmdline, passing it the contents of a
buffer as its standard input, and inserting its standard output into a second buffer (or the same buffer).

The input buffer name may be NULL if the process does not require any input. Epsilon provides a
current directory ofcurdir to the process. It passes Epsilon’s current directory ifcurdir is NULL or
"". This subroutine returns0 and setserrno if the function could not be started, or returns1 if the
function started successfully.

ThePIPE_SYNCH flag means don’t return from the subroutine until the process has finished. Without
this flag, Epsilon starts the subprocess and then returns frompipe_text(), letting the subprocess run
asynchronously.

ThePIPE_CLEAR_BUF flag means empty the output buffer before inserting the process’s text (but do
nothing if the process can’t be started); it’s convenient when the input and output buffers are the same, to
filter a buffer in place.

ThePIPE_NOREFRESH flag tells Epsilon not to refresh the screen each time more data is received
from the process, and is most useful withPIPE_SYNCH if you don’t want the user to see the data until after
it’s been postprocessed in some way.

ThePIPE_SKIP_SHELL flag makes Epsilon directly invoke the specified program, instead of using a
shell as an intermediary. This results in improved performance, but command lines that use shell meta
characters (like>file for redirection,| for pipelines, or file pattern wildcards) won’t operate as desired.
Only Epsilon for Unix supports this flag. When Epsilon prepares an argument list from the command line, it
interprets and removes quotes which may surround arguments that contain spaces.

If handler is nonzero, it’s the index of a function (that is, an EEL function pointer) to call each time
text is received from the process, and when the process terminates. The handler function will be called with
the buffer number into which more process output has just been inserted, andfrom andto set to indicate
the new text. The parameteractivity will be NET_RECV when characters have been received, or
NET_DONE when the subprocess has exited. In the latter casefrom will hold the process exit code.

432 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Epsilon sets the buffer-specificprocess-exit-status variable in the output buffer to the value
PROC_STATUS_RUNNINGwhen a process starts, and sets it to the process exit status (or 0) when the
process exits.

Thepipe_text() subroutine described above is implemented using thebuf_pipe_text()
primitive. There are a few differences between these:

Thebuf_pipe_text() primitive uses buffer numbers, not buffer names. It won’t create a buffer for
you the way the subroutine will; the buffer must already exist. (Pass0 for a buffer number if you don’t need
input.)

Instead of passing a function pointer forhandler, you must instead set the buffer-specific
when_activity variable in the output buffer prior to callingbuf_pipe_text().

Pass acurdir of "", not NULL, tobuf_pipe_text() to use Epsilon’s current directory.

Thepipe_text() andbuf_pipe_text() functions are only available in Epsilon for Unix and
Epsilon for 32-bit Windows.

Thebuf_pipe_text() primitive accepts an additional, optional, parametererrorb. If nonzero,
any output of the program sent to standard error will be sent to theerrorb buffer instead of theoutputb
buffer. If errorb is zero, such output will appear inoutputb along with standard output. Only Epsilon
for Unix supports this capability; other versions ignore this parameter.

int winexec(char *prog, char *cmdline, int show, int wait)
/* Pass these values to winexec: */
#define SW_HIDE 0
#define SW_SHOWNORMAL 1
#define SW_SHOWMINIMIZED 2
#define SW_SHOWMAXIMIZED 3
#define SW_SHOWNOACTIVATE 4
#define SW_SHOW 5
#define SW_MINIMIZE 6
#define SW_SHOWMINNOACTIVE 7
#define SW_SHOWNA 8
#define SW_RESTORE 9

In Epsilon for Windows, thewinexec() primitive runs a program, like theshell() primitive, but
provides a different set of options. Normally, the second parameter towinexec() contains the command
line to execute and the first parameter contains the name of the program to execute. With some versions of
Windows and some types of executables, you can provide"" as the program to execute, and Windows will
determine the correct program name from the command line.

The third parameter towinexec() specifies the window visibility state for the new program. It can be
one of the values listed above. If the fourth parameter is nonzero, Epsilon will wait for the program to finish
before returning from thewinexec() primitive. If the fourth parameter is zero, the primitive will return
immediately.

This primitive returns the exit code of the program it ran. If an error prevented it from running the
program, it returns-1 and puts an error code in the global variableerrno. When the primitive runs a
program without waiting for it to finish, the primitive returns zero if the program started successfully.

int run_viewer(char *file, char *action, char *dir)

Therun_viewer() primitive runs the program associated with the given file, using its Windows file
association. The most commonaction is "Open", though a program may define others, such as

10.5. CONTROL PRIMITIVES 433

"Print". Thedir parameter specifies the current directory in which to run the program. The primitive
returns nonzero if it was successful, or zero if it could not run the program or the program returned an error
code. This primitive always returns zero in the non-Windows versions of Epsilon.

10.5 Control Primitives

10.5.1 Control Flow

error(char *format, ...)
when_aborting() /* control.e */
quick_abort()

Epsilon provides several primitives for altering the flow of control from one statement to the next. The
error() primitive takes arguments likesay(), displays the string assay() does, and then aborts the
current command, returning to the main loop (see page 471). In addition this primitive discards any
type-ahead and calls the user-defined subroutinewhen_aborting() if it exists. The standard version of
when_aborting() optionally rings the bell and removes the erroneous command from any keyboard
macro being defined. The primitivequick_abort() acts likeerror() but displays no message.

user char user_abort;
short abort_key;
check_abort()

The variableuser_abort is normally0. It is set to1 when you press the key whose value is
abort_key. To disable the abort key, setabort_key to -1. By default, theabort_key variable is set
to Control-G. Use theset-abort-key command to set theabort_key variable. Additionally, under DOS
thehScroll Locki key is always bound toabort, and under OS/2, Ctrl-hScroll Locki’s A option acts like
abort. See page 83.

The primitivecheck_abort() callserror() with the argument"Canceled." if the variable
user_abort is nonzero. Use the primitivecheck_abort() whenever a command can be safely
aborted, since otherwise an abort will only happen when the command returns. Epsilon calls
check_abort() internally during any searching operation (see page 347), when you use thedelay()
primitive (described below) to wait, or (optionally) during certain file matching primitives (see page 466).

leave(?int exitcode)
when_exiting() /* EEL subroutine */

The primitiveleave() exits Epsilon with the specified exit code (or0 if omitted). Under DOS, it does
nothing if a process is running.

Just before callingleave(), Epsilon’s standard commands call thewhen_exiting() subroutine.
By default, this does nothing, but you can replace it to customize Epsilon’s behavior at this time. (See page
440 to make sure your extension doesn’t interfere with other extensions.)

delay(int hundredths, int condition)

Thedelay() primitive takes an argument specifying a period of time, in hundredths of a second, and
a bit pattern specifying additional conditions (with codes specified in codes.h). It waits until one of the
conditions occurs, or until the specified time limit is reached. A time limit of-1 means to wait forever.

434 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

The condition codeCOND_KEY makes Epsilon return when a key is pressed. The condition code
COND_PROC makes Epsilon return when a concurrent process is waiting for input. (This function varies a
bit from one operating system to another. For example, some versions of Epsilon may return whenever the
user presses a key, regardless of the presence of theCOND_KEY flag.) Also see the timing functions on page
420.

The condition flagCOND_RETURN_ABORT, in combination withCOND_KEY, makes thedelay()
primitive return if the user presses the abort key, instead of aborting by calling thecheck_abort()
primitive. (Note that if you don’t specifyCOND_KEY as well, the primitive ignores all keys, including the
abort key.)

int do_recursion()
leave_recursion(int val)
int recursive_edit() /* control.e */
char _recursion_level;

Thedo_recursion() primitive starts a new loop for getting characters and interpreting them as
commands. A recursive edit preserves the current values of the variableshas_arg, iter, this_cmd,
andprev_cmd, but does not preserve the current buffer, window, or anything else. (See page 471.) Exit the
recursion by calling theleave_recursion() primitive. It arranges for the main loop to exit, instead of
waiting for another key to be executed. The call todo_recursion() will then return with a value of
val, the argument of the call toleave_recursion().

Sometimes a recursive edit is done “secretly,” and the user doesn’t know that one is being used. For
example, when Epsilon reads the name of a file using completion, it’s actually doing a recursive edit. Keys
like hSpacei exit the recursive edit with a special code, and the function that did the recursive edit displays a
menu, or whatever is needed, and then does another recursive edit.

Other times (typing Ctrl-R inquery-replace, for example), the user is supposed to exit the recursive
edit explicitly using theexit-level command. When you’re supposed to useexit-level to exit, Epsilon
displays extra[]’s in the mode line as a reminder. Therecursive_edit() subroutine does a
recursive edit, and arranges for these[]’s to appear by modifying the_recursion_level variable. It
contains the number of extra[]’s to display. Therecursive_edit() subroutine returns the value
returned bydo_recursion().

If you call leave_recursion() when there has been no matchingdo_recursion(), Epsilon
automatically invokes the commandexit. If exit returns instead of calling the primitiveleave(), Epsilon
begins its main loop again.

int setjmp(jmp_buf *location)
longjmp(jmp_buf *location, int value)

Epsilon implements aborting by two special primitives that allow jumping from a function to another
point in that function or any of the functions that called it. Thesetjmp() primitive marks the place to
return, storing the location in a variable declared like this:

jmp_buf location;

After callingsetjmp() with a pointer to this structure, you can return to this place in the code at any
time until this function returns by calling thelongjmp() primitive. The first argument is a pointer to the
same structure, and the second argument may be any nonzero value.

The first timesetjmp() is called, it returns a zero value. Each timelongjmp() is called, Epsilon
acts as if it is returning from the originalsetjmp() call again, returning the second argument from the
longjmp(). For example:

10.5. CONTROL PRIMITIVES 435

one()
{
jmp_buf location;

if (setjmp(&location)){
stuff("Back in one\n");
return;

} else
stuff("Ready to go\n");

two(&location);
}

two(loc)
jmp_buf *loc;
{
stuff("In two\n");
longjmp(loc, 1);
stuff("Never get here\n");
}

This example inserts the lines

Ready to go
In two
Back in one

jmp_buf *top_level;

Theerror() primitive uses the jump buffer pointed to by thetop_level variable. If you wish to
get control when the user presses the abort key, temporarily change the value oftop_level to refer to
another jump buffer. Make sure you restore it, however, or subsequent aborting may not work.

10.5.2 Character Types

int isspace(int ch)
int isdigit(int ch)
int isalpha(int ch)
int islower(int ch)
int isupper(int ch)
int isalnum(int ch) /* basic.e */
int isident(int ch) /* basic.e */
int any_uppercase(char *p)

Epsilon has several primitives that are helpful for determining if a character is in a certain class. The
isspace() primitive tells if its character argument is a space, tab, or newline character. It returns1 if it is,
otherwise0.

In the same way, theisdigit() primitive tells if a character is a digit (one of the characters0
through9), and theisalpha() primitive tells if the character is a letter. Theislower() and
isupper() primitives tell if the character is a lower case letter or upper case letter, respectively.

436 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Theisalnum() subroutine returns nonzero if the specified character is alphanumeric: either a letter
or a digit. Theisident() subroutine returns nonzero if the specified character is an identifier character: a
letter, a digit, or the_ character.

Theany_uppercase() subroutine returns nonzero if there are any upper case characters in its string
argumentp.

int tolower(int ch)
int toupper(int ch)

Thetolower() primitive converts an upper case letter to the corresponding lower case letter. It
returns a character that is not an upper case letter unchanged. Thetoupper() primitive converts a lower
case letter to its upper case equivalent, and leaves other characters unchanged.

buffer char *_case_map;
buffer char *_char_class;

Epsilon uses the buffer-specific variables_case_map and_char_class internally when it needs to
determine if a particular character is an upper case or lower case letter, or convert a character to upper case
or lower case. The_case_map variable is a pointer to an array of 256 characters. It maps a character to its
equivalent in the opposite case (or to itself if there is none). For example,_case_map[’a’] is ‘A’ and
_case_map[’Z’] is ‘z’.

The_char_class buffer-specific variable is also a pointer to an array of 256 characters. In this case,
each character holds a bit pattern. The bit codes are defined in eel.h:C_LOWER indicates a lower case letter
andC_UPPER indicates an upper case letter. Epsilon initializes both arrays in the file epsilon.e to reflect the
characters normally available. Since these variables are buffer-specific pointers, you can have each buffer
use a different rule for case conversion and testing. Epsilon uses these arrays only for character testing and
conversion, not for case folding during searching, sorting or other character comparisons. See page 348 for
information on case folding.

int get_direction() /* window.e */

Theget_direction() subroutine converts the last key pressed into a direction. It understands
arrow keys, as well as the equivalent control characters. It returnsBTOP, BBOTTOM, BLEFT, BRIGHT, or
-1 if the key doesn’t correspond to any direction.

10.5.3 Strings

int strlen(char *s)

Epsilon provides various primitives for manipulating strings, or equivalently, zero-terminated arrays of
characters. Thestrlen() primitive returns the length of a string. That is, it tells the position in the array
of the first zero character.

strcpy(char *tostr, char *fromstr)
strncpy(char *tostr, char *fromstr, int count)

Thestrcpy() primitive copies the null-terminated stringfromstr to the array attostr, including
the terminating null character. Thestrncpy() primitive does the same, but always stops whencount
characters have been transferred, adding an additional null character to the string attostr if necessary.

10.5. CONTROL PRIMITIVES 437

strcat(char *tostr, char *fromstr)
strncat(char *tostr, char *fromstr, int count)

Thestrcat() primitive concatenates (or appends) the string atfromstr after the string attostr.
For example, iffromstr points at the constant string “def” andtostr is an array of 10 characters that
contains “abc” (and then, of course, a null character, plus 6 more characters with any value), then
strcat(tostr, fromstr); makes the arraytostr contain “abcdef” followed by a null character
and 3 unused characters.

Thestrncat() primitive works similarly. It appends at mostcount characters fromfromstr, and
ensures that the result is zero-terminated by adding a null character if necessary. Note that the count limits
the number of characters appended, not the total number of characters in the string.

int strcmp(char *first, char *second)
int strncmp(char *first, char *second, int count)

Thestrcmp() primitive tells if two strings are identical. It returns0 if all characters in them are the
same (and if they have the same length). Otherwise, it returns a negative number if the lexicographic
ordering of these strings would put the first before the second. It returns a positive number otherwise. The
strncmp() primitive is likestrcmp(), except only the firstcount characters matter.

int strfcmp(char *first, char *second)
int strnfcmp(char *first, char *second, int count)
int charfcmp(int first, int second)

Epsilon also has similar comparison primitives that consider upper case and lower case letters to be
equal. Thestrfcmp() primitive acts likestrcmp() and thestrnfcmp() primitive acts like
strncmp(), but if the buffer-specific variablecase_fold is nonzero, Epsilon folds characters in the
same way searching or sorting would before making the comparison. Thecharfcmp() primitive takes
two characters and performs the same comparison on them. For charactersa andb, charfcmp(’a’,
’b’) equalsstrfcmp("a", "b"). See page 348 for information on how to change Epsilon’s rules for
case-folding. (EEL also recognizes the corresponding ANSI C namestricmp() instead ofstrfcmp().)

int memcmp(char *str1, char *str2, int num)
int memfcmp(char *str1, char *str2, int num)
memcpy(char *tostr, char *fromstr, int num)
memset(char *ptr, char value, int count)

Thememcmp() primitive works likestrcmp(), except that it makes no assumptions about
zero-termination. It takes two strings and a size, then compares that many characters from each string. If the
strings exactly match,memcmp() returns zero. Ifstr1 would be alphabetically beforestr2, it returns a
negative value. Ifstr2 would be alphabetically beforestr1, it returns a positive value.

Similarly, thememfcmp() primitive works likestrnfcmp(), except that it makes no assumptions
about zero-termination. Whereas the latter two will stop comparing when it reaches a zero byte, the former
will not.

Thememcpy() primitive copies exactlynum characters from the second character array to the first.

Thememset() primitive sets all thecount characters in a character arrayptr to the givenvalue.

char *index(char *s, int ch)
char *rindex(char *s, int ch)
char *strstr(char *s, char *t)

438 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Theindex() primitive tells if a characterch appears in the strings. It returns a pointer to the first
appearance ofch, or a null pointer if there is none. Therindex() primitive works the same, but returns a
pointer to the last appearance ofch. (EEL also recognizes the corresponding ANSI C namestrchr()
instead ofindex().)

Thestrstr() primitive searches the strings for a copy of the stringt. It returns a pointer to the first
appearance oft, or a null pointer if there is none. It case-folds as described above forstrfcmp().

int fpatmatch(char *s, char *pat, int prefix, int fold)

Thefpatmatch() primitive returns nonzero if a strings matches a patternpat. It uses a simple
filename-style pattern syntax:* matches any number of characters;? matches a single character, and
[a-z] match a character class (with the same character class syntax as other patterns in Epsilon). If
prefix is nonzero,s must begin with text matchingpat; otherwisepat must match all ofs. If fold is
nonzero, Epsilon folds characters before comparing according to the current buffer’s folding rules.

int sprintf(char *dest, char *format, ...)

Thesprintf() primitive is the most powerful string building primitive Epsilon provides. It takes two
or more arguments. The first is a character array. The remaining arguments are in the format thatsay()
uses: a format string possibly followed by more arguments. (See page 379.) Instead of printing the string
that is built on the screen, it copies the string into the destination array, and returns the number of characters
copied.

10.5.4 Memory Allocation

char *malloc(int size)
char *realloc(char *ptr, int size)
free(char *ptr)

Epsilon maintains a pool of memory and provides primitives for allocating and deallocating blocks of
any size. Themalloc() primitive takes an int giving the number of bytes of space required, and returns a
pointer to a block of that size.

Therealloc() primitive takes a pointer previously allocated withmalloc(). First, it tries to
expand the block to the requested size. If it cannot do that, it allocates another block of the requested size,
then copies the old characters to the new block. In either case, it returns a pointer to a block of the requested
size.

Thefree() primitive takes a pointer thatmalloc() previously returned and puts it back into the
storage pool. Never use a block after you free it.

char *strsave(char *s)

For convenience, Epsilon provides a primitive to copy a string to an allocated block of the proper size.
Thestrsave() primitive is used when a string needed later is stored in an array that must be reused. The
primitive returns a pointer to the copy of the string it makes. Thefree() primitive may be given this
pointer when the string is no longer needed.

user int availmem;
user int mem_in_use;

10.5. CONTROL PRIMITIVES 439

The total amount of memory available to Epsilon for DOS is in theavailmem variable. This includes
the space for a process. Under other operating systems, this value is simply a meaningless big number. The
mem_in_use variable gives the space in bytes Epsilon is now using for miscellaneous storage (not
including buffer text).

set_swapname(char *path)

If Epsilon can’t fit all your files in available memory, it will swap parts to disk. The parts are contained
in one or more swap files. Theset_swapname() primitive tells Epsilon what directories to use for swap
files, if it needs them. The argument is a string containing a list ofdirectoriesin which to place swap files, as
described under the-fs command line flag. After swapping has begun, this primitive has no effect.
Supplying an empty argument"" makes Epsilon use the standard place for swapping, as described under
the-fs command line switch on page 13.

10.5.5 The Name Table

int final_index()

Epsilon keeps track of all EEL variables, commands, subroutines, key tables, color schemes, and
keyboard macros in itsname table. Each of these items has an entry there that lists its name, type, value, and
additional information. An EEL program can access the table using a numeric index, like an array index.
The first valid index to the name table is 1, and thefinal_index() primitive returns the last valid index.
The index is based on the order in which the names were defined.

All variables appear in the name table, including primitive variables. Primitive functions (like most of
those defined in this chapter) and EEL’s#define textual macros are not in the name table. A state file
contains an exact copy of a name table (plus some additional information).

Each entry contains the name of the item, a type code, a debugging flag, a help file offset, and whatever
information Epsilon needs internally to make use of the item. When executing an EEL program, Epsilon
automatically uses the table to find the value of a variable, for example, or execute a command. You can
manipulate the table with EEL functions.

int find_index(char *name)

There are two ways to get an index if you have the name of an item. Thefind_index() primitive
takes an item name as a string and returns the index of that item, or0 if there is no such item. If the item is
an EEL command or subroutine, casting its function pointer to a short also yields the index. For example,
(short) forward_word gives the index of the commandforward-word if forward_word() has
been declared previously in the source file the expression appears in.

char *name_name(int index)
int name_type(int index) /* codes: */
#define NT_COMMAND 1 /* normal bytecode function */
#define NT_SUBR 2 /* hidden bytecode function */
#define NT_MACRO 3 /* keyboard macro */
#define NT_TABLE 4 /* key table */
#define NT_VAR 5 /* normal variable */
#define NT_BUFVAR 6 /* buffer-specific variable */
#define NT_WINVAR 7 /* window-specific variable */
#define NT_COLSCHEME 8 /* color scheme */
#define NT_AUTOLOAD 10 /* load cmd from file */
#define NT_AUTOSUBR 11 /* load subr from file */

440 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

The primitivesname_name() andname_type() return the name and type of a table entry,
respectively. They each take an index into the name table and return the desired information. The value
returned byname_name() is only valid until the next call to this function. Copy the name if you want to
preserve it.

The codes forname_type() are in the standard include file codes.h.

int try_calling(char *name)

Thetry_calling() primitive calls a subroutine or command if it exists and doesn’t complain if the
function does not exist. It takes the name of the function to call. It returns0 if the function doesn’t exist.
The function it calls must not require arguments.

int drop_name(char *name)

To delete an item from the name table, use thedrop_name() primitive. It returns0 if it deleted the
name,1 if there was no such name in the name table, and2 if there was such a name but it couldn’t be
deleted because it is currently in use.

int replace_name(char *old, char *new)

Thereplace_name() primitive renames an item in the name table. It returns0 if the name change
was successful,1 if the original name did not exist, and2 if the name change was unsuccessful because
another item had the new name already. Any references to the original item result in an error, unless you
provide a new definition for it later.

Sometimes when writing an Epsilon extension, you may wish to redefine one of Epsilon’s built-in
subroutines (getkey(), for example) to do something in addition to its usual action. You can, of course,
simply modify the definition of the function, adding whatever you want. Unfortunately, if someone else
gives you an extension that modifies the same function, it will overwrite your version. You’ll have the same
problem when you get a new version of Epsilon—you’ll have to merge your change by hand.

#define REPLACE_FUNC(ext, func)
/* definition omitted */

Alternatively, you can create an extension that modifies the existing version of a function, even if it’s
already been modified. The trick is to replace it with a function that calls the original function. This can be
done from awhen_loading() function by using thereplace_name() anddrop_name()
primitives, but eel.h defines a macro that does all of this. TheREPLACE_FUNC()macro takes the name of
the extension you’re writing, and the name of the existing subroutine you want to replace. It doesn’t really
matter what the extension name is, just so long as no other extension uses it.

Here’s an example. Suppose you’re writing an extension that displays “Hello, world” whenever you
start Epsilon. You’ve decided to name the extension “hello”, and you want Epsilon’sstart_up()
function to do the work. Here’s what you do:

new_hello_start_up() /* will be renamed to start_up */
{

say("Hello, world");
hello_start_up(); /* call old (which will have this name) */

}

REPLACE_FUNC("hello", "start-up")

10.5. CONTROL PRIMITIVES 441

Notice the steps: first you have to define a function with a name of the form
new_<extension-name>_<replaced-function-name>. Make sure it calls a function named
<extension-name>_<replaced-function-name>. Then do theREPLACE_FUNC(), providing the two
names. This will rename the current<replaced-function-name> to
<extension-name>_<replaced-function-name>, then rename your function to<replaced-function-name>.

10.5.6 Built-in and User Variables

Variables that are automatically defined by Epsilon, and have no definition in eel.h, are called built-in
variables. These includepoint, bufnum, and most of the primitive variables described in this chapter. All
such built-in variables have entries in Epsilon’s name table, so that you can see and set them using
commands likeset-variable or set-any-variable. Built-in variables have aname_type() code of
NT_BUILTVAR.

int get_num_var(int i)
set_num_var(int i, int value)

char *get_str_var(int i)
set_str_var(int i, char *value)

Epsilon has several primitives that let you get and set the value of numeric and string global variables
(including both built-in and ordinary, user-defined variables). Each primitive takes a name table indexi.
Theget_num_var() andget_str_var() primitives return the numeric or string value (respectively)
of the indicated variable, while theset_num_var() andset_str_var() primitives set the variable. If
you provide an index that doesn’t refer to a variable of the correct type, the setting functions do nothing,
while the getting functions return zero. (See thevartype() primitive below.) The string functions only
operate on variables with a character pointer data type, not on character arrays. Usevarptr() below to
modify character arrays.

Theset-variable command and similar functions look for and try to call a function named
when_setting_varname() after setting a variable namedvarname. For most variables a function with
that name doesn’t exist, and nothing happens. Thewant-code-coloring variable is an example of a
variable with awhen_setting() function. Itswhen_setting() function sets various other variables
to matchwant-code-coloring’s new value.

Any user attempts to set a variable (such as runningset-variable or loading a command file) will call
such a function, but an ordinary assignment statement in an EEL function will not. If you write an EEL
function that sets a variable with awhen_setting() function, you should call the function explicitly
after setting the variable.

int name_user(int i)
set_name_user(int i, int is_user)

For each global variable, built-in or not, Epsilon records whether or not it is a “user” variable. Some
commands such asset-variable only show user variables. Otherwise, Epsilon treats user variables the same
as others. Thename_user() primitive returns non-zero if the variable with the given name table index is
a user variable, and theset_name_user() primitive sets whether a variable with a particular name table
index is a user variable.

user int my_var; // sample declaration

442 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

By default, variables you declare with EEL are all non-user variables, hidden from the user. If the user
is supposed to set a variable directly in order to alter a command’s behavior, put theuser keyword before
its global variable definition to make it a user variable. (In previous versions, Epsilon used a convention that
any non-user variables you defined had to start with an underscore character, and all others were effectively
user variables. This convention still works:set-variable will still exclude such variables from normal
completion lists.)

int ptrlen(char *p)

Theptrlen() primitive takes a pointer of any type and returns the size in bytes of the object it points
to. The value ofptrlen(p) is the lowest valuei for which((char *)p)[i] is an illegal dereference.

char *varptr(int i)

Thevarptr() primitive returns a pointer to any global variable given its index in the name table. The
pointer is always a character pointer and should be cast to the correct type before it’s used. When
varptr() is applied to a buffer-specific or window-specific variable, Epsilon checks theuse_default
variable to determine if a pointer to the default or current value should be returned (see page 443). This
function doesn’t operate with built-in variables—useget_num_var() and similar functions for these.

int vartype(int i)

#define TYPE_CHAR 1
#define TYPE_SHORT 2
#define TYPE_INT 3
#define TYPE_CARRAY 4 /* character array */
#define TYPE_CPTR 5 /* character pointer */
#define TYPE_POINTER 6 /* contains pointers or spots */
#define TYPE_OTHER 7 /* none of the above */

Thevartype() primitive returns information on the type of a global variable (or buffer-specific or
window-specific variable). It takes the index of the variable in the name table and returns one of the above
codes if the variable has type character, short, integer, character array, or character pointer. It returns
TYPE_POINTER if the variable is a spot or pointer, or a structure or union containing a spot or pointer.
Otherwise, it returnsTYPE_OTHER.

int new_variable(char *name, int type, int vtype, ?int length)

Thenew_variable() primitive provides a way to create a new variable without having to load a
bytecode file. The first argument specifies the name of the variable. The second argument is a type code of
the kind returned by thename_type() primitive. The code must beNT_VAR for a normal variable,
NT_BUFVAR for a buffer-specific variable,NT_WINVAR for a window-specific variable, or
NT_COLSCHEME for a color scheme. The third argument is a type code of the kind returned by the
vartype() primitive. This code must be one of the following:TYPE_CHAR, TYPE_SHORT,
TYPE_INT, orTYPE_CARRAY. The last argument is a size, which is used only forTYPE_CARRAY. It
returns the name table index of the new variable, or-1 if it couldn’t create the variable in question.

10.5. CONTROL PRIMITIVES 443

10.5.7 Buffer-specific and Window-specific Variables

char use_default;

Epsilon’s buffer-specific variables have a value for each buffer. They change when the current buffer
changes. When you create a new buffer, you also automatically create a new copy of each buffer-specific
variable. The initial value of each newly created buffer-specific variable is set from special default values
Epsilon maintains. These values may be set using the variableuse_default. Whenuse_default is
nonzero, referencing any buffer-specific variable accesses its default value, not the value for the current
buffer. Otherwise, a value particular to the current buffer applies, as usual.

The normal way to reference a variable’s default value is to use the “.default” syntax described on page
304, not to setuse_default.

Window-specific variables have a separate value for each window. When you split a window, the newly
created window initially has the same values for all variables as the original window. Each window-specific
variable also has a default value, which can be referred to in the same way as buffer-specific variables, via
the “.default” syntax described on page 304 or by setting theuse_default variable. Epsilon uses the
default value to initialize the first window it creates, during startup, and when it creates pop-up windows.

Only the default values of window- and buffer-specific variables are saved in a state file.

copy_buffer_variables(int tobuf, int frombuf)
safe_copy_buffer_variables(int tobuf, int frombuf)

Thecopy_buffer_variables() primitive sets all buffer-specific variables in the buffertobuf
to their values in the bufferfrombuf. If frombuf is zero, Epsilon resets all buffer-specific variables in the
buffertobuf to their default values. Thesafe_copy_buffer_variables() subroutine calls
copy_buffer_variables(), then clears the values of certain variables that should not be copied
between buffers; generally these variables are spot variables that must always refer to positions within their
own buffers.

10.5.8 Bytecode Files

load_commands(char *file)
load_from_path(char *file) /* control.e */

Theload_commands() primitive loads a bytecode file of command, subroutine and variable
definitions into Epsilon after the EEL compiler has produced it from the .e source file. The primitive
changes the name provided so that it has the appropriate .b extension, then opens and reads the file. The
primitive prints a message and aborts to top-level if it cannot find the file or the file name is invalid.

The subroutineload_from_path() searches for a bytecode file using thelookpath() primitive
(see page 408) and loads it usingload_commands().

int eel_compile(char *file, int use_fsys, char *flags,
char *errors, int just_check)

Theeel_compile() primitive lets Epsilon run the EEL compiler without having to invoke a
command processor.File specifies the name of a file or buffer. Ifuse_fsys is nonzero, it names a file; if
use_fsys is zero, a buffer. Theflags parameter may contain any desired command line flags. Compiler
messages will go to the buffer namederrors. Unless errors occur or thejust_check parameter is

444 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

nonzero, Epsilon will automatically load the result of the compilation. No bytecode file on disk will be
modified. Note that when the compiler includes header files, it will always read them from disk, even if they
happen to be in an Epsilon buffer. Only the 32-bit Windows and Unix versions support this. See the
has_feature variable on page 415.

when_loading() /* EEL subroutine */

Any subroutines with the special namewhen_loading() execute as they are read, and then go away.
There may be more than one of these functions defined in a single file. (Note: When the last function
defined in an EEL file has been deleted or replaced, Epsilon discards all the constant strings defined in that
file. So a file that contains only awhen_loading() function will lose its constant strings as soon as it
exits. If a pointer to such a string must be put in a global variable, use thestrsave() primitive to make a
copy of it. See page 438.)

Theautoload_commands() primitive described below executes anywhen_loading()
functions defined in the file, just asload_commands() would. Epsilon never arranges for a
when_loading() function to be autoloaded, and will execute and discard such functions as soon as
they’re loaded. If you runautoload_commands() on a file withwhen_loading() functions, Epsilon
will execute them twice: once when it initially sets up the autoloading, and once when it autoloads the file.

user char *byte_extension;
user char *state_extension;

The extensions used for Epsilon’s bytecode files and state files may vary with the operating system.
Currently, all operating system versions of Epsilon use “.b” for bytecode files, and “.sta” for state files. The
byte_extension andstate_extension primitives hold the appropriate extension names for the
particular version of Epsilon.

autoload(char *name, char *file, int issubr)
autoload_commands(char *file)

Epsilon has a facility to define functions that are not loaded into memory until they are invoked. The
autoload() primitive takes the name of a function to define, and the name of a bytecode file it can be
found in. The file name string may be in a temporary area, because Epsilon makes a copy of it.

The primitive’s final parameter should be nonzero to indicate that the autoloaded function will be a
subroutine, or zero if the function will be a command. (Recall that commands are designed to be invoked
directly by the user, and may not take parameters, while subroutines are generally invoked by commands or
other subroutines, and may take parameters.) Epsilon enters the command or subroutine in its name table
with a special code to indicate that the function is an autoloaded function:NT_AUTOLOAD for commands,
or NT_AUTOSUBR for subroutines.

When Epsilon wants to call an autoloaded function, it first invokes the EEL subroutine
load_from_path(), passing it the file name from theautoload() call. The standard definition of
this function is in the file control.e. It searches for the file along the EPSPATH, as described in the manual,
and then loads the file. Theload_from_path() subroutine reports an error and aborts the calling
function if it cannot find the file.

Whenload_from_path() returns, Epsilon checks to see if the function is now defined as a regular,
non-autoloaded function. If it is, Epsilon calls it. However, it is not necessarily an error if the function is still
undefined. Sometimes a function’s work can be done entirely by thewhen_loading() subroutines that
are run and immediately discarded as a bytecode file loads.

10.5. CONTROL PRIMITIVES 445

For example, all the work of theset-color command is done by awhen_loading() function in the
EEL file color.e. Loading the corresponding bytecode file automatically runs thiswhen_loading()
function, which displays some windows and lets the user choose colors. When the user exits from the
command, Epsilon discards the code for thewhen_loading() function that displayed windows and
interpreted keys, and finishes loading the bytecode file. Theset-color command is still defined as a
command that autoloads the color.b bytecode file, so the next time the user runs this command, Epsilon will
load the file again.

If the autoloaded function was called with parameters, but remains undefined after Epsilon tries to
autoload it, Epsilon aborts the calling function with an error message. Functions that use the above
technique to load temporarily may not take parameters.

Like load_commands(), the primitiveautoload_commands() takes the name of a compiled
EEL bytecode file as a parameter. It loads any variables or bindings contained in the file, just like
load_commands(). But instead of loading the functions in the file, this primitive generates an autoload
request for each function in the file. Whenever any EEL function tries to call a function in the file, Epsilon
will load the entire file.

10.5.9 Starting and Finishing

do_save_state(char *file)
int save_state(char *file)

Thedo_save_state() subroutine writes the current state to the specified file. It aborts with an
error message if it encounters a problem. It uses thesave_state() primitive to actually write the state.
The primitive returns0 if the information was written successfully, or an error code if there was a problem
(as withfile_write()). Both change the extension to “.sta” before using the supplied name.

The state includes all commands, subroutines, keyboard macros, and variables. It does not include
buffers or windows. Since a state file can only be read while Epsilon is starting (when there are no buffers or
windows), only the default value of each buffer-specific or window-specific variable is saved in a state file.

Pointer variables will have a value of zero when the state file is loaded again. Epsilon does not save the
object that is pointed to. Spot variables and structures or unions containing pointers or spots are also zeroed,
but other types of variables are retrieved unchanged (but see the description of thezeroed keyword on
page 325).

short argc;
char *argv[];

When Epsilon starts, it examines the arguments on its command line, and modifies its behavior if it
recognizes certain special flags. (Before examining its command line, it types in the contents of the
configuration variable EPSILON if this exists.) First it breaks the text of the command line up into
individual words, separated by spaces. (Words enclosed in" characters may contain spaces.) It looks for
certain special flags, interprets them and removes them from the command line. It then passes the remainder
of the command line to the EEL startup code in cmdline.e. That code interprets any remaining flags and files
on the command line. You can add new flags to Epsilon by modifying cmdline.e. See page 12 for the
meaning of each of Epsilon’s flags.

Epsilon interprets and removes these flags from the command line:

-k Keyboard options -m Memory control
-s Load from state file -e EMS memory control (DOS)

446 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

-b Load from bytecode file -x XMS memory control (DOS)
-v Video options -w Directory options

Some of these settings are visible to an EEL program through variables. See thekbd-extended
variable for the-ke flag, theload-from-state variable for the-b flag, thestate_file variable for
the-s flag, thewant-cols andwant-lines variables for the-vc and-vl flags, and the
directory-flags variable for the-w flag.

All other flags, as well as any specified files, are interpreted by the EEL functions in cmdline.e. They
read the command line from theargc andargv variables, already broken down into words. Theargc
variable contains the number of words in the command line. Theargv variable contains the words
themselves. The first word on the command line,argv[0], is always the name of Epsilon’s executable file,
so that ifargc is 2, there was one argument and it is inargv[1].

when_restoring() /* cmdline.e */
early_init() /* cmdline.e */
middle_init() /* cmdline.e */
start_up() /* cmdline.e */
user char *version;
apply_defaults()

Epsilon calls the EEL subroutinewhen_restoring() if it exists after loading a state file. Unlike
when_loading(), this subroutine is not removed after it executes. The standard version of
when_restoring() sets up variables and modes, and interprets the command line. It calls several EEL
subroutines at various points in the process. Each does nothing by default, but you can conveniently
customize Epsilon by redefining them. (See page 440 to make sure your extension doesn’t interfere with
other extensions.)

Thewhen_restoring() function callsearly_init() just before interpreting flags, and
middle_init() just after. It then loads files (from the command line, or a saved session), displays
Epsilon’s version number, and calls thestart_up() subroutine. (Theversion variable contains a
string with the current version of Epsilon, such as “9.0”.) Finally, Epsilon executes any-l and-r switches.

Thewhen_restoring() subroutine calls theapply_defaults() primitive before it calls
early_init(). This primitive sets the values of window-specific and buffer-specific variables in the
current buffer and window to their default values.

char state_file[];
user char load_from_state;

Thestate_file primitive contains the name of the state file Epsilon was loaded from, or"" if it
was loaded only using bytecode files with the-b flag. Theload_from_state variable will be set to1 if
Epsilon loaded its functions from a state file at startup, or0 if it loaded only from bytecode files.

after_loading()

After Epsilon calls thewhen_restoring() subroutine, it finishes its internal initialization by
checking for the existence of certain variables and functions that must be defined if Epsilon is to run. Until
this is done, Epsilon can’t perform a variety of operations such as getting a key from the keyboard,
displaying buffers, and searching. Theafter_loading() primitive tells Epsilon to finish initializing
now. The variables and functions listed in figure 10.2 must be defined when you callafter_loading().

10.5. CONTROL PRIMITIVES 447

when_idle()
when_displaying()

when_repeating()
getkey()

on_modify()

prepare_windows()
build_mode()

fix_cursor()
load_from_path()

color_class standard_color;

color_class standard_mono;
user int see_delay;

user short beep_duration;
user short beep_frequency;

user char mention_delay;

user char shell_shrinks;
char _display_characters[];

user buffer int undo_size;
buffer short *mode_keys;

user buffer short tab_size;
user buffer short case_fold;

buffer char *_srch_case_map;

buffer char *_case_map;
buffer char *_char_class;

buffer char *_display_class;
char *_echo_display_class;

user window int display_column;

window char _highlight_control;
window char _window_flags;

char use_process_current_directory;

Figure 10.2: Variables and functions that must be defined.

448 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

finish_up()
user char leave_blank;

When Epsilon is about to exit, it calls the subroutinefinish_up(), if it exists. (See page 440 to make
sure your extension doesn’t interfere with other extensions that may also definefinish_up().) Under
DOS and OS/2, it then tries to restore the screen mode to whatever it was before Epsilon started (see page
15). Then Epsilon normally redisplays each mode line one last time just before exiting, so any buffers that it
saved just before exiting will not still be marked unsaved on the screen. However, if theleave_blank
primitive is nonzero, it skips this step. The commands in video.e that handle screen size switching for DOS
and OS/2 make sure this variable is set just after the screen has been blanked by a screen size change.

10.5.10 EEL Debugging and Profiling

int name_debug(int index)
set_name_debug(int index, int flag)

Every command or subroutine in Epsilon’s name table has an associated debug flag. If the debug flag of
a command or subroutine is nonzero, Epsilon will start up the EEL debugger when the function is called,
allowing you to step through the function line by line. See page 134. Thename_debug() primitive
returns the debug flag for an item, and theset_name_debug() primitive sets it.

start_profiling()
stop_profiling()
char *get_profile()

Epsilon can generate an execution profile of a section of EEL code. A profile is a tool to determine
which parts of a program are taking the most time. Thestart_profiling() primitive begins storing
profiling information internally. Profiling continues until Epsilon runs out of space, or you call the
stop_profiling() primitive, which stops storing the information. Many times each second, Epsilon
saves away information describing the location in the source file of the EEL code it is executing, if you’ve
turned profiling on. You can use this to see where a command is spending its time, so that you can center
your efforts to speed the command up there.

Once you stop the profiling with thestop_profiling() primitive, you can retrieve the profiling
information with theget_profile() primitive. Each call returns one line of the stored profile
information, and the function returns a null pointer when all the information has been retrieved. Each line
contains the name of an EEL source file and a line number within the file, separated by a space. See the
profile command for a more convenient way to use these primitives. Functions that you’ve compiled with
the EEL compiler’s-s flag will not appear in the profile. Epsilon for Windows 3.1 doesn’t provide profiling.

10.5.11 Help Subroutines

int name_help(int index)
set_name_help(int index, int offset)
get_doc() /* help.e */

Every item in Epsilon’s name table has an associated help file offset. The help offset contains the
position in Epsilon’s help file “edoc” where information on an item is stored. Epsilon uses it to provide
quick access to help file items. It is initially-1, and may be set with theset_name_help() primitive

10.6. INPUT PRIMITIVES 449

and examined with thename_help() primitive. (The Windows version of Epsilon normally uses a
standard Windows help file to display help, so it doesn’t use these help file offsets.)

When an EEL function wants to look up information in the help file, it calls the EEL subroutine
get_doc(). This function loads the help file into the buffer “-edoc” if it hasn’t been loaded before.

Epsilon’s help file “edoc” uses a simple format that makes it easy to add new entries for your own
commands. Each command’s description begins with a line consisting of a tilde (˜), the command or
variable’s name, ahTabi, and the command’s one-line description (or, for a variable, some type
information). Following lines (until the next line that starts with ˜, or the end of the file) constitute the
command’s full description. The entries can occur in any order; they don’t have to be listed alphabetically.

An entry can contain a cross-reference link to another entry in the file; these consist of the name of the
command or variable being cross-referenced, bracketed by two control characters. Put aˆA character before
the name of the command or variable, and aˆB character after. Also see the description of the
view_linked_buf() subroutine on page 365.

help_on_command(int ind) /* help.e */
help_on_current() /* help.e */

Thehelp_on_command() subroutine provides help on a particular command. It takes the name
table index of the command to provide help on.

Thehelp_on_current() subroutine displays help on the currently-running command. It uses the
last_index variable to determine the current command.

show_binding(char *fmt, char *cmd) /* help.e */

Theshow_binding() subroutine displays the messagefmt using thesay() primitive. Thefmt
must contain the%s sequence (and no other% sequences). Epsilon will replace the%s with the binding of
the commandcmd. For example,

show_binding("Type %s to continue", "exit-level");

displays “Type Ctrl-X Ctrl-Z to continue” with Epsilon’s normal bindings.

10.6 Input Primitives

10.6.1 Keys

wait_for_key()
user short key;
when_idle(int times) /* EEL subroutine */
add_buffer_when_idle(int buf, int (*func)())
delete_buffer_when_idle(int buf, int (*func)())
when_repeating() /* EEL subroutine */
int is_key_repeating()

Thewait_for_key() primitive advances to the next key, waiting for one if necessary. The variable
key stores the last key obtained fromwait_for_key(). Its value may be from0 to NUMKEYS - 1.
The macroNUMKEYS is defined in eel.h.

450 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

When you callwait_for_key(), it first checks to see if theungot_key variable has a key (see
below) and uses that if it does. If not, and a keyboard macro is active,wait_for_key() returns the next
character from the macro. (The primitive also keeps track of repeat counts for macros.) If there is no key in
ungot_key and no macro is active, the primitive checks to see if you have already typed another key and
returns it if you have. If not, the primitive waits until you type a key (or a mouse action or other event
occurs—Epsilon treats all of these as keys).

In the DOS version, if there is a concurrent process running, the primitive dispatches to the process to
let it run until you press a key, instead of waiting. Even in other environments where a concurrent process
can run independently of Epsilon, the process’s output is only inserted in an Epsilon buffer during a call to
wait_for_key(). Epsilon handles the processing of other concurrent events like FTP transfers during
this time as well.

While Epsilon is waiting for a key, it calls thewhen_idle() subroutine. The default version of this
function does idle-time code coloring and displays any defined idle-time message in the echo area (see the
show-when-idle variable), among other things. Thewhen_idle() subroutine receives a parameter
that indicates the number of times the subroutine has been called since Epsilon began waiting for a key.
Every time Epsilon gets a key (or other event), it resets this count to zero.

Thewhen_idle() subroutine should return a timeout code in hundredths of a second. Epsilon will
not call the subroutine again until the specified time has elapsed, or another key arrives. If it doesn’t need
Epsilon to call it for one second, for example, it can return100. If it wants Epsilon to call it again as soon as
possible (assuming Epsilon remains idle), it can return0. If the subroutine has completed all its work and
doesn’t need to be called again until after the next keystroke or mouse event, it can return-1. Epsilon will
then go idle waiting for the next event. (The return value is only advisory; Epsilon may callwhen_idle()
more frequently or less frequently than it requests.)

A mode may wish to provide additional functions that run during idle time, beyond those the
when_idle() subroutine performs itself. Theadd_buffer_when_idle() subroutine registers a
functionfunc so that it will be called during idle-time processing wheneverbuf is the current buffer. The
delete_buffer_when_idle() subroutine removes the specified function from that buffer’s list of
buffer-specific idle-time functions. (It does nothing if the function was not on the list.) A buffer-specific
when-idle function takes a parametertimes and must return a result in the same fashion as the
when_idle() function itself.

When you hold down a key to make it repeat, Epsilon does not call thewhen_idle() subroutine.
Instead, it calls thewhen_repeating() subroutine. Again, this varies by environment: under some
operating systems, Epsilon cannot distinguish between repeated key presses and holding down a key to
make it repeat. If this is the case, Epsilon won’t call the function.

Theis_key_repeating() primitive returns nonzero if the user is currently holding down a key
causing it to repeat. Epsilon can’t detect this in all environments, so the primitive always returns0 in that
case.

int getkey() /* control.e */

Instead of callingwait_for_key() directly, EEL commands should call the EEL subroutine
getkey() (defined in control.e), to allow certain actions that are written in EEL code to take effect on
each character. For example, the standard version ofgetkey() saves each new character in a macro, if
you’re defining one. It checks the EEL variable_len_def_mac, which contains the length of the macro
being defined plus one, or zero if you’re not defining a macro. For convenience,getkey() also returns the
newkey. Thegetkey() subroutine callswait_for_key(). (If you want to add functions to
getkey(), see page 440 to make sure your extension doesn’t interfere with other extensions that may also
add togetkey().)

10.6. INPUT PRIMITIVES 451

int char_avail()
int in_macro()

Thechar_avail() primitive returns0 if wait_for_key() would have to wait if it were called,
and1 otherwise. That is, it returns nonzero if and only if a key is available fromungot_key, a keyboard
macro, or the keyboard.

Thein_macro() primitive returns1 if a keyboard macro is running or has been suspended,0
otherwise. While processing the last key of a keyboard macro,in_macro() will return0, because Epsilon
has already discarded the keyboard macro by that time. Check thekey-from-macro variable instead to
see if the key currently being handled came from a macro.

There are some textual macros defined in eel.h which help in forming the codes for keys in an EEL
function. The codes for normal ASCII keys are their ASCII codes, so the code for the key ‘a’ is’a’. The
ALT() macro makes these normal keys into their Alt forms, so the code for Alt-a isALT(’a’). The
CTRL() macro changes a character into the corresponding control character, soCTRL(’h’) or
CTRL(’H’) both represent the Ctrl-h key. BothCTRL(ALT(’q’)) andALT(CTRL(’q’)) stand for
the Ctrl-A-q key.

The remaining key codes represent the non-ASCII keys, plus various key codes that represent other
kinds of input events, such as mouse activity.

TheFKEY() macro represents the function keys.FKEY(1) andFKEY(12) are F1 and F12,
respectively. Note that this macro takes a number, not a character.

Refer to the cursor pad keys using the macrosKEYINSERT, KEYEND, KEYDOWN, KEYPGDN,
KEYLEFT, KEYRIGHT, KEYHOME, KEYUP, KEYPGUP, andKEYDELETE. If you use the-ke switch to
separate the numeric keypad from the cursor pad, you can refer to the numeric keypad keys with the
NUMDIGIT() macro:NUMDIGIT(0) is N-0, andNUMDIGIT(9) is N-9.NUMDOT is the numeric keypad
period, andNUMENTER is thehEnteri or hReturni key on the numeric keypad (normally mapped to Ctrl-M).

The codes for the grey keys areGREYPLUS, GREYMINUS, GREYSTAR andGREYSLASH for the +, –,
*, and / keys on the numeric keypad, andGREYENTER, GREYBACK, GREYTAB, andGREYESC for the
hEnteri, hBackspacei, hTabi, andhEsci keys, respectively. (By default, several of these keys are mapped to
others. See below.)

For all cursor, numeric, function, and grey keys, theNUMSHIFT(), NUMCTRL(), andNUMALT()
macros make shifted, control, and alt versions, respectively. For example,NUMCTRL(NUMDIGIT(3)) is
Ctrl-N-<PgDn>, andNUMALT(KEYDELETE) is A-.

int make_alt(int k) /* control.e */
int make_ctrl(int k) /* control.e */

The macros such asALT() andNUMALT() described above create the codes for Alt versions of
various types of keys. Themake_alt() subroutine defined in control.e will return an Alt version of any
key. Use one of the macros when the key involved is constant, and use the subroutine when it’s variable. The
make_ctrl() subroutine is similar, but makes a key into its Control version.

Use theIS_CTRL_KEY()macro to determine if a given key is a control key of some kind. Its value is
nonzero if the key is an ASCII Control character, a function key with Control held down, or any other
Control key. It understands all types of keys. The macroIS_ALT_KEY() is similar; its value is nonzero if
the given key was generated when holding down the Alt key.

Keys returned from a macro can use some special bit flags. Epsilon uses theEXTEND_SEL_KEY bit
flag to indicate that the shift key was held down when the current key in the macro was recorded, indicating
that text should be selected. See page 384 for details.

452 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

A macro command recorded using the notation<!find-file> uses the bit flagCMD_INDEX_KEY.
In this case the value ofkey is not a true key, but rather the name table index of the specified command. See
page 138 for more information.

user short ungot_key;

If the ungot_key variable is set to some value other than its usual value of-1, that number is placed
in key as the new key whenwait_for_key() is called next, andungot_key is set to-1 again. You
can use this to make a command that reads keys itself, then exits and runs the key again when you press an
unrecognized key. The statementungot_key = key; accomplishes this.

show_char(char *str, int key, ?int style)

Theshow_char() primitive converts a key code to its printed representation, described on page 138.
For example, the code produced by function key 3 generates the stringF-3. The string isappendedto the
character arraystr.

If show_char()’s optional third parameter is present, and nonzero, this primitive will use a longer,
more readable printed representation. For example, rather thanC-A-S or , or S-F-10, show_char()
will returnCtrl-Alt-S or <Comma> or Shift-F10. (Epsilon can only parse the former style, in
Epsilon command files and in all other commands that use theget_keycode() primitive below.)

short *get_keycode()
stuff_macro(short *mac, int oneline)

Theget_keycode() primitive is used to translate a sequence of key names such as"C-xC-A-f"
into the equivalent key codes. It moves past a quoted sequence of key names in the buffer and returns an
array of short ints with the key codes. The same array is used each time the function is called. The first entry
of the array contains the number of array entries. The primitive returns null if the string had an invalid key
name.

Thestuff_macro() subroutine inserts a sequence of key names into the current buffer in a format
thatget_keycode() can read, surrounding the key names with" characters. The list of keys is specified
by an array of short ints in the same formatget_keycode() uses: the first value contains the total
number of array entries. Ifoneline is nonzero, the subroutine represents line breaks withnn so that the
text stays on one line.

short *keytran;
#define KEYTRANPASS 1000

Thekeytran primitive is a pointer to a short. It must point to an array ofNUMKEYS shorts. This array
changes the mapping of the keyboard, by changing the code the keyboard gives for a particular key. This
change happens only whenwait_for_key() returns a key from the keyboard, not when it returns a key
from a keyboard macro. The value inserted inkey is actuallykeytran[original-key-code].

If the value inkeytran is -1, the original key code is used anyway. (Most keys use this setting.) If
the value is-2, the key is silently ignored. If the value in keytran isKEYTRANPASS or more, Epsilon
subtractsKEYTRANPASS before using the new value (but see below).

In the DOS version, some keytran values have a special meaning. Epsilon needs to use some keys that
the BIOS normally considers invalid and discards. To prevent this, Epsilon intercepts all keys before the
BIOS gets them, and decides whether to let the BIOS see them or not. (Epsilon could keep all the keys and

10.6. INPUT PRIMITIVES 453

never let the BIOS see them, but then any resident software or TSR’s you had wouldn’t be able to see them
either.)

Epsilon decides whether to let the BIOS see each key based on itskeytran entry. If it’s a valid key
code, Epsilon keeps it from the BIOS. If it’s-2, Epsilon ignores it. Otherwise, (if it’s-1, or
KEYTRANPASS or more), Epsilon sends it to the BIOS. When it comes back, if its entry was
KEYTRANPASS or more, Epsilon subtractsKEYTRANPASS from the entry and uses that number as the key.

This scheme means that any given key can be either ignored, sent to the BIOS, kept by Epsilon, kept but
translated to another key, or sent to the BIOS and then (if the BIOS sends it back) translated to another key.
These correspond tokeytran entries of�2, �1, k, n, andKEYTRANPASS+n, respectively, wherek is
the original key, andn is the other key it could be replaced by.

By default, Epsilon keeps all keys that the BIOS considers invalid and would discard, and passes the
rest through to the BIOS. The keys that Epsilon keeps are invisible to any resident programs that intercept
keys, and cannot be used as “hot keys”. Epsilon’sprogram-keys command, described on page 141, is
useful for altering thekeytran array.

user char key_type;
user short key_code;
user char kbd_extended;

Whenwait_for_key() returns a key that comes directly from the keyboard, it also sets the
primitive variableskey_type andkey_code. These let EEL programs distinguish between keys that
translate to the same Epsilon key code, for certain special applications. Thewait_for_key() primitive
doesn’t change either variable when the key comes fromungot_key.

Thekey_code variable contains the sixteen-bit BIOS encoding for the key that Epsilon received from
the operating system. Its ASCII code is in the low eight bits and its scan code is in the high eight bits. Under
DOS, thekey_code is zero when thekeytran table entry for a key instructs Epsilon not to pass the key
to the BIOS.

Thekey_type variable has one of the following values, defined in codes.h. IfKT_KEYTRAN, the key
had an explicit translation in thekeytran table and Epsilon used it without passing it to the BIOS. If
KT_NONASCII or KT_NONASCII_EXT, the key was a special key without an ASCII translation, such as a
function key. Such keys are of typeKT_NONASCII_EXT if they’re one of the “E0” keys on an extended
keyboard that are synonyms to multikey sequences on the old keyboard, such as the keys on the extended
keyboard’s cursor pad. Under DOS, these keys are of typeKT_NONASCII_EXT only if you use the-ke
switch, otherwise they’re of typeKT_NONASCII.

A key type ofKT_ACCENT_SEQ indicates a multikey sequence that the operating system or a resident
program has translated as a single key, such as an ˆe. Key typeKT_ACCENT generally means the operating
system translated a single key to a graphics character or foreign language character. Key typeKT_NORMAL
represents any other key. Most keys have a key type ofKT_NORMAL.

A key type ofKT_MACRO means the key came from a macro. But a macro key recorded with the
EXTEND_SEL_KEY bit flag returns a key type ofKT_EXTEND_SEL instead. In either case, the
key_code variable is set to zero in this case.

In Epsilon for Windows or Unix, thekey_code variable is always zero, andkey_type is either
KT_NORMAL, KT_MACRO, orKT_EXTEND_SEL.

Thekbd_extended variable tells whether the-ke flag was used to make the numeric pad and cursor
pad keys distinct. Normally, both are treated the same, and this variable is zero. If you give the-ke flag,
Epsilon treats these as separate sets of keys, and makes the variable nonzero.

454 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

10.6.2 The Mouse

When a mouse event occurs, such as a button press or a mouse movement, Epsilon enqueues the information
in the same data structure it uses for keyboard events. A call towait_for_key() retrieves the next item
from the queue—either a keystroke or a mouse event. Normally an EEL program calls thegetkey()
subroutine instead ofwait_for_key(). See page 449.

user short catch_mouse;

Thecatch_mouse primitive controls whether Epsilon will queue up any mouse events. Setting it to
zero causes Epsilon to ignore the mouse. A nonzero value makes Epsilon queue up mouse events. If your
system has no mouse, settingcatch_mouse has no effect. Under DOS, various values ofcatch_mouse
correspond to settings of the-km,-kc and-kw switches:

Value Equivalent Flags Notes

0 -km0 Mouse unavailable/ignored.
1 -km2-kc1 or 2 Default (-kc2 on EGA/VGA,-kc1 otherwise).
2 -km2-kc0 Relative positioning, invisible cursor.
3 -km1-kc1 or 2 Absolute positioning, normal cursor.
4 -km1-kc0 For windowed environment, equivalent to-kw.

Figure 10.3: Catch-mouse values, and the equivalent command-line flags

If you run Epsilon for DOS under Microsoft Windows full-screen, be sure to setcatch-mouse to 4
before you press Alt-Enter to switch to a window. You can setcatch-mouse back to 1 when you return
Epsilon to full-screen. The same comments apply when running the DOS version under OS/2 PM.

user short mouse_mask;
user short mouse_x, mouse_y;
user short mouse_screen;
user int double_click_time;

You can control which mouse events Epsilon dequeues, and which it ignores, by using the
mouse_mask primitive. The following values, defined in codes.h, control this:

#define MASK_MOVE 0x01
#define MASK_LEFT_DN 0x02
#define MASK_LEFT_UP 0x04
#define MASK_RIGHT_DN 0x08
#define MASK_RIGHT_UP 0x10
#define MASK_CENTER_DN 0x20
#define MASK_CENTER_UP 0x40
#define MASK_ALL 0x7f
#define MASK_BUTTONS (MASK_ALL - MASK_MOVE)
#define MASK_DN // ... see eel.h
#define MASK_UP // ... see eel.h

For example, the following EEL code would cause Epsilon to pay attention to the left mouse button and
mouse movement, but ignore everything else:

10.6. INPUT PRIMITIVES 455

mouse_mask = MASK_MOVE | MASK_LEFT_DN | MASK_LEFT_UP;

When Epsilon dequeues a mouse event withwait_for_key(), it sets the values ofmouse_x and
mouse_y to the screen coordinates associated with that mouse event. Setting them moves the mouse cursor.
The upper left corner has coordinate (0, 0).

When dequeuing a mouse event,wait_for_key() returns one of the following “keys” (defined in
codes.h):

MOUSE_LEFT_DN MOUSE_LEFT_UP MOUSE_DBL_LEFT
MOUSE_CENTER_DN MOUSE_CENTER_UP MOUSE_DBL_CENTER
MOUSE_RIGHT_DN MOUSE_RIGHT_UP MOUSE_DBL_RIGHT
MOUSE_MOVE

Dequeuing a mouse event also sets themouse_screen variable to indicate which screen its
coordinates refer to. Screen coordinates are relative to the specified screen. Ordinary Epsilon windows are
on the main screen, screen0. When Epsilon creates a dialog box containing Epsilon windows, each Epsilon
window receives its own screen number. For example, if you typeCtrl-X Ctrl-F ?, Epsilon displays a
dialog box with two screens, usually numbered1 and2. If you click on the ninth line of the second screen,
Epsilon returns the keyMOUSE_LEFT_DN, setsmouse_y to 8 (counting from zero), and sets
mouse_screen to 2.

Thedouble_click_time primitive specifies how long a delay to allow for double-clicks (in
hundredths of a second). If two consecutiveMOUSE_LEFT_DN events occur within the allotted time, then
Epsilon enqueues aMOUSE_DBL_LEFT event in place of the secondMOUSE_LEFT_DN event. The
corresponding thing happens for right clicks and center clicks as well. Epsilon for Windows ignores this
variable and uses standard Windows settings to determine double-clicks.

#define IS_WIN_KEY(k) // ... omitted
#define IS_MOUSE_KEY(k) // ... omitted
#define IS_TRUE_KEY(k) // ... omitted
#define IS_EXT_ASCII_KEY(k) // ... omitted
#define IS_MOUSE_LEFT(k) // ... omitted
#define IS_MOUSE_RIGHT(k) // ... omitted
#define IS_MOUSE_CENTER(k) // ... omitted
#define IS_MOUSE_SINGLE(k) // ... omitted
#define IS_MOUSE_DOUBLE(k) // ... omitted
#define IS_MOUSE_DOWN(k) // ... omitted
#define IS_MOUSE_UP(k) // ... omitted

TheIS_MOUSE_KEY()macro returns a nonzero value if the given key code indicates a mouse event.
TheIS_TRUE_KEY()macro returns a nonzero value if the given key code indicates a keyboard key. The
IS_EXT_ASCII_KEY()macro returns a nonzero value if the given key code represents a character that
can appear in a buffer (rather than a function key or cursor key). TheIS_WIN_KEY() macro returns a
nonzero value if the given key code indicates a window event like a menu selection, pressing a button on a
dialog, or getting the focus.

TheIS_MOUSE_LEFT(), IS_MOUSE_RIGHT(), andIS_MOUSE_CENTER()macros return
nonzero if a particular key code represents either a single or a double click of the indicated button. The
IS_MOUSE_SINGLE() andIS_MOUSE_DOUBLE()macros return nonzero if the given key code
represents a single-click or double-click, respectively, of any mouse button. TheIS_MOUSE_DOWN()
macro returns nonzero if the key code represents the pressing of any mouse button (either a single-click or a
double-click). Finally, theIS_MOUSE_UP()macro tells if a particular key code represents the release of
any mouse button.

456 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

user short mouse_pixel_x, mouse_pixel_y;
int y_pixels_per_char()
int x_pixels_per_char()
clip_mouse() /* mouse.e subr. */

On most systems, Epsilon can provide the mouse position with finer resolution than simply which
character it is on. Themouse_pixel_x andmouse_pixel_y variables contain the mouse position in
the most accurate form Epsilon provides. Setting the pixel variables moves the mouse cursor and resets the
mouse_x andmouse_y variables to match. Similarly, settingmouse_x or mouse_y resets the
corresponding pixel variable.

EEL subroutines should not assume any particular scaling between the screen character coordinates
provided bymouse_x andmouse_y and these “pixel” variables. The scaling varies with the screen
display mode or selected font. As with the character coordinates, the upper left corner has pixel coordinate
(0, 0). They_pixels_per_char() andx_pixels_per_char() primitives report the current
scaling between pixels and characters. For example,mouse_x usually equals the quantity
mouse_pixel_x / x_pixels_per_char(), rounded down to an integer.

Themouse_x variable can range from-1 to screen_cols, while the valid screen columns range
from0 to (screen_cols - 1). Epsilon uses the additional values to indicate that the user has tried to
move the mouse cursor off the screen, in environments which can detect this. (Only Epsilon for DOS or
Epsilon for OS/2 can detect this, and only when running full-screen.) Themouse_pixel_x variable, on
the other hand, ranges from0 to screen_cols * x_pixels_per_char(). The highest and lowest
values ofmouse_pixel_x correspond to the highest and lowest values ofmouse_x, while other values
obey the relation outlined in the previous paragraph. Themouse_y andmouse_pixel_y variables work
in the same way.

Theclip_mouse() subroutine alters themouse_x andmouse_y variables so that they refer to a
valid screen column, if they currently range off the screen.

user short mouse_shift;
short shift_pressed()
#define KB_ALT_DN 0x08 // Some Alt key
#define KB_CTRL_DN 0x04 // Some Ctrl key
#define KB_LSHIFT_DN 0x02 // Left shift key
#define KB_RSHIFT_DN 0x01 // Right shift key
#define KB_SHIFT_DN (KB_LSHIFT_DN | KB_RSHIFT_DN)

// Either shift key
int was_key_shifted()

When Epsilon dequeues a mouse event withwait_for_key(), it also sets themouse_shift
variable to indicate which shift keys were depressed at the time the mouse event was enqueued. The
shift_pressed() primitive returns the same codes, but indicates which shift keys are depressed at the
moment you call it.

Thewas_key_shifted() subroutine tells if the user held down Shift when pressing the current key.
Some keys produce the same key code with or without shift.

Unlike theshift_pressed() primitive, which reports on the current state of the Shift key, this one
works with keyboard macros by returning the state of the Shift key at the time the key was originally
pressed. A subroutine must callwas_key_shifted() at the time the macro is recorded for the Shift
state to be recorded in the macro. Macros defined by a command file can use anE- prefix to indicate this.

10.6. INPUT PRIMITIVES 457

short mouse_buttons()
int mouse_pressed()
get_movement_or_release() /* menu.e */

Themouse_buttons() primitive returns the number of buttons on the mouse. A value of zero
means that Epsilon could not find a mouse on the system.

Themouse_pressed() primitive returns a nonzero value if and only if some button on the mouse
has gone down but has not yet gone up. The subroutineget_movement_or_release() uses this
function. It delays until the mouse moves or all its buttons have been released.

Mouse Cursors

user short mouse_display;
user short mouse_auto_on; /* default = 1 */
user short mouse_auto_off; /* default = 1 */

Themouse_display primitive controls whether or not Epsilon displays the mouse cursor. Set it to
zero to turn the mouse cursor off, and to a nonzero value to turn the mouse cursor on. Turning off the mouse
cursor does not cause Epsilon to stop queuing up mouse events—to do that, usecatch_mouse.

Epsilon automatically turns on the mouse cursor when it detects mouse motion, if the
mouse_auto_on primitive has a nonzero value. Epsilon automatically turns off the mouse when you start
to type on the keyboard, if themouse_auto_off primitive has a nonzero value. Neither of these actions
affect the status of queuing up mouse events. When Epsilon automatically turns on the mouse cursor, it sets
mouse_display to 2.

user short mouse_graphic_cursor;
typedef struct mouse_cursor {

char on_pixels[32];
char off_pixels[32];
char hot_x, hot_y;
short stock_cursor;

} MOUSE_CURSOR;
MOUSE_CURSOR *mouse_cursor;
MOUSE_CURSOR std_pointer;
user int mouse_cursor_attr;
user int mouse_cursor_char;

Under DOS, Epsilon supports two types of mouse cursors. If the primitive
mouse_graphic_cursor has a nonzero value, Epsilon uses a graphic arrow symbol. If
mouse_graphic_cursor has a value of zero, Epsilon uses a reverse-highlighted character cell for the
mouse cursor.

By default, this arrow points to the left, but you can specify a pixel pattern to use by setting the
mouse_cursor primitive. It points to a structure of typeMOUSE_CURSOR that defines the shape of the
mouse cursor, and the hot spot. TheMOUSE_CURSOR type is built into Epsilon.

Epsilon turns off screen pixels according to theoff_pixels member, then toggles screen pixels
according to theon_pixels member. In other words, iforig contains a bit pattern from the screen while
on andoff hold bit patterns from the cursor structure, the C language expression((orig & off) ˆ
on) represents the bit pattern shown on the screen. Thehot_x andhot_y members specify the pixel

458 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

coordinates of the hot spot within the cursor image. Epsilon always positions the cursor so that the hot spot
appears at the current mouse pixel coordinates, and restricts mouse cursor movements so the hot spot is
never off the screen.

Thestd_pointer primitive variable contains Epsilon’s standard left-pointing arrow cursor. Use the
syntaxmouse_cursor = &some_cursor; to set the cursor to a differentMOUSE_CURSOR variable.

You can also alter the way Epsilon displays the cursor in text mode. Epsilon toggles the bits of the color
attribute code of the underlying screen character according to the value of themouse_cursor_attr
primitive. The default value of0x77 alters both foreground and background colors, while0x7 and0x70
alter only one or the other. A value of zero doesn’t change the attribute.

If the mouse_cursor_char primitive is nonzero, Epsilon replaces the character under the cursor
with the given value. For example, if this variable contains the ASCII code for ‘*’, the mouse cursor will be
a ‘*’ character. By default,mouse_cursor_char is zero andmouse_cursor_attr is 0x77.

Epsilon for OS/2 always uses a block cursor in full-screen sessions. In windowed sessions, OS/2
displays a graphic cursor, but themouse_display andmouse_cursor variables have no effect on it.

Epsilon for Windows uses one of several standard Windows cursors. Thestock_cursor member of
themouse_cursor variable selects which standard Windows cursor to use, according to the following
table, which lists the stock cursor codes defined in codes.h:

CURSOR_ARROW Standard arrow
CURSOR_IBEAM Text I-beam
CURSOR_WAIT Hourglass
CURSOR_CROSS Crosshair
CURSOR_UPARROW Arrow pointing up
CURSOR_SIZE Resize
CURSOR_ICON Empty icon
CURSOR_SIZENWSE Double-headed arrow pointing northwest and southeast
CURSOR_SIZENESW Double-headed arrow pointing northeast and southwest
CURSOR_SIZEWE Double-headed arrow pointing east and west
CURSOR_SIZENS Double-headed arrow pointing north and south
CURSOR_PAN Neutral cursor for wheeled mouse panning
CURSOR_PAN_UP Wheeled mouse cursor when panning up
CURSOR_PAN_DOWN Wheeled mouse cursor when panning down

Mouse Subroutines

window int (*mouse_handler)();
allow_mouse_switching(int nwin) // mouse.e subr.
buffer char mouse_dbl_selects;
char run_by_mouse;
char show_mouse_choices;

The mouse.e and menu.e files define the commands and functions normally bound to the mouse buttons.
The functions that handle button clicks examine the window-specific function pointermouse_handler so
that you can easily provide special functions for clicks in a particular window. By default, the variable
contains 0 in each window, so that Epsilon does no special processing. Set the variable to point to a
function, and Epsilon will call it whenever the user pushes a mouse button and the mouse cursor is over the

10.6. INPUT PRIMITIVES 459

indicated window. The function receives one parameter, the window handle of the specified window. It can
return nonzero to prevent the normal functioning of the button, or zero to let the function proceed.

Theallow_mouse_switching() subroutine is amouse_handler function. Normally, when a
pop-up window is on the screen, Epsilon doesn’t let the user simply switch to another window. Depending
on the context, Epsilon either removes the pop-up window and then switches to the new window, or signals
an error and remains in the pop-up window. If you set themouse_handler variable in a particular
window to theallow_mouse_switching() subroutine, Epsilon will permit switching to that window
if the user clicks in it, without deleting any pop-up window.

The buffer-specificmouse_dbl_selects variable controls what double-clicking with a mouse
button does. By default the variable is zero, and double-clicking selects words. If the variable is nonzero,
Epsilon instead runs the command bound to thehNewlinei key.

Therun_by_mouse variable is normally zero. Epsilon sets it to one while it runs a command that
was selected via a pull-down menu or using the tool bar. Commands can use this variable to behave
differently in this case. For example, the subroutine that provides completion automatically produces a list
of choices to choose from, when run via the mouse. It does this if theMUST_MATCH flag (see page 463)
indicates that the user must always pick one of the choices (instead of typing in a different selection), or if
theshow-mouse-choices variable is nonzero.

The Scroll Bar

user window int display_scroll_bar;
int scroll_bar_line()

The built-in variabledisplay_scroll_bar controls whether or not the current window’s right
border contains a scroll bar. Set it to zero to turn off the scroll bar, or to any positive number to display the
bar. If a window has no right border, or has room for fewer than two lines of text, Epsilon won’t display a
scroll bar. Although the EEL functions that come with Epsilon don’t support clicking on a scroll bar on the
left border of a window, Epsilon will display one ifdisplay_scroll_bar is negative. Any positive
value produces the usual right-border scroll bar. (This variable, and the following primitive, have no effect in
Epsilon for Windows, which handles scrolling internally.)

Thescroll_bar_line() primitive returns the position of the scroll box diamond on the scroll bar.
A value of one indicates the line just below the arrow at the top of the scroll bar. Epsilon always positions
this arrow adjacent to the first line of text in the window, so a return value ofn indicates the scroll box lies
adjacent to text linen in the window (numbered from zero).

scroll_by_wheel(int clicks, int per_click)

When you use a wheeled mouse like the Microsoft IntelliMouse, Epsilon for 32-bit Windows or Unix
calls thescroll_by_wheel() subroutine whenever you roll its wheel. (See the next section for
information on what happens when you click the wheel, not roll it.) Epsilon provides the number of clicks
of the wheel since the last time this function was called (which may be positive or negative) and the control
panel setting that indicates the number of lines Epsilon should scroll on each click.

After calling this subroutine, Epsilon can then optionally generate aWIN_WHEEL_KEY key event. See
page 460.

Mouse Panning

int mouse_panning;
int mouse_panning_rate(int percent, int slow, int fast)

460 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Themouse_panning variable and themouse_panning_rate() primitive work together to
support panning and auto-scroll with the Microsoft IntelliMouse (or any other three button mouse). The
EEL subroutine that receives clicks of the third mouse button setsmouse_panning nonzero to tell
Epsilon to begin panning and record the initial position of the mouse.

Then the subroutine can regularly callmouse_panning_rate() to determine how quickly, and in
what direction, to scroll. The parameterpercent specifies the percentage of the screen the mouse has to
travel to reach maximum speed (usually 40%). The parameterslow specifies the minimum speed in
milliseconds per screen line (usually 2000 ms/line). The parameterfast specifies the maximum speed in
milliseconds per screen line (usually 1 ms/line).

Themouse_panning_rate() primitive uses these figures, plus the current position of the mouse,
to return the scroll rate in milliseconds per screen line. It returns a positive number if Epsilon should scroll
down, a negative number to scroll up, or zero if Epsilon should not scroll.

See the previous section for information on what happens when you roll the wheel on a wheeled mouse
instead of clicking it.

10.6.3 Window Events

When an EEL function callsgetkey() to retrieve the next key, it sometimes receives a key code that
doesn’t correspond to any actual key, but represents some other kind of input event. Mouse keys (see page
455) are one example of this. This section describes the other key codes Epsilon uses for input events. These
keys only occur in the Windows version.

TheWIN_MENU_SELECT key indicates that the user selected an item from a menu or the tool bar.
Epsilon sets the variablemenu_command to the name of the selected command whenever it returns this
key.

TheWIN_DRAG_DROP key indicates that the user has just dropped a file on one of Epsilon’s windows,
or that Epsilon has received a DDE message from another program. See the description of the
drag_drop_result() primitive on page 417.

TheWIN_EXIT key indicates that the user has tried to close Epsilon, by clicking on the close box, for
example.

TheWIN_HELP_REQUEST key indicates that the user has just pushed a button in Epsilon’s help file to
set a particular variable or run a command. Epsilon fills themenu_command variable with the message
from the help system.

TheGETFOCUS andLOSEFOCUS keys indicate that a particular screen has gained or lost the focus.
These setmouse_screen just like mouse keys. (See page 455.)

TheWIN_RESIZE key indicates that Epsilon has resized a screen. Sometimes Epsilon will resize the
screen without returning this key.

TheWIN_VERT_SCROLL key indicates that Epsilon has scrolled a window. Epsilon doesn’t normally
return keys for these events. Instead, Epsilon calls the EEL subroutinescrollbar_handler() from
within thewait_for_key() function, passing it information on which scroll bar was clicked, which part
of the scroll bar was selected, and so forth.

Epsilon only recognizes user attempts to scroll by clicking on the scroll bar, or to resize the window,
when it waits for a key in a recursive edit level. When an EEL command requests a key, Epsilon normally
ignores attempts to scroll, and postpones acting on resize attempts.

An EEL command can set thepermit_window_keys variable to allow these things to happen
immediately, and possibly redraw the screen. Bits in the variable control these activities: set the
PERMIT_SCROLL_KEY bit to permit immediate scrolling, and setPERMIT_RESIZE_KEY to permit

10.6. INPUT PRIMITIVES 461

resizing. SettingPERMIT_SCROLL_KEY also makes Epsilon return theWIN_VERT_SCROLL key shortly
after scrolling. Setting thePERMIT_WHEEL_KEY bit tells Epsilon to generate aWIN_WHEEL_KEY key
event after scrolling due to a wheel roll on a Microsoft IntelliMouse.

TheWIN_BUTTON key indicates that the user has clicked on a button in a dialog box, or selected the
button via the keyboard. By default, Epsilon translates each button to a standard key like Ctrl-M. An EEL
program can set the variablereturn_raw_buttons to disable this translation and instead receive
WIN_BUTTON keys for each button pressed.

10.6.4 Completion

There are several EEL subroutines defined in complete.e that get a line of input from the user, allowing
normal editing. Most of them offer some sort of completion as well. They also provide a command history.

Each function takes two or three arguments. The first argument is an array of characters in which to
store the result. The second argument is a prompt string to print in the echo area. The third argument, if
there is one, is the default string. Depending on the setting of theinsert-default-response
variable, Epsilon may insert this string after the prompt, highlighted, or it may be available by pressing
Ctrl-R or Ctrl-S.

Some functions will substitute the default string if you presshEnteri without typing any response.
These functions display the default to you inside square brackets[] (whenever they don’t actually
pre-type the default after the prompt). The prompt that you must provide to these functions shouldn’t
include the square brackets, or the colon and space that typically ends an Epsilon prompt. The function will
add these on before it displays the prompt. If there should be no default, use the empty string"".

get_file(char *res, char *pr, char *def)
get_file_dir(char *res, char *pr)

Theget_file() andget_file_dir() subroutines provide file name completion. When the
get_file() subroutine constructs its prompt, it begins with the prompt stringpr, then appends a colon
‘:’ and a space. (Ifinsert-default-response is zero, it also includes the default value in the
prompt, inside square brackets.) If the user presseshEnteri without typing any response,get_file()
copies the defaultdef to the response stringres.

Theget_file_dir() subroutine provides the directory part of the current file name, inserted as part
of a default response or available via Ctrl-S or Ctrl-R (see the description of the
prompt-with-buffer-directory variable), but it doesn’t display that as part of the prompt. It uses
the promptpr as is. It doesn’t substitute any default if the user enters no file name. Bothget_file() and
get_file_dir() call absolute() on the name of the file before returning (see page 405).

get_buf(char *res, char *pr, char *def)

Theget_buf() subroutine completes on the name of a buffer. To construct its prompt, the subroutine
begins with the prompt stringpr, then adds the defaultdef inside square brackets[], and then appends a
colon ‘:’ and a space.

get_any(char *res, char *pr, char *def)
get_cmd(char *res, char *pr, char *def)
get_macname(char *res, char *pr, char *def)
get_func(char *res, char *pr, char *def)
get_var(char *res, char *pr, char *def, int flags)

462 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Epsilon locates commands, subroutines, and variables by looking them up in itsname table. See page
439 for details. The subroutines that complete on commands, variables and so forth all look in the same
table, but restrict their attention to particular types of name table entries. For example, the
get_macname() subroutine ignores all name table entries except those for keyboard macros. In the
following table, * indicates that the subroutine allows entries of that type.

Command Subr. Kbd. Macro Key Table Variable
get_any() * * * * *
get_cmd() * *
get_func() * *
get_macname() *
get_var() *

These subroutines all substitute the default string if you just presshEnteri without entering anything.
They also display the default inside square brackets[] after the prompt you provide (if
insert-default-response is zero), and then append a colon ‘:’ and a space.

Theget_var() subroutine takes an additional, fourth parameter. It contains a set of flags to pass to
thecomp_read() subroutine, as listed below.

int get_command_index(char *pr)

Theget_command_index() subroutine defined in control.e calls theget_cmd() subroutine to
ask the user for the name of a command. It then checks to see if the command exists, and reports an error if
it doesn’t. (When checking, it allows subroutines and macros as well as actual commands.) If the function
name checks out,get_command_index() returns its name table index.

int get_key_response(char *valid, int def)

Theget_key_response() subroutine waits for the user to type a valid key in response to a prompt.
The parametervalid lists the acceptable characters, such as"YN" for a yes/no question. (But see the
ask_yn() subroutine, more suitable for yes/no questions.) Thedef parameter, if greater than zero,
indicates which key should be the default if the user presseshEnteri. The subroutine returns the selected key.

Completion Internals

/* bits for finder func */
#define STARTMATCH 1
#define LISTMATCH 2
#define EXACTONLY 4
#define FM_NO_DIRS (0x10)
#define FM_ONLY_DIRS (0x20)
char *b_match(char *partial, int flags)

/* sample finder */

comp_read(char *response, char *prmpt,
char *(*finder)(), int flags, char *def)

/* bits for comp_read() */
#define CAUTIOUS (0x100)

10.6. INPUT PRIMITIVES 463

#define COMP_FOLD (0x200)
#define MUST_MATCH (0x400)
#define NONE_OK (0x800)
#define POP_UP_PROMPT (0x1000)
#define COMP_FILE (0x2000 | CAUTIOUS)
#define PASSWORD_PROMPT (0x4000)
#define SPACE_VALID (0x8000)

prompt_comp_read(char *response, char *prmpt,
char *(*finder)(), int flags,
char *def)

It’s easy to add new subroutines that can complete on other things. First, you must write a “finder”
function that returns each of the possible matches, one at a time, for something the user has typed. For
example, theget_buf() subroutine uses the finder functionb_match().

A finder function takes a parameterpartial which contains what the user’s typed so far, and a set of
flags. If theSTARTMATCH flag is on, the function must return the first match ofpartial. If
STARTMATCH is off, it should return the next match. The function should return0 when there are no more
matches. TheLISTMATCH flag is on when Epsilon is preparing a list of choices because the user has
pressed ‘?’. This is so that a finder function can format the results differently in that case. If the
EXACTONLY flag is on, the finder function should return only exact matches forpartial. If the finder
function is matching file names, you may also provide theFM_NO_DIRS flag, to exclude directory names,
or FM_ONLY_DIRS to retrieve only directory names.

Next, write a subroutine like the variousget_ routines described above, all of which are defined in
complete.e. It should take a prompt string, possibly a default string, and a character pointer in which to put
the user’s response. It passes these to thecomp_read() subroutine, along with the name of your finder
function (as a function pointer).

Thecomp_read() subroutine also takes aflags parameter. If theCAUTIOUS flag is zero,
comp_read() assumes that all matches for a certain string will begin with that string, and that if there is
only one match for a certain string, adding characters to that string won’t generate any more matches. These
assumptions are true for most things Epsilon completes on, but they’re not true for files. (For example, if the
only match for x is xyz, but xyz is a directory with many files, the second assumption would be false. The
first assumption is false when Epsilon completes on wildcard patterns like*.c, since none of the matches
will start with the* character.) If you provide theCAUTIOUS flag when you callcomp_read(), Epsilon
doesn’t make those assumptions, and completion is somewhat slower.

Actually, when completing on files, provide theCOMP_FILE macro instead of justCAUTIOUS; this
includesCAUTIOUS but also makes Epsilon use some special rules necessary for completing on file names.

If you provide theCOMP_FOLD flag tocomp_read(), it will do case-folding when comparing
possible completions.

TheMUST_MATCH flag tellscomp_read() that if the user types a response that the finder function
doesn’t recognize, it’s probably a mistake. Thecomp_read() subroutine will then offer a list of possible
responses, even though the user may not have pressed a key that ordinarily triggers completion. The
comp_read() subroutine might still return with an unrecognized response, though. This flag is simply
advice tocomp_read(). TheNONE_OK flag is used only withMUST_MATCH. It tellscomp_read()
that an empty response (just typinghEnteri) is ok.

Under Epsilon for Windows, thePOP_UP_PROMPT flag tellscomp_read() to immediately pop up a
one-line dialog box when prompting. Right now, this flag may only be used when no completion is involved,
andcomp_read() is simply prompting for a line of text.

464 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

ThePASSWORD_PROMPT flag tellscomp_read() to display each character of the response as a*
character. When the Internet functions prompt for a password they use this flag.

TheSPACE_VALID flag tellscomp_read() that ahSpacei character is valid in the response. Since
hSpacei is also a completion character,comp_read() tries to guess whether to add ahSpacei or complete,
by examining possible matches.

A finder function receives any of the above flags that were passed tocomp_read(), so it can alter its
behavior if it wants.

Thecomp_read() subroutine uses the prompt you supply as-is. Usually, the prompt should end with
a colon and a space, like"Find file: ". By contrast, theprompt_comp_read() subroutine adds
to the supplied prompt by showing the default value inside square brackets, when
insert-default-response is zero. The prompt string you supply to it should not end with a colon
and space, since Epsilon will add these. If you provide a prompt such as"Buffer name" and a default
value of"main", Epsilon will displayBuffer name [main]: . If the default value you provide is
empty or too long, Epsilon will instead displayBuffer name: , omitting the default. Whether or not
Epsilon displays the default, if the user doesn’t enter any text at the prompt theprompt_comp_read()
subroutine substitutes the default value by copyingdef to response.

char *(*list_finder)();
list_matches(char *s, char *(*finder)(), int flags, int mbuf)
int *(*completion_lister)();
char resize_menu_list;

Thecomp_read() subroutine looks at several variables whenever it needs to display a list of possible
completions (such as when the user types ‘?’). You can change the way Epsilon displays the list by setting
these variables. Typically, you would use thesave_var statement to temporarily set one of these while
your completion routine runs.

By default, Epsilon calls thelist_matches() subroutine to prepare its buffer of possible matches.
The function takes the string to complete on, the finder function to use, flags as described above, and a
buffer number. It calls the finder function repeatedly (passing it theLISTMATCH flag as well as any others
passed tolist_matches()) and puts the resulting matches into the indicated buffer, after sorting the
matches. If thecompletion_lister function pointer is non-null, Epsilon calls that function instead of
list_matches(), passing it the same parameters. If, for example, you have to sort the matches in a
special order, you can set this variable.

If you simply want a different list of matches when Epsilon lists them, as opposed to when Epsilon
completes on them, you can set thelist_finder function pointer to point to a different finder function.
Thelist_matches() subroutine always uses this variable if non-null, instead of the finder function it
receives as a parameter.

An EEL completion function can temporarily set theresize_menu_list variable nonzero to
indicate that if the user tries to list possible completion choices, the window displaying the choices should
be widened if necessary to fit the widest choice. This variable has no effect on Epsilon windows within GUI
dialogs.

int complete(char *response, char *(*finder)(), int flags)

To actually do completion,comp_read() calls thecomplete() subroutine. It takes a finder
function pointer, flags likeCAUTIOUS andCOMP_FOLD described above, and a string to complete on. It
tries to extend the string with additional characters from the matches, modifying it in place.

Thecomplete() subroutine generally returns the number of possible matches for the string.
However, it may be able to determine that no more completion is possible before reaching the last match.

10.6. INPUT PRIMITIVES 465

For example, if the subroutine tries to complete on the file name “foo”, and encounters files named “foobar”,
“foobaz”, “foo3”, “foo4” and so forth, it can determine on the third file that no completion is possible. In
this case, it returns3, even though there may be additional matches. It can only “give up early” in this way
when it has encountered two or more matches. So when the subroutine returns a value of two or greater,
there may be additional matches not included in its count.

build_prompt(char *full, char *pr, char *def, int omit, int rel)

Thebuild_prompt() subroutine helps construct the text of a prompt. It copies the promptpr to full,
appending the default valuedef to it (inside brackets).

If the combination would be too wide for the screen, the subroutine abbreviates the default value. If
even an abbreviated value would be too wide, or ifomit is nonzero, it omits the default from the prompt
entirely. If rel is nonzero, it assumesdef is an absolute pathname, and uses its relative form.

find_buffer_prefix(int buf, char *prefix)

Thefind_buffer_prefix() subroutine looks through all the lines in the bufferbuf to see if they
all start with the same string of characters. It puts any such common prefix shared by all the lines in
prefix. For instance, if the buffer contains three lines “waters”, “watering” and “waterfall”, it would put
the string “water” indest.

char *general_matcher(char *s, int flags)

Epsilon providers a general-purpose finder function calledgeneral_matcher(). An EEL function
can perform completion on some arbitrary list of words by putting the list of words in a buffer named
_MATCH_BUF (a macro defined in eel.h) and then providinggeneral_matcher() as a finder function
to a subroutine likecomp_read(). Callcomp_read() with theCOMP_FOLD flag if you want
general_matcher() to ignore case when comparing.

Listing Commands, Buffers, or Files

int name_match(char *prefix, int start)

Several primitives help to perform completion. Thename_match() primitive takes a command prefix
such as “nex” and a number. It finds the next command that begins with the supplied prefix, returning its
name table index. If its numeric argument is nonzero, it starts at the beginning of the name table. Otherwise
it continues from the name table index returned on the previous call. It returns zero when there are no more
matching names. When comparing names, case doesn’t count and ‘-’ is the same as ‘_’.

char *buf_match(char *pattern, int flags)
char *do_file_match(char *pattern, int flags)
#define STARTMATCH 1
#define EXACTONLY 4
#define FM_NO_DIRS (0x10)
#define FM_ONLY_DIRS (0x20)
char *file_match(char *pattern, int flags)

466 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Thebuf_match() andfile_match() primitives are similar toname_match(). Instead of
returning a command index, they return the actual matching buffer or file names, respectively, and return a
null pointer when there are no more matches.

Thebuf_match() primitive returns one of a series of buffer names that match a pattern. The pattern
is of the sort thatfpatmatch() accepts:* matches any number of characters,? matches a single
character, and[a-z] represents a character class. TheSTARTMATCH flag tells it to examine the pattern
and return the first match; omitting the flag makes it return the next match of the current pattern. The
EXACTONLY flag tells it to return only exact matches of the pattern; otherwise it returns buffer names that
start with a match of the pattern (as if it ended in*).

Thefile_match() primitive returns one of a series of file names that match a pattern. You can use
this primitive to expand file name patterns such asa*.c. See page 107 for details on Epsilon’s syntax for
file patterns. TheSTARTMATCH flag tells it to examine the pattern and return the first match; omitting the
flag makes it return the next match of the current pattern. TheEXACTONLY flag tells it to return only exact
matches of the pattern; otherwise it returns file names that start with a match of the pattern. Use the
FM_NO_DIRS flags if you want to skip over directories when looking for files that match, or
FM_ONLY_DIRS to retrieve only directory names.

Instead of directly calling thefile_match() primitive, you should call the subroutine
do_file_match(). It takes the same arguments asfile_match() and returns the same value. In fact,
by default it simply callsfile_match(). But a user extension can replace the subroutine to provide
Epsilon with new rules for file matching.

short abort_file_matching = 0;
#define ABORT_IGNORE 0 /* ignore abort key & continue */
#define ABORT_JUMP -1 /* jump via check_abort() */
#define ABORT_ERROR -2 /* return ABORT_ERROR as error code */

By default, thefile_match() anddo_dired() primitives ignore the abort key. (See page 404 for
information ondo_dired().) To permit aborting a long file match, set the primitive variable
abort_file_matching usingsave_var to tell Epsilon what to do when the user presses the abort
key. If you setabort_file_matching to ABORT_ERROR and the user presses the abort key, this
function will return a failure code and seterrno to EREADABORT. Set the variable toABORT_JUMP if
you want Epsilon to abort your function by calling thecheck_abort() primitive. (See page 433.) By
default, the variable is zero, and Epsilon ignores the abort key until the primitive finishes.

10.6.5 Other Input Functions

get_strdef(char *res, char *pr, char *def)
get_strnone(char *res, char *pr, char *def)
get_string(char *res, char *pr)
get_str_auto_def(char *res, char *pr)
get_strpopup(char *res, char *title,

char *def, char *help)

The subroutinesget_string(), get_strdef(), and the rest each get a string from the user, and
perform no completion. They each display the prompt, and accept a line of input with editing.

Theget_strdef() routine additionally displays the default string (indicated bydef) and allows the
user to select the default by typing just thehEnteri key. The user can also pull in the default with Ctrl-S, and
then edit the string if desired. While the other two functions use their prompt arguments as-is,
get_strdef() constructs the actual prompt by adding a colon and space. If

10.6. INPUT PRIMITIVES 467

insert-default-response is zero, they also include the default value in the prompt, inside square
brackets.

Theget_strnone() subroutine works likeget_strdef(), except that the default string is not
displayed in the prompt (even wheninsert-default-response is zero), and Epsilon won’t replace
an empty response with the default string. Use this instead ofget_strdef() if an empty response is
valid.

Theget_str_auto_def() subroutine is likeget_strdef(), except it automatically provides
the last response to the current prompt as a default.

Theget_strpopup() subroutine is a variation ofget_strnone() that is only available under
Epsilon for Windows. It displays a simple dialog. The parametertitle provides the dialog’s title, and
def provides the initial contents of the response area, which is returned inres. If the user presses the Help
button, Epsilon will look up help for the specified command or variable name or other topic name in its help
file.

int get_number(char *pr)
int numtoi(char *str)
int strtoi(char *str, int base)
char got_bad_number;

Theget_number() subroutine is handy when a command needs a number. It prompts for the
number usingget_string(), but uses the prefix argument instead if one is provided. It returns the
number obtained, and also takes care of resettingiter if necessary. It also understands numbers such as
0x10 in EEL’s hexadecimal (base 16) format, binary and octal numbers, and character codes like’a’.

Theget_number() subroutine uses thenumtoi() subroutine to convert from the typed string to a
number. Thenumtoi() subroutine skips over any spaces at the beginning of its string parameter,
determines the base (by seeing if the string starts with “0x” or similar), and then callsstrtoi() to
perform the actual conversion. The subroutinestrtoi() takes a string and a base, and returns the value of
the string assuming it is a number in that base. It handles bases from 2 to 16, and negative numbers too. It
stops when it finds a character that is not a legal digit in the requested base. Bothnumtoi() and
strtoi() are defined in basic.e.

The subroutinesget_number(), numtoi(), andstrtoi() set the variablegot_bad_number
to a nonzero value if the string they receive doesn’t indicate a valid number. They return the value zero in
this case. If the string does represent a number, they setgot_bad_number to zero.

int get_choice(int list, char *resp, char *title,
char *msg, char *b1, char *b2,
char *b3)

int select_menu_item(int resbuf, int menuwin,
int owin, int dir)

Theget_choice() subroutine provides a way to ask the user to select one of a list of choices. The
choices must appear in the bufferlist, one to a line. The subroutine displays a pop-up window with the
indicated title and shows the specified message.

Epsilon for Windows instead displays a dialog with the indicated title, and doesn’t use the message. It
uses the specified button labels (see the description of thebutton_dialog() primitive on page 469 for
details). Theget_choice() subroutine puts the user’s choice inresp and returns1. If the user cancels,
the subroutine returns0.

If resp is initially nonempty,get_choice() will position point on the first line starting with that
text. If resp is initially "", the subroutine won’t change point inlist.

468 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Theget_choice() subroutine uses theselect_menu_item() subroutine to handle user
interaction. It takes the window handlemenuwin of a window containing a list of choices and returns when
the user has selected one. The parameterowin should be the handle of the window that was current before
displayingmenuwin. If resbuf is nonzero, Epsilon will copy the selected line to the specified buffer.

The parameterdir tells Epsilon how to behave when the user presses self-inserting keys like ‘a’. If
dir is zero, the subroutine interprets N and P to move forward and back, and Q to quit. Other normal keys
are ignored. Ifdir is 1 or-1, andsearch-in-menu is nonzero, normal keys are added to the result, and
Epsilon searches for the first (if1) or last (if-1) item that matches.

10.6.6 Dialogs

Standard Dialogs

short common_file_dlg(char *fname, char *title,
int *flags, int save,
?char *filt_str, ?char *cust_filter,
?int *filt_index)

short use_common_file_dlg(char *fname, char *title,
int *flags, int save)

int use_common_file_dialog()

Thecommon_file_dlg() primitive displays the Windows Common Open/Save File Dialog. The
fname parameter should be initialized to the desired default file name; on return it will hold the file name
the user selected. Thetitle parameter specifies the title of the dialog window. Epsilon passes theflags
parameter to Windows; definitions for useful flag values appear in codes.h. Windows modifies some of the
flags before it returns from the dialog. If the parametersave is nonzero, Epsilon displays the Save dialog, if
zero it uses the Open dialog. This primitive uses thecommon-open-curdir variable to hold the
directory that this dialog should display.

The filter parameters let you specify the file types the user can select; these are all passed directly to
Windows. Epsilon normally invokescommon_file_dlg() through theuse_common_file_dlg()
subroutine, which uses the filter definitions in the variablefilter_str, defined in filter.h. You can edit
that file to add new filters.

The variablefilter_str has the following format. It consists of pairs of strings. The first string says
what to display in the dialog, while the second is a Windows-style list of file patterns, separated by
semicolons. For example, the first string might be"Fortran files" and the second string might be
"*.for;*.f77". In thefilter_str definition, each string must be followed by a"n0"; this lets
Windows separate one string from the next.

Theuse_common_file_dialog() subroutine examines thewant-common-file-dialog
variable and other settings and tells whether a command should use the common file dialog in place of
Epsilon’s traditional file dialog.

find_dialog(int show)
find_dialog_say(char *text)

Thefind_dialog() primitive displays a find/replace dialog, when its parametershow is nonzero.
When its parameter show is zero, it hides the dialog. While a find/replace dialog is on the screen, the
getkey() function returns certain predefined keys to indicate dialog events such as clicking a button or
modifying the search string. The_find() subroutine defined in search.e interprets these key codes to
control the dialog. The global variablefind_data lets that subroutine control the contents of the dialog.

10.6. INPUT PRIMITIVES 469

When a find/replace dialog is on the screen, an EEL program can display an error message in it using
thefind_dialog_say() primitive. This also adds an alert symbol to the dialog. To clear the message
and remove the alert symbol, pass a parameter of"".

short window_lines_visible(int w)

Thewindow_lines_visible() primitive returns the number of lines of a given window that are
visible above a find/replace dialog. If the given window contains twelve lines, but a find/replace dialog
covers the bottom three, this function would return nine. If Epsilon isn’t displaying a find/replace dialog, the
function returns the number of lines in the given window.

int comm_dlg_color(int oldcolor, char *title)

In Epsilon for Windows, thecomm_dlg_color() primitive lets the user select a color using the
Windows common color dialog. Theoldcolor parameter specifies the default color, andtitle specifies
the dialog’s title. The primitive returns the selected color, or-1 if the user canceled.

about_box()

Theabout_box() primitive displays Epsilon’s “About” box under Windows. In other versions of
Epsilon, it inserts similar information into the current buffer. Theabout-epsilon command uses this
primitive.

Button Dialogs

short button_dialog(char *title, char *question,
char *yes, char *no, char *cancel,
int def_button)

Thebutton_dialog() primitive displays a dialog having one to three buttons. By convention, these
buttons have meanings of “Yes”, “No”, and “Cancel”, but the labels may have any text. Set thecancel
parameter to"" to use a dialog with two buttons. Set bothcancel andno to "" if you want a dialog with
one button. Put & before a character in a button label to make it an access key; it will be underlined, and
pressing the key will act like clicking that button. Use && for a literal & character. The parametertitle
specifies the title of the dialog. The parameterquestion holds the text to display in the dialog next to the
buttons.

Setdef_button to 1, 2, or3 to make the default button be the first, second or third. Any other value
for def_button is the same as 1. Canceling or closing the dialog is equivalent to pressing the last defined
button.

The primitive returns1, 2, or3 to indicate which button was pressed. This primitive only works in the
Windows version of Epsilon; read on for a similar function that works everywhere.

int ask_yn(char *title, char *question, char *yes_button,
char *no_button, int def_button)

Theask_yn() subroutine defined in basic.e asks a Yes/No question. Under Windows, it uses a dialog.
The parameters specify the title of the dialog, the text of the question displayed in it, and the text on its two
buttons (typically “Yes” and “No”, but sometimes “Save” and “Cancel” or the like). Put & before a

470 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

character in a button label to make it an access key; it will be underlined, and pressing the key will act like
clicking that button. Use && for a literal & character.

Setdef_button to 0 for no default,1 to make the first choice “Yes” the default, or2 to make the
second choice “No” the default. (Under non-Windows versions, no default means that just hittinghEnteri
won’t return from this function; you must choose an option. Under Windows, no default is the same as a
default of “Yes”.) The function returns1 if the user selected the first option “Yes” or0 if the user selected
the section option “No”. Non-Windows versions of Epsilon only use thequestion anddef_button
parameters. They modifies the prompt to indicate the default, if any.

Windowed Dialogs

display_dialog_box(char *dialogname, char *title,
int win1, int win2, int win3,
char *button1, char *button2, char *button3)

Thedisplay_dialog_box() primitive creates a new dialog box in Epsilon for Windows
containing one or more Epsilon windows. Thedialogname must correspond to one of the dialogs in this
list:

Dialog name Windows Dialog name Windows
AskExitBox 2 GeneralBox 1

AskSaveBox 2 HelpSetup1 1
CaptionBox 2 OneLineBox 1

EditVarBox 2 PromptBox 2

FileDateBox 1 SetColorBox 3
FileDateBox2 1 UsageBox 1

Each dialog requires one to three handles to pop-up windows, created withadd_popup() in the usual
way. The primitive moves these windows to the new dialog box. If you use a dialog which requires only one
or two window handles, provide zero for the remaining handles. The windows will be resized to fit the
dialog, and each will be assigned a unique “screen handle”. Mouse clicks in that window will set the
mouse_screen variable to the matching screen handle. You can use thewindow_to_screen()
primitive to determine the screen number assigned to each window.

The parametersbutton1, button2, andbutton3 specify the text for the buttons. If you want
fewer buttons, provide the value"" for button2 or button3 and that button will not appear. The
specifiedtitle appears at the top of the dialog box.

When you click on a button in a dialog, Epsilon normally returns a particular fixed keystroke: either
Ctrl-M, or the abort key specified by theabort_key variable, or the help key specified by theHELPKEY
macro, for the first, second, and third buttons respectively. These correspond to typical button labels of
“OK”, “Cancel”, and “Help”, so that most EEL programs don’t need to do anything special to receive input
from buttons. If an EEL program needs to know whether a keypress came from an actual key, or a button, it
can examine the value of thekey_is_button variable. This variable is zero whenever the last key
returned was an actual key, and nonzero when it was really a button. In the latter case, its value is1 if the
leftmost button was pressed,2 if the next button was pressed, and so forth.

Sometimes an EEL program puts different labels on the buttons. It can be more convenient in this case
to retrieve a button press as a distinct key. Set thereturn_raw_buttons variable to a nonzero value to
retrieve all button presses as the key codeWIN_BUTTON. Thekey_is_button variable will still be set
as described above, so you can distinguish one button from another by examining its value.

10.6. INPUT PRIMITIVES 471

one_window_to_dialog(char *title, int win1,
char *button1, char *button2, char *button3)

prompt_box(char *title, int win1, int win2)
two_scroll_box(char *title, int win1, int win2,

char *button1, char *button2, char *button3)

The subroutinesone_window_to_dialog(),prompt_box(), andtwo_scroll_box() each
call display_dialog_box()with some of its parameters filled in for you. They display certain
common kinds of dialogs. Callone_window_to_dialog() to display a dialog with a single text
window and one to three buttons. To see an example, define a bookmark with Alt-/ and then type Alt-X
list-bookmarks. Callprompt_box() to display a dialog with a one-line window, and below it a list-box
style window. To see an example, type Ctrl-X Ctrl-F and then ’?’. Calltwo_scroll_box() to display a
dialog box with two multi-line windows.

next_dialog_item()
prev_dialog_item()

Within an Epsilon window that’s part of a dialog box, thenext_dialog_item() and
prev_dialog_item() primitives move the focus to a different window or button within the dialog box.
Epsilon normally bindshTabi and Shift-hTabi to commands that use these primitives.

set_window_caption(int win, char *title)
show_window_caption()

Theset_window_caption() primitive sets the text in the title bar of the dialog box containing the
windowwin. If the specified window is on Epsilon’s main screen, it sets the main window title displayed
above the menu bar. Theshow_window_caption() subroutine calls this to include the current file
name in the caption of Epsilon’s main window.

10.6.7 The Main Loop

While Epsilon runs, it repeatedly gets keys, executes the commands bound to them, and displays any
changes to buffers that result. We call this process themain loop. Epsilon loops until you call the
leave_recursion() primitive, as described on page 434. The steps in the main loop are as follows:

� Epsilon resets thein_echo_area variable. See page 380.

� Epsilon calls thecheck_abort() primitive to see if you pressed the abort key since the last time
check_abort() was called. If so, an abort happens. See page 433.

� Epsilon sets the current buffer to be the buffer connected to the current window.

� Epsilon callsmaybe_refresh(), so that all windows are brought up to date if the next key is not
ready yet.

� Epsilon callsundo_mainloop(), to make sure undo information is kept for the current buffer, and
to tell the undo system that future buffer changes will be part of the next command.

� Epsilon sets thethis_cmd andhas_arg variables to0, and theiter variable to1. See below.

� Epsilon calls the EEL subroutinegetkey(). This subroutine in turn calls thewait_for_key()
primitive to wait for the next key, mouse click, or other event.

472 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

� Epsilon executes the new key by calling the primitivedo_topkey() as described on page 473.

� Epsilon sets theprev_cmd variable to the value inthis_cmd.

user short this_cmd;
user short prev_cmd;
invisible_cmd()

Some commands behave differently depending on what command preceded them. For example,up-line
behaves differently when the previous command was alsoup-line. To get this behavior, the command acts
differently if prev_cmd is set to a certain value and setsthis_cmd to that value itself. Epsilon copies the
value inthis_cmd to prev_cmd and then clearsthis_cmd, each time through the main loop.

Sometimes a command doesn’t wish to be counted when determining the previous command. For
example, when you move the mouse, Epsilon is actually running a command. But theup-line command of
the previous example must behave the same, whether or not you happen to move the mouse between one
up-line and the next. A command may call theinvisible_cmd() primitive to make commands like
up-line ignore it. (In fact, the primitive simply setsthis_cmd equal toprev_cmd.)

user char has_arg;
user int iter;

Numeric arguments work using thehas_arg anditer variables. The main loop resetsiter to 1
andhas_arg to0. Theargument command setsiter to the value of the argument, and setshas_arg to
1 so other commands can distinguish an argument of1 from no argument. Thedo_command() primitive,
described on page 473, will repeatedly execute a command whileiter’s value is greater than one,
subtracting one fromiter’s value with each execution. If a command wants to handle arguments itself, it
must setiter to one or less before returning, or the main loop will call it again.

user short cmd_len;

Any command may get more keys using thewait_for_key() primitive (usually by calling
getkey(); see page 449). Epsilon counts the keys used so far by the current command and stores the
value in the variablecmd_len. This counter is reset to zero each time Epsilon goes through the main loop.
The counter doesn’t count mouse keys or other events that appear as keys.

10.6.8 Bindings

Epsilon lets each buffer have a different set of key bindings appropriate to editing the type of text in that
buffer. For instance, while in a buffer with EEL source code, a certain key could indent the current function.
The same key might indent a paragraph in a buffer with text.

A key table stores a set of key bindings. A key table is an array, with one entry for each key on the
keyboard. Each entry in the array contains an index into the name table. (See page 439.) If the value of a
particular entry is negative or zero, it means the key is undefined according to that table. The file eel.h
defines a macro calledNUMKEYS that provides the number of bindable keys on the keyboard. A key table,
then, is an array ofNUMKEYS short ints.

buffer short *mode_keys;
short *root_keys;
keytable reg_tab, c_tab;

10.6. INPUT PRIMITIVES 473

Epsilon uses two key tables in its search for the binding of a key. First it looks in the key table
referenced by the buffer-specific variablemode_keys. If the entry for the key is negative, Epsilon
considers the command unbound and signals an error. If the entry for the key is0, as it usually is, Epsilon
uses the entry in the key table referenced by the variableroot_keys instead. If the resulting entry is zero
or negative, Epsilon considers the key unbound. If it finds an entry for the key that is a positive number,
Epsilon considers that number the key’s binding. The number is actually an index into the name table.

Most entries in a key table refer to commands, but an entry may also refer to a subroutine (if it takes no
arguments), to a keyboard macro, or to another key table. For example, the entry for Ctrl-X in the default
key table refers to a key table namedcx_tab, which contains the Ctrl-X commands. The entry for the
find-file command bound to Ctrl-X Ctrl-F appears in thecx_tab key table.

Normally in Epsilon theroot_keys variable points to thereg_tab array. Themode_keys
variable points to one of the many mode-specific tables, such asc_tab for C mode.

int new_table(char *name)
int make_anon_keytable() /* control.e */
short *index_table(int index)

Key tables are usually defined with thekeytable keyword as described on page 325. If a key table’s
name is not known when the routine is compiled, thenew_table() primitive can be used. It makes a new
key table with the given name. All entries in it are0.

Themake_anon_keytable() subroutine defined in control.e callsnew_table(), first choosing
an unused name for the table. Theindex_table() function takes a name table index and retrieves the
key table it refers to.

fix_key_table(short *ftab, int fval, short *ttab, int tval)
set_case_indirect(short *tab)
set_list_keys(short *tab)

Thefix_key_table() subroutine copies key table information from one key table to another. For
each key inftab bound to the functionfval, the subroutine binds that key inttab to the functiontval.

Theset_case_indirect() subroutine sets the upper case letter keys in a key table to indirect
through their lower case equivalents. Theset_list_keys() subroutine does that, and also sets the ‘n’
and ‘p’ keys to move up or down by lines.

do_topkey()
run_topkey()

When Epsilon is ready to execute a key in its main loop, it calls the primitivedo_topkey(). This
primitive searches the key tables for the command bound to the current key, as described above. When it has
found the name table index, it callsdo_command(), below, to interpret the command.

Therun_topkey() subroutine provides a wrapper arounddo_topkey() that resetsiter and
similar variables like the main loop does. An EEL subroutine that wants to retrieve keys itself and execute
them as if the user typed them at command level can call this subroutine.

do_command(int index)
user short last_index;

474 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Thedo_command() primitive executes the command or other item with the supplied name table
index. If the index is invalid, then thequick_abort() primitive is called. Otherwise, the index is copied
to thelast_index variable, so the help system can find the name of the current command (among other
uses).

If the name table index refers to a command or subroutine, Epsilon calls the function. When it returns,
Epsilon checks theiter variable. If it is two or more, Epsilon proceeds to call the same function
repeatedly, decrementingiter each time, so that it calls the function a total ofiter times. See page 472.

short *table_keys;
int table_count;
table_prompt() /* control.e */

If the entry in the name table thatdo_command() is to execute contains another table, Epsilon gets
another key. First, Epsilon updates the primitive arraytable_keys. It contains the prefix keys entered so
far in the current command, andtable_count contains their number. Next, Epsilon calls the EEL
subroutinetable_prompt() if it exists to display a prompt for the new key. The version of this
subroutine that’s provided with Epsilon usesmention(), so the message may not appear immediately.
Epsilon then calls the EEL subroutinegetkey() to read a new key and clears the echo area of the prompt.
Epsilon then interprets the key just as thedo_topkey() primitive would, but using the new key table. If
bothmode_keys androot_keys provided a table as the entry for the first key, the values from each are
used as the new mode and root key tables.

do_again()

Thedo_again() primitive reinterprets a key using the same pair of mode and root tables that were
used previously. The value in the variablekey may, of course, be different. Epsilon uses this primitive in
commands such asalt-prefix.

Epsilon handles EEL subroutines without parameters in the name table in the same way as commands,
as described above. If the entry is for a keyboard macro, the only other legal name table entry, Epsilon goes
into a recursive edit level and begins processing the keys in the macro. It saves the macro internally so that
future requests for a key will return characters from the macro, as described on page 449. It also saves the
value ofiter, so the macro will iterate properly. When the macro runs out of keys, Epsilon automatically
exits the recursive edit level, and returns from the call todo_again(). (When
macro-runs-immediately is nonzero, running a macro doesn’t enter a recursive edit level, but returns
immediately. Future key requests will still come from the macro until it’s exhausted.)

short ignore_kbd_macro;

Epsilon provides a way for a keyboard macro to suspend itself and get input from the user, then
continue. Set theignore_kbd_macro variable nonzero to get keyboard input even when a macro is
running. Thepause-macro command uses this variable.

short *ask_key(char *pr, char *keyname) /* basic.e */
short key_binding[30]; // ask_key() puts key info here

Theask_key() subroutine defined in basic.e duplicates the logic of the main loop in getting the
sequence of keys that make up a command. However, it prompts for the sequence and doesn’t run the
command at the end. Commands likebind-to-key that ask for a key and accept a sequence of key table keys
use it.

10.6. INPUT PRIMITIVES 475

Theask_key() subroutine returns a pointer to the entry in the key table that was finally reached. The
value pointed to is the name table index of the command the key sequence invokes.

This subroutine stores the key sequence in thekeyname parameter in text form (as “Ctrl-X f”, for
example). It also copies the key sequence into the global variablekey_binding. The key sequence is in
macro format, so in the example of Ctrl-X f,key_binding[1] would holdCTRL(’X’),
key_binding[2] would hold’f’, andkey_binding[0] would hold 3, the total number of entries in
the array.

full_getkey(char *pr, int code) /* basic.e */

/* for full_getkey() */
#define ALTIFY_KEY 1
#define CTRLIFY_KEY 2

Thefull_getkey() subroutine defined in basic.e gets a single key from the keyboard, but
recognizes the prefix keyshEsci and Ctrl-̂ . Theask_key() subroutine uses it, as well as the commands
bound to the prefix keys above. It takes a prompt to display and a bit pattern (from eel.h) to make it act as if
certain of the above keys had already been typed. For example, thectrl-prefix command calls this
subroutine with the valueCTRLIFY_KEY. It leaves the key that results in thekey primitive.

name_macro(char *name, short *keys)

Epsilon has no internal mechanism for capturing keyboard keys to build a macro (this is done in the
getkey() subroutine defined in control.e), but once a macro has been built Epsilon can name it and make
it accessible with thename_macro() function. It takes the name of the macro to create, and the sequence
of keys making up the macro in an array of short ints. This array is in the same format that
get_keycode() uses. That is, the first element of the array contains the number of valid elements in the
array (including the first one). The actual keys in the macro follow. Thename_macro() primitive makes a
copy of the macro it is given, so the array can be reused once the macro has been defined.

short *get_macro(int index)

Theget_macro() primitive can retrieve the keys in a defined keyboard macro. It takes the name
table index of a macro, and returns a pointer to the array containing the macro.

int list_bindings(int start, short *modetable,
short *roottable, int find)

Thelist_bindings() primitive quickly steps through a pair of key tables, looking for entries that
have a certain name table index. It takes mode and root key tables, the name table index to find, and either
-1 to start at the beginning of the key tables, or the value it returned on a previous call. It returns the index
into the key table, or-1 if there are no more matching entries. For each position in the tables, Epsilon looks
at the value in the mode key table, unless it is zero. In that case, it uses the root table.

In addition to the matches,list_bindings() also stops on each name table index corresponding to
a key table, since these must normally be searched also. For example, the following file defines a command
that counts the number of separate bindings of any command.

#include "eel.h"

476 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

command count_bindings()
{

char cmd[80];

get_cmd(cmd, "Count bindings of command", "");
if (*cmd)

say("The %s command has %d bindings", cmd,
find_some(mode_keys,

root_keys, find_index(cmd)));
}

/* count bindings to index in table */
int find_some(modetable, roottable, index)

short *modetable, *roottable;
{

int i, total = 0, found;

i = list_bindings(-1, modetable, roottable, index);
while (i != -1) {

found = (modetable[i]
? modetable[i] : roottable[i]);

if (found == index)
total++;

else
total += find_some(index_table(found),

index_table(found), index);

i = list_bindings(i, modetable, roottable, index);
}
return total;

}

10.7 Defining Language Modes

There are several things to be done to define a new mode. Suppose you wish to define a mode called
reverse-mode in which typing letters inserts them backwards, so typing “abc” produces “cba”, and yanking
characters from a kill buffer inserts them in reverse order. First, define a key table for the mode with the
keytable keyword, and put the special definitions for that mode in the table:

keytable rev_tab;

command reversed_normal_character()
{

normal_character();
point--;

}

when_loading()

10.7. DEFINING LANGUAGE MODES 477

{
int i;

for (i = ’a’; i <= ’z’; i++)
rev_tab[toupper(i)] = rev_tab[i] = (short)

reversed_normal_character;
}

command yank_reversed() on rev_tab[CTRL(’Y’)]
{

...
}

Now define a command whose name is that of the mode. It should setmode_keys to the new table
andmajor_mode to the name of the mode, and then call the subroutinemake_mode() to update the
mode line:

command reverse_mode()
{

mode_keys = rev_tab; /* use these keys */
major_mode = strsave("esreveR");
make_mode();

}

If you want Epsilon to go into that mode automatically when you find a file with the extension .rev (as it
goes into C mode with .c files, for instance), define a function namedsuffix_rev() which calls
reverse_mode(). The EEL subroutinefind_it() defined in files.e automatically calls a function
namedsuffix_ext(whereext is the file’s extension) whenever you find a file, if a function with that name
exists. It tries to call thesuffix_none() function if the file has no suffix. If it can’t find a function with
the correct suffix, it will try to call thesuffix_default() function instead.

suffix_rev()
{

reverse_mode();
}

Language modes may wish to define a compilation command. This tells thecompile-buffer command
on Alt-F3 how to compile the current buffer. For example,compile_asm_cmd is defined asml "%r".
(Note that" characters must be quoted withn in strings.) Use one of the % sequences shown on page 99 in
the command to indicate where the file name goes, typically%f or %r.

The mode can define coloring rules. See page 386 for details. Often, you can copy existing syntax
coloring routines like those for .asm or .html files and modify them. They typically consist of a loop that
searches for the next “interesting” construct (like a comment or keyword), followed by aswitch statement
that provides the coloring rule for each construct that could be found. Usually, finding an identifier calls a
subroutine that does some additional processing (determining if the identifier is a keyword, for instance).

A language mode should set comment variables likecomment-start. This tells the commenting
commands (see page 81) how to search for and create legal comments in the language.

The comment commands look for comments using regular expression patterns contained in the
buffer-specific variablescomment-pattern (which should match the whole comment) and

478 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

comment-start (which should match the sequence that begins a comment, like ‘/*’). When creating a
comment, comment commands insert the contents of the buffer-specific variablescomment-begin and
comment-end around the new comment.

Commands likeforward-level that move forward and backward over matching delimiters will (by
default) recognize (, [, andf delimiters. It won’t know how to skip delimiters inside quoted strings, or
similar language-specific features. A language mode can define a replacement delimiter movement function.
See page 353 for details.

To let Epsilon automatically highlight matching delimiters in the language when the cursor appears on
them, a language mode uses code like this:

if (auto_show_asm_delimiters)
auto_show_matching_characters = asm_auto_show_delim_chars;

where references to “asm” are of course replaced by the mode’s name. The language mode should
define the two variables referenced above:

user char auto_show_asm_delimiters = 1;
user char asm_auto_show_delim_chars[20] = "{[]}";

The list of delimiters should contain an even number of characters, with all left delimiters in the left half
and right delimiters in the right half. (A delimiter that’s legal on the left or right should appear in both
halves; then the language must provide amode_move_level definition that can determine the proper
search direction itself. See page 353.)

Sometimes a mode may wish to highlight delimiters more complicated than single characters, such as
BEGIN and END keywords. To do this, the mode should define a function such as
mymode_auto_show_delimiter() and then set the buffer-specific function pointer variable
mode_auto_show_delimiter to point to it in that buffer.

Epsilon will then call that function when idle to highlight delimiters. It should return0 if no
highlighting should be done,1 to make Epsilon try to use theauto_show_matching_characters
setting described above for simple highlighting,2 to indicate mismatched delimiters, or3 to indicate
matched delimiters. In the latter two cases it should also display the highlighting, by setting two arrays to
mark the appropriate buffer regions, as shown in the example. This sample only demonstrates how to control
the highlighting; a typical mode would use smarter rules for finding the matching keywords (ignoring nested
pairs, skipping over keywords in comments or strings, and so forth).

Finally, a language mode may also want to set things up so typing a closing delimiter momentarily
moves the cursor back to show its matching pair. Binding keys like] and) to the command
show-matching-delimiter will accomplish this.

Some subroutines help with mode-specific tasks.

int call_by_suffix(char *file, char *pattern)
int get_mode_variable(char *pat)
char *get_mode_string_variable(char *pat)

Thecall_by_suffix() subroutine constructs a function name based on the extension of a given
file (typically the file associated with the current buffer). It takes the file name, and a function name with%s
where the extension (without its leading “.”) should be. For example,
call_by_suffix("file.cpp", "tag-suffix-%s") looks for a subroutine named
tag-suffix-cpp. (If the given file has no extension, the subroutine pretends the extension was “none”.)

10.7. DEFINING LANGUAGE MODES 479

#include "eel.h"

#include "colcode.h"

int mymode_auto_show_delimiter()
{

save_var point, case_fold = 1;

save_var matchstart, matchend, abort_searching = 0;
init_auto_show_delimiter(); // Must do this first.

point -= parse_string(-1, "[a-z0-9_]+");
*highlight_area_start[0] = point;

if (parse_string(1, "</word>begin</word>")) {

*highlight_area_end[0] = matchend;
if (!re_search(1, "</word>end</word>"))

return 2;
} else if (parse_string(1, "</word>end</word>")) {

*highlight_area_end[0] = matchend;
if (!re_search(-1, "</word>begin</word>"))

return 2;

} else
return 1;

*highlight_area_start[1] = matchstart; // Mark the far end.
*highlight_area_end[1] = matchend;

modify_region(SHOW_MATCHING_REGION, MRTYPE, REGNORM);

// Make the highlighting visible.
return 3;

}

Figure 10.4: Highlighting keyword delimiters.

If there’s no subroutine with the appropriate name,call_by_suffix() then replaces the%s with
“default” and tries to call that function instead. Thecall_by_suffix() subroutine returns1 if it found
some function to call, or0 if it couldn’t locate any suitable function.

Theget_mode_variable() subroutine searches for a function or variable with a name based on
the current mode. Its parameterpat must be a printf-style format string, with a%s where the current
mode’s name should appear. The subroutine will look for a function or variable with the resulting name. A
variable by that name must be numeric; the subroutine will return its value. A function by that name must
take no parameters and return a number; this subroutine will call it and return its value. In either case it will
set thegot_bad_number variable to zero. Ifget_mode_variable() can’t locate a suitable function
or variable, it setsgot_bad_number nonzero.

Theget_mode_string_variable() subroutine retrieves the value of a string variable whose
name depends on the current mode. The name may also refer to a function; its value will be returned. It
constructs the name by usingsprintf(); pat should contain a%s and no other% characters; the current
mode’s name will replace the%s. If there’s no such variable or function with that name, it returns NULL.
The subroutine sets thegot_bad_number variable nonzero to indicate that there was no such name, or
zero otherwise.

int guess_mode_without_extension(char *res, char *pat)

480 CHAPTER 10. PRIMITIVES AND EEL SUBROUTINES

Theguess_mode_without_extension() subroutine tries to determine the correct mode for a
file without an extension, mostly by examining its text. It can detect some Perl and C++ header files that lack
any .perl or .hpp extension, as well as makefiles (based simply on the file’s name). If it can determine the
mode, it usespat as a pattern forsprintf() (so it should contain one%s and no other%’s) and setsres
to thepat, with its%s replaced by the mode name. Then it returns 1. If it can’t guess the mode it returns 0.

mode_default_settings()

Themode_default_settings() subroutine resets a number of mode-specific variables to default
settings. A command that establishes a mode can call this subroutine, if it doesn’t want to provide explicit
settings for all the usual mode-specific variables, such as comment pattern variables.

zeroed buffer (*buffer_maybe_break_line)();

The auto-fill minor mode normally calls a function namedmaybe_break_this_line() to break
lines. A major mode may set the buffer-specific function pointerbuffer_maybe_break_line to point
to a different function; then auto-fill mode will call that function instead, for possibly breaking lines as well
as for turning auto-fill on or off, or testing its state.

A buffer_maybe_break_line function will be called with one numeric parameter. If0 or 1, it’s
being told to turn auto-fill off or on. The function may interpret this request to apply only to the current
buffer, or to all buffers in that mode. It should return0.

If its parameter is2, it’s being asked whether auto-fill mode is on. It should return a nonzero value to
indicate that auto-fill mode is on.

If its parameter is3, it’s being asked to perform an auto-fill, if appropriate, triggered by the key in the
variablekey, which has not yet been inserted in the buffer. It may simply return1 if the line is not wide
enough yet, or after it has broken the line. Epsilon will then insert the key that triggered the filling request. If
it returns zero, Epsilon will skip inserting the key that triggered the filling.

10.7.1 Language-specific Subroutines

int find_c_func_info(char *type, char *class,
char *func, int stop_on_key)

Thefind_c_func_info() subroutine gets info on the function or class defined at point in the
current C-mode buffer, by parsing the buffer. It setsclass to the class name of the current item, if any, and
func to the function name if any. It setstype to "class", "struct", or"union" if it can determine
which is appropriate. Outside a function or class definition, the above will be set to"". You may pass
NULL for any of the above parameters if you don’t need that information.

If stop_on_key is nonzero, and the user presses a key while the function is running, the function will
immediately return-1 without setting the above variables. Otherwise the function returns a bit pattern:
CF_INFO_TYPE if type was set non-empty;CF_INFO_CLASS if class was set non-empty; and
CF_INFO_FUNC if func was set non-empty. In addition to zero, only these combination can occur:

CF_INFO_TYPE CF_INFO_CLASS CF_INFO_FUNC

* *
*

* *
* * *

10.7. DEFINING LANGUAGE MODES 481

Chapter 11

Error Messages

483

This chapter lists some of the error messages Epsilon can produce, with explanations. In general, any error
numbers produced with error messages are returned from the operating system.

Argument list mismatch in call. An EEL function was called with the wrong number of parameters.
Perhaps you tried to call an EEL function by name, from the command line. Only functions that take no
formal parameters can be called this way.

Can’t execute auxiliary program filename. Under OS/2, Epsilon needs the file EPS-AUX.EXE to run
a concurrent process. It must be in the same directory as EPSILON.EXE. An error occurred when Epsilon
tried to start this program.

Can’t find tutorial. Install first. Epsilon tried to load its tutorial file, since you started it with the
-teach option, but can’t find it. The tutorial is a file named eteach, located in Epsilon’s main directory.

Can’t interpret type of variable-name. You can only set or show variables that have numbers or
characters in them.

COMSPEC missing from environment. Epsilon needs a valid COMSPEC environment variable in
order to run another program. See page 10.

Couldn’t exec: error number. You tried to run a program from within Epsilon, and Epsilon
encountered an error trying to invoke that program. Thenumberdenotes the error code returned by the
operating system. Also see the previous error.

Debug: can’t read source file filename. Epsilon’s EEL debugger tried to read an EEL source file, but
couldn’t find it. Epsilon gets a source file’s pathname from the EEL compiler’s command line. If you
compiled an EEL file with the command “eel dir/file.e”, Epsilon will look for a file named “dir/file.e”.
Check that your current directory is the same as when you ran the EEL compiler.

Don’t know how to tag the file filename. Epsilon only knows how to tag files with certain extensions
like .c, .h, .e, and .asm. Using EEL, you can tell Epsilon how to tag other types of files, though. See page
413.

Files not deleted. An error occurred when thedired command tried to delete the file or directory. You
can only delete empty directories.

Invalid or outdated byte code file filename. The byte code file Epsilon tried to load was created with
another version of Epsilon, was empty, or was illegal in some other way. Try compiling it again with the
EEL compiler.

filenameis not a directory. You specifiedfilenamein an-fh or -fs flag, telling Epsilon to create its
temporary files there, but it isn’t a directory.

Macro definition buffer full: keyboard macro defined. You tried to define a macro of more than 500
keys from the keyboard. This might happen because you forgot to close a macro definition with the Ctrl-X)
command. If you really want to define such a big macro, use the command file mechanism (see page 130) or
change theMAX_MACRO constant defined in eel.h and recompile control.e using EEL.

Macro nesting too deep. All macros canceled. An Epsilon keyboard macro can call another keyboard
macro recursively (but only if the calling macro is defined by a command file—see page 124). To catch
runaway recursive macros, Epsilon puts a limit on the depth of keyboard macro recursion. Epsilon allows
unlimitedtail-recursion: if a macro calls another macro with its last keystrokes, Epsilon finishes the original
macro call before beginning the next one.

Only one window. Thediff andcompare-windows commands compare the current window with the
next window on the screen, but there’s only one window.

SYS1804: The system cannot find the file EPS-LIB3. (OS/2 only.) If you get this message when you
try to start Epsilon, it means that the file eps-lib3.dll is not in a directory on your LIBPATH. The LIBPATH

484 CHAPTER 11. ERROR MESSAGES

is where OS/2 looks for any .dll files it needs. It’s specified in the filenconfig.sys on your boot drive, and
typically includes the root directoryn of your boot drive. The file eps-lib3.dll must be in the correct
directory when you start Epsilon, or OS/2 will give this error message. Epsilon’s installation procedure puts
the file eps-lib3.dll in the directorynepsilonndll by default. Make sure this directory is on your LIBPATH.

functionundefined or of wrong type. Epsilon initialized itself exclusively from a bytecode file
(without reading a state file), since you gave the-b flag, but that file didn’t define a function or variable that
Epsilon needs to run. See page 446. To load a bytecode file, in addition to Epsilon’s usual commands, use
the-l flag, not the-b flag.

when-restoring: any errorThis error may occur when you upgrade to a new version of Epsilon,
recompile some EEL files, load them into Epsilon, and write out a state file. Starting Epsilon with this new
state file then produces an error message of this sort. Most likely, the problem is that you inadvertently
included the EEL header file from a previous version of Epsilon when you compiled the EEL files.
Recompile them, making sure that you’re using the new eel.h files. The EEL compiler’s-v flag is helpful
for this—it displays the name of each included file.

485

Appendix A

Index

487

+ command line option 9

.BSC files for tagging 48

101-key keyboard 13

132 column video 92

386Enh section 5

4DOS command processor 117

#messages# buffer 24

A
abort command 42, 83, 140, 145

abort key 83

ABORT_ERROR textual macro 347, 354, 466

abort_file_matching primitive 215, 404, 466

ABORT_JUMP textual macro 347, 354, 466

abort_key primitive 44, 215, 433

abort_searching primitive 215, 347, 354

about_box() primitive 469

about-epsilon command 36, 145

absolute() primitive 405, 461

-add command line flag 12, 113

add_buffer_when_idle() subroutine 450

add_final_slash() primitive 407

add_popup() primitive 363

add_region() primitive 381

add_tag() subroutine 413

after-exiting color class 91

after_loading() primitive 446

all_blanks() subroutine 352

ALL_BORD() textual macro 363

all_must_build_mode primitive 215, 372

alloc_spot() primitive 344

allow_mouse_switching() subroutine 459

already-made-backup buffer variable 215

ALT() textual macro 451

Alt-? key 35

alt-invokes-menu variable 141, 215

alt-prefix command 125, 126, 145

alter_color() primitive 391

anon-ftp-password variable 106, 215

anonymous ftp 106

another_process() primitive 429

ansi-to-oem command 101, 145

any_uppercase() subroutine 436

API help 80

append-next-kill command 54, 145

apply_defaults() primitive 446

apropos command 35, 36, 145

argc primitive 216, 446

argument command 123, 145

argument, numeric 26, 123

argv primitive 446

arrow keys 39

ASCII characters 138

ask_key() subroutine 474

ask_line_translate() subroutine 396

ask_save_buffer() subroutine 395

ask_yn() subroutine 469

Asm mode 72

asm-mode command 72, 146

assemble_mode_line() subroutine 370

assigning to variables 126

associations, file 113

associativity 317

ATTR_DIRECTORY textual macro 401

ATTR_READONLY textual macro 401

attr_to_rgb() primitive 392

auto-fill-indents buffer variable 68, 69, 216

auto-fill-mode command 26, 68, 69, 146

auto-indent buffer variable 69, 216, 377

auto-menu-bar variable 31, 216

auto-read-changed-file buffer variable 99, 216

auto-save-count variable 100, 216

auto-save-name variable 100, 216

auto-show-adjacent-delimiter variable 217

auto-show-c-delimiters variable 74, 217

auto-show-delimiter-delay variable 217

auto-show-gams-delimiters variable 75, 217

auto-show-html-delimiters variable 76, 217

auto-show-matching-characters buffer
variable 217

auto-show-perl-delimiters variable 77, 217

auto-show-postscript-delimiters variable
77, 217

auto-show-python-delimiters variable 78,
218

auto-show-shell-delimiters variable 78, 218

auto-show-tex-delimiters variable 79, 218

auto-show-vbasic-delimiters variable 79,
218

autoload() primitive 444

autoload_commands() primitive 444, 445

autosaving files 100

auxiliary files 11

availmem primitive 218, 439

avoid-bottom-lines variable 94, 218, 362

488 APPENDIX A. INDEX

avoid-top-lines variable 94, 218, 362

B
-b command line flag 12

b_match() subroutine 463

back-to-tab-stop command 70, 146

backup files 99

backup-name variable 99, 218

backward-character command 40, 146

backward-delete-character command 52, 146

backward-delete-word command 146

backward-ifdef command 75, 146

backward-kill-level command 42, 147

backward-kill-word command 40, 147

backward-level command 42, 147

backward-paragraph command 41, 147

backward-sentence command 41, 147

backward-word command 40, 147

Bash shell for Windows 118

basic types 304

BBLANK textual macro 363

BBOTTOM textual macro 363

BC textual macro 374

BDOUBLE textual macro 363

beep-duration variable 95, 219, 416

beep-frequency variable 95, 219, 416

beginning-of-line command 40, 147

beginning-of-window command 84, 147

bell, setting 94

bell-on-abort variable 95, 219

bell-on-autosave-error variable 95, 219

bell-on-bad-key variable 95, 219

bell-on-completion variable 95, 219

bell-on-date-warning variable 95, 219

bell-on-read-error variable 95, 219

bell-on-search variable 95, 219

bell-on-write-error variable 95, 220

BHEX textual macro 374

binary constants 303

binary files, editing 100

bind-to-key command 26, 125, 142, 147, 182

in command file 130

binding 26

binding commands 124

BLEFT textual macro 363

block 317

BM textual macro 374

BMC textual macro 374

BNEWLINE textual macro 374, 375

BNONE textual macro 363

BNORMAL textual macro 374

bookmarks 46

BORD() textual macro 363

border-bottom variable 94, 220

border-inside variable 94, 220

border-left variable 94, 220

border-right variable 94, 220

border-top variable 94, 220

BOTTOMRIGHT textual macro 361

bprintf() primitive 342

brace matching 41

bracket matching 41

break, eel keyword 315

Brief emulation 126

brief-copy-region command 147

brief-cut-region command 148

brief-delete-region command 148

brief-delete-window command 148

brief-drop-bookmark command 148

brief-end-key command 148

brief-home-key command 148

brief-jump-to-bookmark command 148

brief-keyboard command 126, 148

brief-open-line command 149

brief-resize-window command 149

brief-split-window command 149

BRIGHT textual macro 363

browser files for tagging 48

BSINGLE textual macro 363

BTAB textual macro 374

BTOP textual macro 363

buf-accessed buffer variable 220

buf-accessed-clock variable 220

buf_delete() primitive 357

buf_exist() primitive 357

buf_grab_bytes() subroutine 343

buf_in_window() primitive 398

buf_list() primitive 359

buf_match() primitive 466

buf_pipe_text() primitive 432

buf_printf() primitive 342

_buf_readonly buffer variable 358

buf_size() subroutine 357

buf_xfer() subroutine 343

buf_xfer_colors() subroutine 343, 385

489

buf_zap() primitive 356

bufed command 95, 96, 110, 111, 121, 149, 160

bufed-grouping variable 221

bufed-width variable 111, 221

buffer 23

commands 95

keyword 304, 325, 331

startup 24

storage class 129

buffer number 356

buffer, eel keyword 129, 325

buffer_display_characters buffer variable
375

buffer_ftp_activity variable 412

buffer_list() primitive 359

buffer_maybe_break_line buffer variable 480

buffer-not-saveable buffer variable 221, 398

buffer_on_modify buffer variable 358

buffer_printf() primitive 342

buffer_size() subroutine 357

buffer_sort() primitive 354

buffer-specific variables 128, 304, 443

buffer_to_clipboard() primitive 416

buffer_unchanged() primitive 398

buffers_identical() subroutine 355

bufname primitive 221, 357

bufnum primitive 221, 357

bufnum_to_name() primitive 356

build_filename() subroutine 408

build_first primitive 221, 371, 374

build_mode() subroutine 370

build_prompt() subroutine 465

build_window() primitive 368

button_dialog() primitive 469

byte_extension primitive 221, 444

bytecode files 12, 134

C
C++ mode 72

c-access-spec-offset variable 73, 221

c-align-contin-lines variable 74, 222

c-align-extra-space variable 74, 222

c-align-open-paren variable 74, 222

c-auto-fill-mode variable 74, 81, 222

c-auto-show-delim-chars variable 222

c-brace-offset variable 73, 222

c-case-offset variable 73, 222

c-close command 74, 149

c-colon command 74, 149

c-contin-offset variable 74, 222

c-extra-keywords buffer variable 223

c-fill-column variable 74, 82, 223

c-hash-mark command 74, 149

c-ident color class 91

c-indent buffer variable 73, 223

c-indent-after-extern-c variable 73, 223

c-indent-after-namespace variable 73, 223

c-label-indent variable 73, 223

c-look-back variable 223

C_LOWER textual macro 436

c-mode command 72, 74, 149

c-mode-mouse-to-tag variable 31, 223

c_move_level() subroutine 353

c-open command 74, 150

c-param-decl variable 73, 223

c-tab-always-indents variable 73, 224

c-tab-override variable 73, 224

c-tagging-class variable 224

c-top-braces variable 73, 224

c-top-contin variable 73, 224

c-top-struct variable 73, 224

C_UPPER textual macro 436

call_by_suffix() subroutine 478

call_dll() primitive 424

call_mode() subroutine 393

call_on_modify primitive 224, 358

can-get-process-directory variable 224

canceling a command 83

capitalize-word command 57, 150

Caps Lock key 139

capture-output variable 116, 224

caret 88

carriage return translation 100, 395

case replacement 58

case, changing 57

case, eel keyword 315

case-fold buffer variable 43, 67, 225, 348, 437

case-indirect command 125, 126, 150

_case_map buffer variable 436

cast, function pointer 439

catch-mouse primitive 18, 225, 454

CAUTIOUS textual macro 463

cd command 97, 150

center-line command 70, 150

center-window command 84, 150

490 APPENDIX A. INDEX

CF_INFO_CLASS textual macro 480

CF_INFO_FUNC textual macro 480

CF_INFO_TYPE textual macro 480

change_buffer_name() primitive 356

change-code-coloring command 92, 150

change-file-read-only command 98, 151

change-font-size command 89, 151

change-key-names command 136, 138

change-line-wrapping command 85, 151

change-modified command 99, 151

change-name command 129, 151

change-read-only command 98, 151

change-show-spaces command 88, 89, 151

char, eel keyword 305

char_avail() primitive 451

_char_class buffer variable 436

character class 61

character constant 303

character sets, converting 101

character() primitive 342

charfcmp() primitive 348, 437

chdir() primitive 403, 404, 405

check_abort() primitive 433, 471

check_buffer_word() subroutine 349

check_dates() subroutine 402

CHECK_DEVICE textual macro 400

CHECK_DIR textual macro 400

CHECK_FILE textual macro 400

check_file() primitive 400

check_modify() primitive 358

CHECK_OTHER textual macro 400

CHECK_PATTERN textual macro 400

CHECK_PIPE textual macro 400

CHECK_URL textual macro 400

chm files 80

clear-process-buffer variable 118, 225

clear-tags command 48, 49, 152

clip_mouse() subroutine 456

clipboard, accessing the 55

clipboard-access variable 55, 211, 225

clipboard_available() primitive 416

clipboard-format variable 225

clipboard_to_buffer() primitive 416

Closeback variable 72, 226

CMD_INDEX_KEY textual macro 452

cmd_len primitive 226, 472

cmd-line-session-file variable 226

CMDCONCURSHELLFLAGS configuration variable
117

CMDSHELLFLAGS configuration variable 117

code coloring 91

col_search() subroutine 351

color class 89, 390, 392

color scheme 89

color_c_from_here() subroutine 388

color_c_range() subroutine 387

color_class, eel keyword 326

COLOR_DO_COLORING textual macro 227

color-html-look-back variable 226

COLOR_IN_PROGRESS textual macro 227

COLOR_INVALIDATE_BACKWARD textual macro 227,
388

COLOR_INVALIDATE_FORWARD textual macro 227,
388

COLOR_INVALIDATE_RESETS textual macro 227,
388

color-look-back variable 91, 226, 388

COLOR_MINIMAL textual macro 227

color-names variable 226

COLOR_RETAIN_NARROWING textual macro 227, 388

color_scheme, eel keyword 327

COLOR_STRIP_ATTR() textual macro 391

color-whole-buffer variable 91, 226

coloring-flags buffer variable 227, 388

colors, changing 89

column editing 56

column number, always displaying 251

column_in_window primitive 227, 368

column_to_pos() subroutine 375

columnize_buffer_text() subroutine 354

comm_dlg_color() primitive 469

command

defined 305

eel keyword 305, 331

command file

bind-to-key 130

create-prefix-command 131

define-macro 131

command files 129, 130

command history 30

command line

for EEL 299

for Epsilon 8

command processor, replacements for 117

command, eel keyword 305

491

comment-begin buffer variable 81, 227, 478

comment-column buffer variable 81, 227

comment-end buffer variable 81, 227, 478

comment-pattern buffer variable 81, 227, 228, 477

comment-repeat-indentation-lines variable
228

comment-start buffer variable 81, 227, 228, 478

commenting commands 81

comments in EEL 302

common_file_dlg() primitive 468

common-open-curdir variable 228, 468

COMP_FILE textual macro 463

COMP_FOLD textual macro 463

comp_read() subroutine 463

compare_buffer_text() primitive 355

compare_dates() subroutine 402

compare-sorted-windows command 50, 51, 152

compare-windows command 49, 51, 152

compare-windows-ignores-space variable 49,
228

compile-asm-cmd variable 72, 228

compile-buffer command 121, 152, 231

compile-buffer-cmd buffer variable 228

compile-c-cmd variable 229

compile-c-cmd-unix variable 229

compile-cpp-cmd variable 121, 229

compile-cpp-cmd-unix variable 229

compile-csharp-cmd variable 229

compile-eel-cmd variable 229

compile-eel-dll-flags variable 121, 229

compile-gams-cmd variable 230

compile-idl-cmd variable 230

compile-in-separate-buffer variable 230

compile-java-cmd variable 230

compile-makefile-cmd variable 76, 230

compile-makefile-cmd-unix variable 230

compile-perl-cmd variable 76, 230

compile-python-cmd variable 78, 230

compile-tex-cmd variable 79, 231

compile-vbasic-cmd variable 231

compiler help 80

complete() subroutine 464

completion 27, 28

adding your own 463

completion, excluding files 29, 102

completion_lister variable 464

completion-pops-up variable 28, 231

COMSPEC environment variable 10, 116

conagent.pif 119

concur_activity() subroutine 430

concur_shell() primitive 429

concurrent process 117

concurrent-compile buffer variable 121, 231

concurrent-make variable 120, 231

COND_KEY textual macro 434

COND_PROC textual macro 434

COND_RETURN_ABORT textual macro 434

Conf mode 75

conf-mode command 75, 152

config.sys file 426, 484

configuration variable 9

CMDCONCURSHELLFLAGS 117

CMDSHELLFLAGS 117

EEL 299

EPSCOMSPEC 10, 116, 117

EPSCONCURCOMSPEC 117

EPSCONCURSHELL 117

EPSILON 12, 445

EPSMIXEDCASEDRIVES 103

EPSPATH 11, 112, 299, 409

EPSSHELL 12,116, 117

ESESSION 112

INTERCONCURSHELLFLAGS 117

INTERSHELLFLAGS 117

constants 303

context-menu command 143, 152

continue, eel keyword 315

control characters 87

control chars, in searches 42

CONV_BIG_ENDIAN textual macro 397

CONV_LATIN1 textual macro 397

CONV_OMIT_BOM textual macro 397

CONV_REQUIRE_BOM textual macro 397

CONV_TEST_ONLY textual macro 397

CONV_TO_16 textual macro 397

conventional memory 14

conversion of variables 317

convert_to_8_3_filename() primitive 409

copy_buffer_variables() primitive 443

copy-rectangle command 56, 153

copy-region command 54, 153

copy-to-clipboard command 55, 153

copy-to-file command 100, 153

copy-to-scratch command 54, 153

copyfile() primitive 399

copying files 108

492 APPENDIX A. INDEX

copying text 52

copyright, Epsilon iii

count-lines command 84, 153

count_lines_in_buf() subroutine 352

create() primitive 356

create_dired_listing() subroutine 404

create-file-associations command 113, 153

create_invisible_window() primitive 420

create-prefix-command command 125, 153

in command file 131

create-variable command 129, 153

CTRL() textual macro 451

Ctrl-_ 35

ctrl-prefix command 125, 126, 154

CTRLIFY_KEY textual macro 475

cua-keyboard command 126, 154

curchar() primitive 342

current buffer 25

current window 25

current_column() primitive 375

current-video-mode variable 231

curses program 15

cursor-blink-period variable 231

cursor_shape primitive 231, 381

CURSOR_SHAPE() textual macro 381

cursor_to_column primitive 232, 376

cx_tab variable 473

cygwin-filenames variable 232

D
-d command line flag 13, 299

DDE 113

-dde command line flag 15

DDE messages, sending 417

dde_close() primitive 417

dde_execute() primitive 417

dde_open() primitive 417

debug-text color class 91

debugger 134

decimal constant 303

declaration 305

declarator 306

default color class 91

default value 128, 304

default, eel keyword 315

default-character-set variable 232

default_fold() subroutine 350

default_move_level() subroutine 353

default-oem-word variable 40, 232

default_search_string() subroutine 350

default-state-file-name variable 232

default-translation-type variable 232, 395,
396

default-word variable 40, 233

#define preprocessor command 47, 299, 300

define-macro, in command file 131

del_file() subroutine 423

delay() primitive 433

delete vs. kill 52

delete() primitive 342

delete-blank-lines command 52, 154

delete_buffer() primitive 357

delete_buffer_when_idle() subroutine 450

delete-character command 52, 154

delete-current-line command 154

delete_file() primitive 399, 422

delete-hacking-tabs buffer variable 52, 233

delete-horizontal-space command 52, 154

delete_if_highlighted() subroutine 342

delete-matching-lines command 58, 59, 154

delete-name command 94, 129, 154, 207

delete-rectangle command 56, 154, 176, 247

delete-to-end-of-line command 155

delete_user_buffer() subroutine 357

deleting commands or variables 129

deleting files 108

describe-command command 35, 36, 155

describe-key command 35, 36, 155

describe-variable command 35, 36, 155

desktop icon, running Epsilon from a 114

detect_dired_format() subroutine 405

Developer Studio, integrating with 114

diacritical marks 133

dialog-regex-replace command 58, 155

dialog-replace command 58, 155

dialog-reverse-search command 45, 155

dialog-search command 45, 155

diff command 49, 51, 155

diff-match-characters variable 233

diff-match-characters-limit variable 233

diff-match-lines variable 49, 233

diff-mismatch-lines variable 49, 233

diff-precise-limit variable 233

ding() primitive 416

directory name, avoid typing 97

493

directory, setting current 97

directory_flags primitive 233

dired command 8, 104, 108, 110, 155, 162, 236, 404,
412

and find-file 96

dired-24-hour-time variable 234

dired-buffer-pattern buffer variable 234

dired-format buffer variable 234, 405

dired-groups-dirs variable 234

dired-live-link-limit variable 234

dired-mode command 156

dired_one() subroutine 404

dired-sort command 157

dired-sorts-files variable 234

dired_standardize() primitive 404

discardable-buffer buffer variable 234, 397

disk management 108

disk_space() subroutine 414, 422, 427

display-buffer-info command 157

_display_characters primitive 374, 375

_display_class primitive 372, 373, 374

display-columnwindow variable 85, 234

display-definition variable 235

display_dialog_box() primitive 470

display-func-name variable 235

display-func-name-buf variable 235

display-func-name-win variable 235

display_more_msg() subroutine 371

display_scroll_bar primitive 235, 459

display_width() primitive 375

displaying special characters 87

displaying variables 126

DLL’s, under OS/2 426

DLL’s, under Windows 424

dllcall variable 426

do, eel keyword 314

do_again() primitive 474

do_buffer_sort() subroutine 354

do_buffer_to_hex() primitive 355

do-c-indent command 74, 157

do_command() primitive 472, 473, 474

do_compare_sorted() subroutine 355

do_compile() subroutine 152

do_dired() primitive 404

do_drop_matching_lines() subroutine 351

do_file_match() subroutine 466

do_file_read() subroutine 393

do_find() subroutine 394

do_ftp_op() subroutine 410, 411

do_insert_file() subroutine 398

do_interrupt() primitive 21, 421, 422, 424, 426

do_push() subroutine 429

do_readonly_warning() subroutine 352, 393

do_recursion() primitive 434

do_remote_dired() subroutine 404

do_resume_client() primitive 417

do_save_file() subroutine 394

do_save_state() subroutine 445

do_searching() subroutine 349

do_set_mark() subroutine 345

do_shift_selects() subroutine 384

do_sort_region() subroutine 354

do_telnet() subroutine 410, 411

do_topkey() primitive 472, 473, 474

do_uniq() subroutine 355

documentation, online 36

DOS_SERVICES textual macro 422

double_click_time primitive 235, 455

down-line command 26, 40, 158

drag_drop_handler() subroutine 417

drag_drop_result() primitive 417

dragging text 30

draw-column-markers variable 89, 235

draw-focus-rectangle variable 89, 236

drop_all_colored_regions() subroutine 390

drop_buffer() subroutine 357

drop_coloring() subroutine 390

drop_dots() subroutine 404

drop_final_slash() primitive 407

drop_name() primitive 440

drop_pending_says() primitive 377

DSABORT textual macro 349

DSBAD textual macro 349

DVI files, previewing 79, 174

dynamic-link libraries, under OS/2 426

dynamic-link libraries, under Windows 424

E
-e command line flag 16, 299

early_init() subroutine 446

echo area 24

_echo_display_class variable 374

echo-line variable 94, 236

ECOLOR_COPY textual macro 391

ECOLOR_UNKNOWN textual macro 391

494 APPENDIX A. INDEX

edit-variables command 128, 129, 158, 257

edoc file 13, 36

EEL 134

EEL configuration variable 299

eel-change-key-names command 135, 138

eel_compile() primitive 443

eel-tab-override variable 73, 236

eel-version variable 236

-ef command line flag 16

-ei command line flag 16

eight bit characters 374

#else preprocessor command 302

EMACS 26

EMS memory 16

end-kbd-macro command 124, 158, 182

end-of-line command 40, 158

end-of-window command 84, 158

end_print_job() primitive 420

#endif preprocessor command 301

enlarge-window command 87, 158

enlarge-window-horizontally command 87, 158

enlarge-window-interactively command 86, 87, 158

enter-key command 68, 69, 159

environment variable

COMSPEC 10, 116

EPSRUNS 11

LIBPATH 20, 426, 484

MIXEDCASEDRIVES 103

PATH 11

reading 414

SHELL 12, 116

TEMP 13

TMP 13

environment, size of 119

eps-aux.exe 20

eps-lib3.dll file 20, 484

EPSCOMSPEC configuration variable 10, 116, 117

EPSCONCURCOMSPEC configuration variable 117

EPSCONCURSHELL configuration variable 117

EPSILON configuration variable 12, 445

Epsilon Extension Language 134

Epsilon, command 8

epsilon-html-look-up command 159

epsilon-info-look-up command 35, 36, 159

epsilon-keyboard command 126, 159

epsilon-manual command 36, 159

epsilon-manual-html command 159

epsilon-manual-info command 35, 36, 159

epsilon-manual-port variable 236

EPSMIXEDCASEDRIVES configuration variable 103

EPSPATH configuration variable 11, 112, 299, 409

EPSRUNS environment variable 11

EPSSHELL configuration variable 12,116, 117

epswhlp.cnt file 81

EREADABORT textual macro 466

err_file_read() subroutine 394

errno primitive 236, 399, 403, 404, 466

error SYS1804 484

error() primitive 433, 435

error_if_input() subroutine 366

ERROR_PATTERN textual macro 120

ESESSION configuration variable 112

eshell file 13

eshrink file 13

eswap file 13

ETRANSPARENT textual macro 328, 391

eval command 143, 159

EXACTONLY textual macro 463

exchange-point-and-mark command 54, 159

executable files, editing 100

execute-eel command 143, 159

execution profiler 291

exist() primitive 357

exit command 111, 119, 160, 434

exit-level command 111, 160, 434

exit-process command 119, 160, 264

expand_display() primitive 375

expand-wildcards variable 8, 236

expire_message variable 377

explicit-session-file variable 237

export-colors command 90, 91, 136, 137, 138, 160

EXTEND_SEL_KEY textual macro 384, 451, 453

extended file patterns 107

extended keys 13

extension language 291

extensions vs. macros 291

extensions, file 71

extra-video-modes variable 92, 178, 237

extract_rectangle() subroutine 383

F
-F command line flag 299

F1 key 35

far-pause variable 42, 162, 237

-fd command line flag 13

495

-fh command line flag 13

field names 309

file

edoc 36

eshell 13

eshrink 13

primlist.doc 21

readme.txt 21

startup 129

file associations 113

file dates 98

file name patterns 107

file name prompts 102

file name template 99

file names, capitalization of 103

file variables 103

FILE_CONVERT_ASK textual macro 396

FILE_CONVERT_QUIET textual macro 396

FILE_CONVERT_READ textual macro 396

file_convert_read() subroutine 393

FILE_CONVERT_WRITE textual macro 396

file_convert_write() subroutine 396

file-date-tolerance variable 99, 237

file_error() primitive 398

file_io_converter variable 396

file_match() primitive 466

file-pattern-wildcards variable 237, 400

file-query-replace command 58, 59, 160

file_read() primitive 392

file_write() primitive 394, 445

filename primitive 237, 398

filename_rules() primitive 408

FILETYPE_AUTO textual macro 392, 395, 396

FILETYPE_BINARY textual macro 395

FILETYPE_MAC textual macro 395

FILETYPE_MSDOS textual macro 395, 396

FILETYPE_UNIX textual macro 395, 396

fill column 68

fill-c-comment-plain variable 74, 238

fill-comment command 75, 161

fill-indented-paragraph command 68, 161

fill-mode buffer variable 68, 238

fill-paragraph command 68, 161

fill_rectangle() subroutine 383

fill-region command 68, 69, 161

filter-region command 116, 117, 161

filter_str variable 468

final_index() primitive 439

final-macro-pause variable 238

find_buffer_prefix() subroutine 465

find_c_func_info() subroutine 480

find_data variable 468

find-delimiter command 42, 162

find_dialog() primitive 468

find_dialog_say() primitive 469

find-file command 47, 96, 97, 104, 108, 119, 162, 393

and dired 96

find_group() primitive 349

find_in_other_buf() subroutine 393

find_index() primitive 439

find_it() subroutine 393, 477

find-lines-visible variable 238

find-linked-file command 97, 162

find-linked-file-ignores-angles variable
238

find-oem-file command 101, 162

find-read-only-file command 98, 163

find_remote_file() subroutine 393

find-unconverted-file command 163

finger command 105, 163

finger_user() primitive 410

finish_up() subroutine 448

first_window_refresh primitive 238, 389

fix_cursor() subroutine 380

fix_key_table() subroutine 473

fix_region() subroutine 383

fix_window_start() subroutine 367

FKEY() textual macro 451

flags

for EEL 299

for Epsilon 12

FM_NO_DIRS textual macro 463, 466

FM_ONLY_DIRS textual macro 463, 466

fnamecmp() subroutine 408

FNAMELEN textual macro 292

FNT_DIALOG textual macro 381

FNT_PRINTER textual macro 381

FNT_SCREEN textual macro 381

FOLD textual macro 349

font-dialog variable 89, 238

font-fixed variable 89, 239

font-printer variable 89, 239

fonts, setting 89

for, eel keyword 314

FORCE_MODE_LINE textual macro 370

force-save-as buffer variable 239

496 APPENDIX A. INDEX

force_to_column() subroutine 376

foreign characters 133, 374

format string 379

format_date() subroutine 402

forward-character command 40, 163

forward-ifdef command 75, 163

forward-level command 42, 163

forward-paragraph command 41, 147, 163, 181

forward-search-again command 44, 45, 163

forward-sentence command 41, 164, 176

forward-word command 40, 164

forward-word-to-start variable 239

FPAT_COMMA textual macro 400

FPAT_CURLY_BRACE textual macro 400

FPAT_SEMICOLON textual macro 400

FPAT_SQUARE_BRACKET textual macro 400

fpatmatch() primitive 438

free() primitive 438

free_spot() primitive 344

-fs command line flag 13, 439

FSA_NEWFILE textual macro 239

FSA_READONLY textual macro 239

FSYS_CASE_IGNORED textual macro 408

FSYS_CASE_MASK textual macro 408

FSYS_CASE_PRESERVED textual macro 408

FSYS_CASE_SENSITIVE textual macro 408

FSYS_CASE_UNKNOWN textual macro 408

FSYS_CDROM textual macro 408

FSYS_LOCAL textual macro 408

FSYS_NETWORK textual macro 408

FSYS_REMOVABLE textual macro 408

FSYS_SHORT_NAMES textual macro 408

FTP URL 104

ftp_activity() subroutine 412

FTP_ASCII textual macro 410

ftp-ascii-transfers variable 101, 105, 239, 410

ftp-compatible-dirs variable 105, 239, 411

FTP_LIST textual macro 410

FTP_MISC textual macro 410

ftp_misc_operation() subroutine 411

ftp_op() primitive 410, 412

FTP_OP_MASK textual macro 410

ftp-passive-transfers variable 105, 240

FTP_RECV textual macro 410

FTP_SEND textual macro 410

FTP_USE_CWD textual macro 411

FTP_WAIT textual macro 410

full_getkey() subroutine 475

full-path-on-mode-line variable 240

full_redraw primitive 240, 372

function 323

function keys 139

function name, displaying 235

function, pointer to 439

fundamental-auto-show-delim-chars

variable 71, 240

fundamental-mode command 71, 164

fwd-search-key variable 45, 240

G
GAMS files 230

GAMS mode 75

gams-auto-show-delim-chars variable 240

gams-files variable 75, 240

gams-mode command 75, 164

general_matcher() primitive 465

-geometry command line flag 13

get_any() subroutine 462

get_background_color() primitive 391

GET_BORD() textual macro 364

get_buf() subroutine 461

get_buf_point() subroutine 357

get_buffer_directory() subroutine 403

get_character_color() primitive 386

get_choice() subroutine 467

get_cmd() subroutine 462

get_color_scheme_variable() subroutine 390

get_column() subroutine 375

get_command_index() subroutine 462

get_direction() subroutine 436

get_dired_item() subroutine 405

get_doc() subroutine 449

get_executable_directory() primitive 407

get_extension() primitive 406

get_file() subroutine 461

get_file_dir() subroutine 461

get_file_read_only() primitive 399

get_foreground_color() primitive 391

get_func() subroutine 462

get_indentation() subroutine 375

get_key_response() subroutine 462

get_keycode() primitive 452, 475

get_macname() subroutine 462

get_macro() primitive 475

get_mode_string_variable() subroutine 479

497

get_mode_variable() subroutine 479

get_movement_or_release() subroutine 457

get_num_var() primitive 441

get_number() subroutine 467

get_password() subroutine 412

get_pointer() subroutine 424, 426, 427

get_profile() primitive 448

get_search_string() subroutine 350

get_spot() primitive 345

get_str_auto_def() subroutine 467

get_str_var() primitive 441

get_strdef() subroutine 466

get_string() subroutine 466

get_strnone() subroutine 467

get_strpopup() subroutine 467

get_tagged_region() primitive 386

get_tail() primitive 406

get_url_file_part() subroutine 413

get_var() subroutine 462

get_wattrib() primitive 366

get_window_info() subroutine 362

get_window_pos() primitive 368

GETBLUE() textual macro 328

getcd() primitive 403

getenv() primitive 414

GETFOCUS textual macro 460

GETGREEN() textual macro 328

gethostname() primitive 412

getkey() subroutine 450, 471, 474

GETRED() textual macro 328

give_begin_line() subroutine 352

give_end_line() subroutine 352

give_position() subroutine 353

give_prev_buf() subroutine 367

give_window_space() primitive 360

glibc 6

global variable 304

go_line() subroutine 352

goal-column buffer variable 240

got-bad-number variable 241, 467

goto, eel keyword 317

goto-beginning command 40, 164

goto-end command 40, 164

goto-line command 84, 164

goto-tag command 47, 49, 164

goto_url file 39

grab() primitive 343

grab_buffer() subroutine 343

grab_expanding() subroutine 343

grab_full_line() subroutine 343

grab_line() subroutine 343

grab_numbers() subroutine 343

grab_string() subroutine 343

grab_string_expanding() subroutine 344

graphics characters 87, 133

grep command 46, 165, 241

grep-default-directory variable 241

grep-empties-buffer variable 46, 241

grep-ignore-file-extensions variable 241

grep-keeps-files variable 46, 241

grep-mode command 165

grep-prompt-with-buffer-directory

variable 45, 241

grep-show-absolute-path variable 241

GREYBACK textual macro 451

GREYENTER textual macro 451

GREYESC textual macro 451

GREYMINUS textual macro 451

GREYPLUS textual macro 451

GREYSLASH textual macro 451

GREYSTAR textual macro 451

GREYTAB textual macro 451

grouping of EEL operators 317

guess_mode_without_extension() subroutine
480

gui_cursor_shape primitive 241, 381

GUI_CURSOR_SHAPE() textual macro 381

gui-menu-file variable 31, 242

gui.mnu file 81

H
hack_tabs() subroutine 376

halt_process() primitive 431

Hamilton C Shell 117

has_arg primitive 242, 434, 471, 472

has_feature primitive 415

help command 35, 36, 165

file 13

help, getting 35

help_on_command() subroutine 449

help_on_current() subroutine 449

HELPKEY textual macro 470

hex constants 303

entering interactively 126

hex display 87

498 APPENDIX A. INDEX

hex-mode command 71, 166

hex-overtype-mode variable 242

_highlight_control primitive 382

highlight_off() subroutine 382

highlight_on() subroutine 382

highlight-region command 54, 167

history of commands 30

hlp files 80

hook

when loading bytecode files 444

when reading in a file 71

when starting Epsilon 446

horiz-border color class 91, 392

horizontal scrolling 84

HORIZONTAL textual macro 360

horizontal() primitive 375

host name, displaying 281

host name, retrieving 412

HTML mode 75

html-asp-coloring variable 242

html-auto-indent variable 242

html-auto-show-delim-chars variable 242

html-javascript-coloring variable 242

html-mode command 76, 167

html_move_level() subroutine 353

html-other-coloring variable 242

html-php-coloring variable 243

html-vbscript-coloring variable 243

HtmlHelp files 80

Http URL 105

http-proxy-exceptions variable 243

http-proxy-port variable 243

http-proxy-server variable 243

http_retrieve() primitive 410

HTTP_RETRIEVE_ONLY_HEADER textual macro 410

HTTP_RETRIEVE_WAIT textual macro 410

http-user-agent variable 243

I
-i command line flag 299

identifiers 302

IDL files 230

idle-coloring-delay buffer variable 91, 243

idle-coloring-size buffer variable 243

#if preprocessor command 301

if, eel keyword 222, 314

ifdef lines, moving by 74

#ifdef preprocessor command 302

#ifndef preprocessor command 302

ignore_file_extensions variable 408

ignore-error variable 120, 243

ignore-file-extensions variable 29, 102, 244

ignore-kbd-macro variable 244, 474

ignoring-file-change buffer variable 244

import-colors command 137, 167

in_bufed() subroutine 367

in_echo_area primitive 244, 380, 471

in_macro() primitive 451

in-perl-buffer buffer variable 244

in-shell-buffer buffer variable 244

include preprocessor command 301

executed only once 331

include-directories variable 97, 162, 244

INCR textual macro 350

incremental-search command 42, 45, 167

indent-comment-as-code variable 81, 168, 244

indent-for-comment command 82, 168

indent_like_tab() subroutine 376

indent-previous command 69, 70, 168

indent-region command 69, 70, 168

indent-rigidly command 69, 70, 168

indent_to_column() subroutine 375

indent-under command 69, 70, 169

indent-with-tabs buffer variable 56, 70, 244, 376

indenter variable 377

indenting 69

indents-separate-paragraphs buffer variable
41, 163, 245

index() primitive 438

index_table() primitive 473

info command 39, 169

info-backward-node command 38, 169

info-directory-node command 38, 169

info-follow-nearest-reference command 38, 169

info-follow-reference command 38, 169

info-forward-node command 38, 169

info-goto command 39, 170

info-goto-epsilon-command command 36, 170

info-goto-epsilon-key command 36, 170

info-goto-epsilon-variable command 36, 170

info-index command 38, 170

info-index-next command 38, 170

info-last command 38, 170

info-last-node command 39, 170

info-menu command 38, 170

499

info-mode command 39, 171

info-mouse-double command 172

info-next command 38, 172

info-next-page command 38, 172

info-next-reference command 38, 172

info-nth-menu-item command 38, 172

info-path-non-unix variable 38, 245

info-path-unix variable 38, 245

info-previous command 38, 172

info-previous-page command 38, 172

info-previous-reference command 38, 172

info-quit command 38, 172

info-recovering variable 245

info-search command 38, 173

info-tagify command 38, 39, 173

info-top command 38, 173

info-up command 38, 173

info-validate command 38, 39, 173

Ini mode 76

ini-mode command 76, 173

initial-tag-file variable 48, 245

initialization

of Epsilon 12

of variables 311, 312

insert() primitive 341

insert-ascii command 51, 52, 173

insert-binding command 132, 173

insert-clipboard command 55, 173

insert-default-response variable 27, 54, 245

insert-file command 97, 174, 398

insert-file-remembers-file variable 245

insert-macro command 124, 132, 174

insert-scratch command 54, 174

inserting characters 51

installation 5

for DOS 7

for OS/2 8

for Unix 5

Installing Epsilon for DOS 7

Installing Epsilon for OS/2 8

Installing Epsilon for Unix 5

int, eel keyword 304

integrate with Visual Studio 114

integrating with Developer Studio 114

IntelliMouse support 31, 282, 460

INTERCONCURSHELLFLAGS configuration variable
117

international characters 133, 374

internationalization 133

Internet 104

interrupts 421

INTERSHELLFLAGS configuration variable 117

invisible_cmd() primitive 472

invisible_window primitive 245, 366

invoke_menu() primitive 418

invoke-windows-menu command 141, 174

invoking Epsilon 8

IS_ALT_KEY() textual macro 451

IS_CTRL_KEY() textual macro 451

is-current-window variable 246

is_directory() primitive 400

is_dired_buf() subroutine 404

IS_EXT_ASCII_KEY() textual macro 455

is_gui primitive 246, 414

is_highlight_on() subroutine 382

is_in_tree() subroutine 407

is_key_repeating() primitive 450

IS_MOUSE_...() textual macros 455

IS_MOUSE_CENTER() textual macro 455

IS_MOUSE_DOUBLE() textual macro 455

IS_MOUSE_DOWN() textual macro 455

IS_MOUSE_KEY() textual macro 455

IS_MOUSE_LEFT() textual macro 455

IS_MOUSE_RIGHT() textual macro 455

IS_MOUSE_SINGLE() textual macro 455

IS_MOUSE_UP() textual macro 455

IS_NT textual macro 414

is_path_separator() primitive 406

is_pattern() primitive 400

is_process_buffer() primitive 429

is_relative() primitive 406

is_remote_dir() subroutine 407

is_remote_file() primitive 407

IS_TRUE_KEY() textual macro 455

is_unix primitive 415

is-unix variable 246

IS_UNIX_TERM textual macro 246, 415

IS_UNIX_XWIN textual macro 246, 415

is_unsaved_buffer() subroutine 397

IS_WIN_KEY() textual macro 455

IS_WIN31 textual macro 415

is_win32 primitive 415

is-win32 variable 246

IS_WIN32_CONSOLE textual macro 246, 415

IS_WIN32_GUI textual macro 246, 415

IS_WIN32S textual macro 414

500 APPENDIX A. INDEX

IS_WIN95 textual macro 414

is_window() primitive 361

is_word_char() subroutine 349

isalnum() subroutine 436

isalpha() primitive 435

isdigit() primitive 435

isident() subroutine 436

islower() primitive 435

ISO 8859 character sets 133

ISPOPUP textual macro 361

ISPROC_CONCUR textual macro 429

ISPROC_PIPE textual macro 429

isspace() primitive 435

ISTILED textual macro 361

isupper() primitive 435

iter primitive 246, 434, 467, 471, 472, 474

J
Java mode 72

jump-to-column command 85, 174

jump-to-dvi command 79, 174

jump-to-last-bookmark command 47, 174

jump-to-named-bookmark command 47, 175

K
-ka command line flag 13

kbd_extended primitive 246, 453

-kc command line flag 17

-ke command line flag 13, 139, 453

keep-duplicate-lines command 50, 51, 175

keep-matching-lines command 58, 59, 175

keep-unique-lines command 50, 51, 175

key primitive 246, 449, 452, 474

key table 325, 472

key table, values in 439

key_binding variable 475

key_code primitive 246, 453

key-from-macro variable 247, 451

key_is_button primitive 247, 470

key-repeat-rate variable 143, 247

key_type primitive 247, 453

keyboard

101-key 13

enhancers 141

keyboard macro 123

KEYDELETE textual macro 451

KEYDOWN textual macro 451

KEYEND textual macro 451

KEYHOME textual macro 451

KEYINSERT textual macro 451

KEYLEFT textual macro 451

KEYPGDN textual macro 451

KEYPGUP textual macro 451

KEYRIGHT textual macro 451

keys and commands 124

keys, OS/2 Presentation Manager 141

Keystrokes and Commands: Bindings 26

keystrokes, recording 123

keytable 325, 472

keytable, eel keyword 325, 331, 473, 476

keytable, values in 439

keytran primitive 141, 142, 452

KEYTRANPASS textual macro 452

KEYUP textual macro 451

keyword help 80

kill buffers 52

kill vs. delete 52

kill-all-buffers command 96, 175

kill-buffer command 96, 175

kill-buffers variable 53, 247

kill-comment command 82, 175

kill-current-buffer command 96, 175

kill-current-line command 53, 54, 176

kill-level command 42, 176

kill-line command 54, 176

kill-process command 119, 176

kill-rectangle command 56, 176, 247

kill-rectangle-removes variable 247

kill-region command 54, 176

kill-sentence command 41, 176

kill-to-end-of-line command 53, 54, 176

kill-window command 86, 176

kill-word command 41, 176

killing commands 52

-km command line flag 17

-kp command line flag 18

-ks command line flag 14

-kt command line flag 18

KT_ACCENT textual macro 453

KT_ACCENT_SEQ textual macro 453

KT_EXTEND_SEL textual macro 453

KT_KEYTRAN textual macro 453

KT_MACRO textual macro 453

KT_NONASCII textual macro 453

KT_NONASCII_EXT textual macro 453

501

KT_NORMAL textual macro 453

-kw command line flag 18

L
-l command line flag 14, 446

last_index primitive 247, 449, 474

last-kbd-macro command 123, 124, 177

last-show-spaces buffer variable 247

last-window-color-scheme variable 247

latex-2e-or-3 variable 78, 248

latex-mode command 79, 177

Latin 1 character set 133

lcs() primitive 356

lcs_char() primitive 356

leave() primitive 433, 434

leave_blank primitive 248, 448

leave_recursion() primitive 434, 471

_len_def_mac variable 450

level 41

libnss shared files 6

LIBPATH environment variable 20, 426, 484

licensing, Epsilon iii

lifetime of variables 304

line number, always displaying 251

line number, displaying 84

line number, positioning by 84

#line preprocessor command 301

line scrolling 84

line translation 100, 395

line wrapping 84

line_in_window primitive 248, 368

line_search() subroutine 351

line-to-bottom command 83, 84, 177

line-to-top command 83, 84, 177

lines_between() primitive 352

lisp commands 41

list-all command 135, 136, 137, 177

list_bindings() primitive 475

list-bookmarks command 47, 177

list-changes command 136, 138, 177

list-colors command 178

list-definitions command 75, 77, 178

list-files command 110, 178

list_finder variable 464

list-make-preprocessor-conditionals command 76, 178

list_matches() subroutine 464

list-preprocessor-conditionals command 75, 178

list-svga-modes command 92, 93, 178

list-undefined command 135, 179

LISTMATCH textual macro 463

load-buffer command 124, 130, 132, 179

load-bytes command 134, 135, 179, 288

load-changes command 136, 138, 179

load_commands() primitive 443

load-fail-ok variable 248

load-file command 130, 132, 179

load_from_path() subroutine 443, 444

load_from_state primitive 248, 446

local variable 304

locate-file command 110, 179

locate-path-unix variable 110, 179, 248

locate_window() subroutine 398

long lines 84

longjmp() primitive 434

look_file() subroutine 393

look_on_path() primitive 408

look_up_tree() subroutine 407

lookpath() primitive 408

LOSEFOCUS textual macro 460

low-level operations 421, 424, 426

low_window_create() primitive 362

low_window_info() primitive 362

lowaccess() primitive 403

lowclose() primitive 402

lowercase-word command 57, 179

lowopen() primitive 402

lowread() primitive 402

lowseek() primitive 402

lowwrite() primitive 402

LR_BORD() textual macro 363

lugeps.ini file 5

lvalue expressions 319

M
-m command line flag 14

Macintosh files 100

macro-runs-immediately variable 248, 474

macros vs. extensions 291

macros, keyboard 123

macros, types of 300

main loop 471

major modes 25

major-mode buffer variable 248, 371

make command 120, 121, 179, 231

502 APPENDIX A. INDEX

make utility program 288

make_alt() subroutine 451

make_anon_keytable() subroutine 473

make_backup() primitive 399

make_ctrl() subroutine 451

make_dired() subroutine 404

make_line_highlight() subroutine 384

make_mode() subroutine 372

make_pointer() primitive 425

MAKE_RGB() textual macro 327

make_temp_file() primitive 399

make_title() primitive 370

makefile file 288

Makefile mode 76

makefile-mode command 76, 180

malloc() primitive 438

man command 80, 180

margin-right buffer variable 68, 249

margins, setting printer 106

mark 53

mark primitive 249, 345

mark-c-paragraph command 180

mark-inclusive-region command 57, 180

mark-line-region command 57, 180

mark-normal-region command 56, 180

mark-paragraph command 41, 181

mark-rectangle command 56, 181

mark-rectangle-expands variable 249

mark_spot primitive 345

mark_to_column primitive 249, 376

mark-unhighlights variable 56, 180, 181, 249

mark-whole-buffer command 53, 54, 181

_MATCH_BUF textual macro 465

Matchdelim variable 72, 249

matchend primitive 65, 249, 347

matches_at() subroutine 349

matchstart primitive 65, 249, 347, 348

max-initial-windows variable 8, 250

maybe_break_this_line() subroutine 480

maybe_ding() subroutine 416

maybe_indent_rigidly() subroutine 376

maybe_refresh() primitive 371, 471

mem_in_use primitive 250, 439

memcmp() primitive 437

memcpy() primitive 437

memfcmp() primitive 437

memset() primitive 437

mention() primitive 378, 474

mention-delay variable 125, 250, 378

menu bar 31

menu-bar-flashes variable 31, 250

menu-bindings variable 32, 250

menu_command primitive 250, 460

menu-file variable 31, 250

menu-stays-after-click variable 32, 250

menu-width variable 29, 250

menu-window variable 251

merge-diff command 50, 51, 181

merge-diff-var variable 251

message-history-size variable 251

meta characters 374

Microsoft Developer Studio, integrating with 114

middle_init() subroutine 446

minimal-coloring variable 91, 251

minor modes 26

MIXEDCASEDRIVES environment variable 103

mkdir() primitive 404

mode 24, 25

defining a new 476

major 25

minor 25

mode line 24, 370

mode_auto_show_delimiter buffer variable 478

mode_default_settings() subroutine 480

mode-end variable 24, 94, 251, 370

mode-extra buffer variable 252

mode_extra variable 371

mode_keys primitive 473, 474

mode-line color class 91, 392

mode-line-at-top variable 252

mode-line-position variable 252

mode-line-shows-mode variable 252

mode_move_level variable 353

mode-start variable 253, 370

MODFOLD textual macro 349

modified primitive 254, 397

modified_buffer_region() primitive 358

modify_region() primitive 382

monochrome primitive 254, 390

mouse button, third 31

mouse support 30

mouse_auto_off primitive 254, 457

mouse_auto_on primitive 254, 457

mouse_buttons() primitive 457

mouse-center command 142, 181

mouse-center-yanks variable 31, 181, 254

503

mouse_cursor primitive 457

MOUSE_CURSOR, type definition 457

mouse_cursor_attr primitive 254, 458

mouse_cursor_char primitive 254, 458

MOUSE_DBL_LEFT textual macro 455

mouse-dbl-selects buffer variable 254, 459

mouse_display primitive 254, 457

mouse-goes-to-tag buffer variable 31, 255

mouse_graphic_cursor primitive 17, 255, 457

mouse_handler window variable 458

MOUSE_LEFT_DN textual macro 455

mouse_mask primitive 255, 454

mouse-move command 142, 181

mouse-pan command 142, 181

mouse_panning primitive 255, 460

mouse_panning_rate() primitive 460

mouse_pixel_x primitive 255, 456

mouse_pixel_y primitive 255, 456

mouse_pressed() primitive 457

mouse_screen primitive 255, 364, 455

mouse-select command 142, 181

mouse-selection-copies variable 31, 255

mouse_shift primitive 256, 456

mouse-to-tag command 142, 182

mouse_x primitive 256, 455

mouse_y primitive 256, 455

mouse-yank command 142, 182

move_level() subroutine 353

move_to_column() primitive 375

move-to-window command 86, 182

moving around 39, 83

moving text 52

moving windows 30

MRCOLOR textual macro 382

MRCONTROL textual macro 382

MREND textual macro 382

MRSTART textual macro 382

MRTYPE textual macro 382

muldiv() primitive 378

multitasking 117

must_build_mode primitive 256, 371, 372

MUST_MATCH textual macro 463

N
-n command line flag 300

name table 439

name_color_class() primitive 392

name_debug() primitive 448

name_help() primitive 449

name-kbd-macro command 123, 124, 142, 182

name_macro() primitive 475

name_match() primitive 465

name_name() primitive 440

name_to_bufnum() primitive 356

name_type() primitive 440

name_user() primitive 441

named-command command 125, 182

narrow_end primitive 256, 346

narrow_position() subroutine 346

narrow_start primitive 256, 346

narrow-to-region command 143, 182, 211

narrowed_search() subroutine 350

national characters 133

national-keys-not-alt variable 256

near-pause variable 42, 162, 256

need-rebuild-menu variable 257

NET_DONE textual macro 411, 430, 431

NET_LOG_DONE textual macro 411

NET_LOG_WRITE textual macro 411

NET_RECV textual macro 411, 430, 431

NET_SEND textual macro 411, 430

new-buffer-translation-type variable 257,
395

new-c-comments variable 81, 257

new-file command 95, 96, 183

new-file-ext variable 95, 257

new_file_io_converter variable 396

new-file-mode variable 95, 257

new_file_read() primitive 393

new_file_write() primitive 394

new-search-delay variable 257

new_table() primitive 473

new_variable() primitive 442

next-buffer command 96, 183

next_dialog_item() primitive 471

next-difference command 51, 183

next-error command 119, 120, 121, 183

next-match command 46, 183

next-page command 84, 183

next-position command 46, 120, 121, 183

next_screen_line() primitive 372

next-tag command 49, 184

next_user_window() subroutine 361

next-video command 92, 93, 184

next-window command 86, 184

504 APPENDIX A. INDEX

nl_forward() primitive 352

nl_reverse() primitive 352

NO_MODE_LINE textual macro 370

-nodde command line flag 14

-nologo command line flag 14

non-english characters 133

NONE_OK textual macro 463

normal-character command 42, 51, 52, 184, 191

normal-cursor variable 88, 258

normal-gui-cursor variable 88, 258

normal_on_modify() subroutine 358

-noserver command line flag 14, 113

note() primitive 377

noteput() primitive 377

NSS shared files 6

NT_AUTOLOAD textual macro 444

NT_AUTOSUBR textual macro 444

NT_BUFVAR textual macro 440, 442

NT_BUILTVAR textual macro 441

NT_COLSCHEME textual macro 390, 440, 442

NT_COMMAND textual macro 440

NT_MACRO textual macro 440

NT_SUBR textual macro 440

NT_TABLE textual macro 440

NT_VAR textual macro 440, 442

NT_WINVAR textual macro 440, 442

null, searching for 60

NUMALT() textual macro 451

number_of_color_classes() primitive 392

number_of_popups() primitive 361

number_of_user_windows() subroutine 361

number_of_windows() primitive 361

numbers, entering interactively 126

NUMCTRL() textual macro 451

NUMDIGIT() textual macro 451

NUMDOT textual macro 451

NUMENTER textual macro 451

numeric argument 26, 123

numeric constant 303

NUMKEYS textual macro 325, 449, 472

NUMSHIFT() textual macro 451

numtoi() subroutine 467

O
-o command line flag 300

octal constant 303

oem_file_converter() subroutine 396

oem-to-ansi command 101, 184

ok_file_match() subroutine 408

on, eel keyword 325, 330, 331

on_modify() subroutine 358

one-window command 86, 184

one_window_to_dialog() subroutine 471

online documentation 36

only-file-extensions variable 30, 102, 258

Open With Epsilon shell extension 115

open-line command 52, 185

opsys primitive 258, 414

orig_screen_color() primitive 392

OS_DOS textual macro 258

OS_OS2 textual macro 258

OS_UNIX textual macro 258

OS/2 Presentation Manager keys 141

os2call() subroutine 427

os2calls.doc file 21

_our_color_scheme variable 390

_our_gui_scheme variable 390

_our_mono_scheme variable 390

_our_unixconsole_scheme variable 390

over-mode buffer variable 51, 258

overwrite-cursor variable 88, 259

overwrite-gui-cursor variable 88, 259

overwrite-mode command 51, 52, 185

owitheps.dll file 115

P
-p command line flag 14, 112, 300

page-left command 85, 185

page-right command 85, 185

page_setup_dialog() primitive 419

paging 259

paging-centers-window variable 259

paging-retains-view variable 259, 365

paragraphs 41

filling 68

parenthesis matching 41

parse_string() primitive 349

parse_url() subroutine 412

PASSWORD_PROMPT textual macro 464

passwords in URL’s 105

PATH environment variable 11

path, searching for files on a 408

PATH_ADD_CUR_DIR textual macro 409

PATH_ADD_EXE_DIR textual macro 409

505

PATH_ADD_EXE_PARENT textual macro 409

path_list_char primitive 259, 407

path_sep primitive 259, 405, 406

pattern, searching for a 59

pause-macro command 124, 185

PBORDERS textual macro 366

peek() primitive 424

perform_conversion() primitive 397

Perl mode 76

perl-align-contin-lines variable 77, 259

perl-auto-show-delim-chars variable 260

perl-brace-offset variable 77, 260

perl-closeback variable 77, 260

perl-comment color class 76

perl-constant color class 76

perl-contin-offset variable 77, 260

perl-function color class 76

perl-indent buffer variable 77, 260

perl-keyword color class 77

perl-label-indent variable 77, 260

perl-mode command 77, 185

perl-string color class 77

perl-tab-override variable 77, 260

perl-top-braces variable 77, 260

perl-top-contin variable 77, 260

perl-top-struct variable 77, 261

perl-topindent variable 77, 261

perl-variable color class 76

permanent-menu variable 261

PERMIT_RESIZE_KEY textual macro 261, 460

PERMIT_SCROLL_KEY textual macro 261, 460

PERMIT_WHEEL_KEY textual macro 261, 461

permit_window_keys primitive 261, 460

PHORIZBORDCOLOR textual macro 366

PIPE_CLEAR_BUF textual macro 431

PIPE_NOREFRESH textual macro 431

PIPE_SKIP_SHELL textual macro 431

PIPE_SYNCH textual macro 431

pipe_text() subroutine 431

pluck-tag command 47, 49, 185

PM, OS/2 keys 141

point 24

point primitive 261, 341

point_spot primitive 345

pointer to function 439

pointer to struct, vs. struct 421

poke() primitive 424

pop-up utilities 141

POP_UP_PROMPT textual macro 463

popup_border color class 392

popup_near_window() subroutine 368

popup_title color class 392

position 341

position-window-on-screen-linewindow
variable 261

post_compile_hook subroutine 152

PostScript mode 77

postscript-auto-show-delim-chars variable
261

postscript-mode command 77, 186

pre_compile_hook subroutine 152

precedence 317

prefix keys 125

unbinding 131

prepare_url_operation() subroutine 412

prepare_windows() subroutine 370

preprocessor lines, moving by 74

Presentation Manager, OS/2 keys 141

preserve-filename-case variable 103, 261

preserve-session variable 14, 111, 262

prev_cmd primitive 262, 434, 472

prev_dialog_item() primitive 471

prev_indenter() subroutine 377

prev_screen_line() primitive 372

previous-buffer command 96, 186

previous-difference command 51, 186

previous-error command 120, 121, 186

previous-match command 46, 186

previous-page command 84, 186

previous-position command 46, 120, 121, 186

previous-tag command 49, 186

previous-window command 86, 187

primitive 341

primlist.doc file 21

print-buffer command 106, 107, 187

print-buffer-no-prompt command 106, 187

print-color-scheme variable 106, 262

print-destination variable 106, 187, 262

print-destination-unix variable 106, 187, 262

print-doublespaced variable 106, 262

print_eject() primitive 420

print-heading variable 106, 263

print-in-color variable 106, 263

print_line() primitive 420

print-line-numbers variable 106, 263

print-long-lines-wrap variable 263

506 APPENDIX A. INDEX

print-region command 106, 107, 187

print-setup command 106, 107, 188

print-tabs variable 107, 263

print_window() primitive 420

Printf-style format strings 379

printing 106

printing variables 126

PROC_STATUS_RUNNING textual macro 430, 432

process-backward-kill-word command 119, 188

process-complete command 119, 188

process-current-directory primitive 263, 403

process-enter command 188

process-enter-whole-line variable 263

process_exit_status buffer variable 430, 432

process-exit-status primitive 264

process_input() primitive 430

PROCESS_INPUT_CHAR textual macro 430

PROCESS_INPUT_LINE textual macro 430

process_kill() primitive 431

process-mode command 188

process-next-cmd command 119, 188

process-output-to-window-bottom variable
264

process-pass-drive-directories variable
264

process-previous-cmd command 119, 188

process_send_text() primitive 430

process-tab-size variable 264

process-warn-on-exit variable 264

process-yank command 119, 189

profile command 135, 189

profiling primitives 448

program-keys command 52, 139, 141, 142, 189, 453

programs, running 116

prompt_box() subroutine 471

prompt_comp_read() subroutine 464

prompt-with-buffer-directory variable 102,
264

prompts, for file names 102

prox_line_search() subroutine 351

PTEXTCOLOR textual macro 366

PTITLECOLOR textual macro 366

ptrlen() primitive 442

pull-highlight color class 91

pull-word command 80, 91, 189

pull-word-fwd command 80, 189

push command 116, 117, 119, 190

push-cmd variable 120, 264

push-cmd-unix-interactive variable 265

put_directory() subroutine 403

putenv() primitive 414

PVERTBORDCOLOR textual macro 366

Python mode 77

python-auto-show-delim-chars variable 265

python-indent variable 78, 265

python-indent-to-comment variable 265

python-mode command 78, 189

Q
-q command line flag 300

QUERY textual macro 350

query-replace command 57, 58, 59, 161, 190

quick_abort() primitive 433, 474

quick-dired-command command 110, 190

-quickup command line flag 14

quiet-write-state variable 265

quit_bufed() subroutine 367

quoted-insert command 52, 191

quoting special chars in searches 42

R
-r command line flag 14, 446

raw_xfer() primitive 343

re_compile() primitive 348, 349

RE_FIRST_END textual macro 348

RE_FORWARD textual macro 348

re_match() primitive 348, 349

RE_REVERSE textual macro 348

re_search() primitive 348

RE_SHORTEST textual macro 348

_read_aborted variable 393

read_file() subroutine 393

read-only files 399

read-only files and buffers 98

read-session command 112, 113, 191

readme.txt file 21

readonly-pages variable 98, 265

readonly-warning variable 98, 265

realloc() primitive 438

rebuild-menu command 32, 191

recall-id variable 266

recall-maximum-session variable 266

recall-maximum-size variable 266

recalling previous commands 30

recognize-password-prompt variable 266

507

recolor_by_lines() subroutine 388

recolor_from_here variable 388

recolor_from_top() subroutine 389

recolor_partial_code() subroutine 389

recolor_range variable 387

record-kbd-macro command 191

recording-suspended variable 266

rectangle editing 56

rectangle_standardize() primitive 384

_recursion_level variable 434

recursive_edit() subroutine 434

redisplay command 124, 191

redo command 82, 83, 191

redo vs. redo-changes 82

redo-changes command 82, 83, 192

refresh() primitive 371

refresh-files command 192

reg_tab primitive 473

REGEX textual macro 349

regex-first-end variable 65, 266

regex-replace command 58, 59, 66, 67, 192

regex-search command 45, 66, 67, 192

regex-shortest variable 65, 266

REGINCL textual macro 381

region 52, 53

region_type() subroutine 382

REGLINE textual macro 381

REGNORM textual macro 381

REGRECT textual macro 381

regular expressions 42, 59, 348

reindent-after-c-yank variable 73, 266

reindent-after-perl-yank variable 77, 267

reindent-after-yank variable 70, 211, 267

reindent-c-comments variable 73, 267

reindent-one-line-c-comments variable 73,
267

relative() primitive 405

release-notes command 36, 193

remote_dirname_absolute() subroutine 404

remove_final_view() subroutine 366

remove_line_highlight() subroutine 384

remove_region() primitive 382

remove_window() primitive 360

rename-buffer command 193

rename_file() primitive 399

renaming commands or variables 129

renaming files 108

repeating commands 27

repeating, keys 450

Repeating: Numeric Arguments 26

replace() primitive 342

replace-again command 193

REPLACE_FUNC() textual macro 440

replace_in_existing_hook() subroutine 352

replace_in_readonly_hook() subroutine 352

replace_name() primitive 440

replace-num-changed variable 267, 350

replace-num-found variable 267, 350

replace-string command 57, 59, 193

replacing in multiple files 58

reserved EEL keywords 302

reset-mode command 193

reset_modified_buffer_region() primitive
358

resident utilities 141

resize-menu-list variable 267

resize_screen() primitive 373

resizing windows 30

restart-concurrent variable 120, 267

restore-blinking-on-exit variable 268

restore-color-on-exit variable 91, 268, 392

restore_screen() subroutine 363

restore_vars() primitive 316

resume-client command 114, 193

resynch-match-chars variable 49, 268

retag-files command 48, 49, 194

return, eel keyword 315

return-raw-buttons variable 268, 470

rev-search-key variable 45, 268

REVERSE textual macro 349

reverse-incremental-search command 45, 194

reverse-regex-search command 45, 67, 194

reverse-replace command 58, 59, 194

reverse-search-again command 44, 45, 194

reverse-sort-buffer command 67, 194

reverse-sort-region command 67, 194

reverse_split_string() subroutine 413

reverse-string-search command 44, 45, 194

revert-file command 97, 194

reverting to old file 97

rgb_to_attr() primitive 392

right margin wrap 68

right_align_columns() subroutine 354

rindex() primitive 438

rmdir() primitive 404

root_keys primitive 473, 474

508 APPENDIX A. INDEX

ROWARN_BELL textual macro 265

ROWARN_BUF_RO textual macro 265

ROWARN_GREP textual macro 265

ROWARN_MSG textual macro 265

run-by-mouse variable 268, 459

run_topkey() subroutine 473

run_viewer() primitive 432

running other programs 116

S
-s command line flag 15, 300

safe_copy_buffer_variables() subroutine
443

save-all-buffers command 99, 121, 195

save-all-without-asking variable 268

save-file command 99, 195, 211

save_remote_file() subroutine 396

save_screen() subroutine 363

save_spot, eel keyword 316, 345

save_state() primitive 445

save_var, eel keyword 316

save-when-making variable 121, 268

saving customizations 129

saving files automatically 100

say() primitive 377, 378, 380, 433, 438

sayput() primitive 377, 378, 380

SCON_COMPARE textual macro 351

SCON_RECORD textual macro 351

SCON_RESTORE textual macro 351

scope of variables 304

scratch buffers 54

screen 24

screen-border color class 91

screen_cols primitive 268, 373

screen-decoration color class 91

screen_lines primitive 269, 373

screen_messed() primitive 372

screen_mode primitive 269, 372

screen_to_window() primitive 364

scroll bar 30

Scroll Lock key 83

scroll-at-end variable 40, 269

scroll_bar_line() primitive 459

scroll-bar-type variable 269

scroll_by_wheel() subroutine 459

scroll-down command 84, 195

scroll-init-delay variable 31, 269

scroll-left command 85, 195

scroll-rate variable 31, 269

scroll-right command 85, 195

scroll-up command 84, 195

scrollbar_handler() subroutine 460

scrolling, lines 84

search() primitive 347, 348

search-again command 44, 45, 195

search-all-help-files command 81, 195

search_continuation primitive 351

search-in-menu variable 29, 269

search_read() subroutine 350

search-wraps variable 44, 269

searching

and replacing 57

case folding 43

conventional 44

for special characters 42

for words 43

incremental 42

incremental mode 43

regular expression 42, 43

searching multiple files 45

see-delay variable 88, 269, 377

select-buffer command 96, 108, 196

select-help-files command 81, 196

select_low_window() primitive 362

select_menu_item() subroutine 468

select_printer() primitive 419

select-tag-file command 48, 49, 196

selectable-colors variable 90, 270

selected_color_scheme primitive 270, 283, 390

Send To menu, putting Epsilon on a 114

send-invisible command 196

sendeps program 114

sentence commands 41

sentence-end variable 270

sentence-end-double-space variable 41, 270

-server command line flag 15, 114

server-raises-window variable 270

session-always-restore variable 111, 270

session-default-directory variable 112, 270

session-file-name variable 112, 270

session-restore-biggest-file variable 270

session-restore-directory variable 113, 270

session-restore-files variable 112, 271

session-restore-max-files variable 113, 271

session-tree-root variable 112, 271

509

sessions, restoring 111

set-abort-key command 83, 196

set-any-variable command 128, 129, 196

set-bookmark command 47, 197

set_buf_point() subroutine 357

set_buffer_filename() subroutine 398

set_case_indirect() subroutine 473

set_character_color() primitive 343, 385

set-color command 90, 91, 93, 197, 207

set_color_pair() primitive 391

set-comment-column command 82, 197

set-debug command 135, 197

set-dialog-font command 89, 198

set-display-characters command 17, 89, 198, 375

set-display-look command 94, 198

set-file-name command 198

set_file_opsys_attribute() primitive 399

set_file_read_only() primitive 399

set-fill-column command 68, 198

set-font command 89, 199

set-line-translate command 101, 199

set_list_keys() subroutine 473

set-mark command 54, 199

set_mode() subroutine 370

set_mode_message() subroutine 252, 371

set_name_debug() primitive 448

set_name_help() primitive 448

set_name_user() primitive 441

set-named-bookmark command 47, 199

set_num_var() primitive 441

set-printer-font command 89, 106, 199

set_region_type() subroutine 382

set-show-graphic command 87, 89, 199

set_shrinkname() primitive 429

set_str_var() primitive 441

set_swapname() primitive 439

set-tab-size command 87, 89, 200

set_tagged_region() primitive 386

set-unicode-encoding command 200

set-variable command 43, 126, 129, 200, 441

set-video command 92, 93, 200

set-want-backup-file command 200

set_wattrib() primitive 366

set_window_caption() primitive 471

setjmp() primitive 434

setting

colors 89

variables 126

setting bookmarks 46

shebang line 104

SHELL environment variable 12, 116

shell extension, Open with Epsilon 115

shell mode 78

shell() primitive 428, 429

shell, replacements for 117

shell-auto-show-delim-chars variable 271

shell-mode command 78, 200

shell-shrinks variable 116, 271, 429

shell-tab-override variable 78, 271

shelling commands 116

shift_pressed() primitive 456

shift-selecting variable 271

shift-selects variable 53, 271

short, eel keyword 305, 439

shortcut, running Epsilon from a 114

show-all-variables variable 272

show_binding() subroutine 449

show-bindings command 35, 36, 201

show_char() primitive 452

show-connections command 104, 105, 201

show-last-keys command 35, 36, 201

show-matching-delimiter command 42, 72, 74, 201,
249

show-menu command 32, 201

show-mouse-choices variable 272, 459

show-point command 84, 201

show_replace() subroutine 350

show-spaces buffer variable 88, 151, 272

show-standard-bitmaps command 201, 419

show-tag-line variable 47, 272

show_text() primitive 378

show-variable command 128, 129, 201

show-version command 202

show-view-bitmaps command 202, 419

show-when-idle variable 94, 272, 450

show-when-idle-column variable 94, 273

show_window_caption() subroutine 471

shrink-window command 87, 202

shrink-window-horizontally command 87, 202

shrink-window-interactively command 87, 202

shrinking 13

file used 116

while running other programs 116

signal_suspend() primitive 416

simple_re_replace() subroutine 350

size() primitive 341

510 APPENDIX A. INDEX

snow, video 18

soft-tab-size buffer variable 70, 146, 168, 273,
274

software interrupts 421

sort_another() subroutine 354

sort-buffer command 67, 202

sort-case-fold buffer variable 67, 273

sort-region command 67, 202

sort_status primitive 273, 354

sort-tags command 48, 49, 202

sorting 67, 354

source level tracing debugger 291

SPACE_VALID textual macro 464

split_string() subroutine 412

split-window command 86, 203

split-window-vertically command 86, 203

spot 344

spot, eel keyword 305

spot_to_buffer() primitive 344

sprintf() primitive 438

_srch_case_map buffer variable 348, 354

standard-color variable 390

standard-gui variable 390

standard-mono variable 390

standard-toolbar command 140, 203, 419

standardize_remote_pathname() subroutine
404

start-kbd-macro command 124, 182, 203

start-make-in-buffer-directory variable
273

start_print_job() primitive 420

start-process command 117, 119, 203, 429

start-process-in-buffer-directory

variable 274

start_profiling() primitive 448

start_up() subroutine 440, 446

starting Epsilon 8

STARTMATCH textual macro 463

startup files 129

state file 15, 129

state_extension primitive 274, 444

state_file primitive 446

state-file-backup-name variable 130, 274

_std_disp_class variable 374

std_pointer primitive 458

stop-process command 119, 122, 204, 431

stop_profiling() primitive 448

strcat() primitive 437

strchr() primitive 438

strcmp() primitive 437

strcpy() primitive 436

strfcmp() primitive 348, 437

stricmp() primitive 437

string constant 303

string_replace() subroutine 267, 350

string-search command 44, 45, 204

strings 130

strings in when_loading() ftns 444

strlen() primitive 424, 436

strncat() primitive 437

strncmp() primitive 437

strncpy() primitive 436

strnfcmp() primitive 348, 437

strsave() primitive 438, 444

strstr() primitive 438

strtoi() subroutine 467

structure-or-union specifier 308

stuff() primitive 342

stuff_macro() subroutine 452

subroutine 305

suffix_ subroutines 71, 477

suffix_default() subroutine 477

suffix_none() subroutine 477

suspend-epsilon command 111, 204

SVGA, OS/2 command 92

SVGA, video modes 92

SVGADATA.PMI 92

swap file 13

switch, eel keyword 315

switch-buffers command 96, 204

switch_to_buffer() subroutine 367

switch-windows command 86, 204

switches

for EEL 299

for Epsilon 12

syntax highlighting 91

system variables 128

system_window primitive 274, 366

system.ini file 5

T
tab size, setting 87, 244, 274

tab_convert() subroutine 376

tab-size buffer variable 70, 73, 87, 146, 168, 273,
274, 374

511

tabify-buffer command 70, 204

tabify-region command 70, 204

table_count primitive 274, 474

table_keys primitive 474

table_prompt() subroutine 474

tabs, used for indenting 70

tag, struct or union 309

tag-ask-before-retagging variable 47, 274

tag-batch-mode variable 274

tag-by-text variable 48, 274

tag-case-sensitive variable 48, 275

tag-declarations variable 48, 275

tag-extern-decl variable 275

tag-files command 47, 49, 204

tag-list-exact-only variable 275

tag-pattern-c variable 275

tag-pattern-default variable 275

tag-pattern-perl variable 275

tag-relative variable 49, 275

tag-show-percent variable 275

tag_suffix_default() subroutine 413

tag_suffix_none() subroutine 413

tagged regions 386

tagging function names 47

TB_BORD() textual macro 363

-teach command line flag 15

telnet command 105, 205

Telnet URL 105

telnet_host() primitive 409

telnet_id variable 410

telnet-mode command 105, 205

telnet_send() primitive 409

telnet_server_echoes() primitive 410

TEMP environment variable 13

temp_buf() subroutine 357

template, file name 99

term_clear() primitive 380

term_cmd_line() subroutine 373

term_init() subroutine 373

term_mode() subroutine 373

term_position() primitive 380

term_write() primitive 380

term_write_attr() primitive 380

terminal program under X 15

TeX mode 78

tex-auto-fill-mode variable 275

tex-auto-show-delim-chars variable 276

tex-boldface command 79, 205

tex-center-line command 79, 205

tex-close-environment command 79, 205

tex-display-math command 79, 205

tex-environment command 79, 205

tex-environment-name variable 276

tex-footnote command 79, 205

tex-force-latex buffer variable 79, 276

tex-force-quote command 79, 206

tex-inline-math command 79, 206

tex-italic command 79, 206

tex-left-brace command 79, 206

tex-look-back variable 79, 276

tex-math-escape command 79, 206

tex-mode command 79, 206

tex-paragraphs buffer variable 41, 163, 276

tex-quote command 79, 206

tex-rm-correction command 79, 206

tex-save-new-environments variable 276

tex-slant command 79, 206

tex-small-caps command 79, 207

tex-typewriter command 79, 207

text color class 90, 392

text_color primitive 276, 392

text_height() primitive 361

text_width() primitive 361

third mouse button 31

this_cmd primitive 276, 434, 471, 472

tiled-border variable 276

tiled_only() subroutine 367

tiled-scroll-bar variable 277

time_and_day() primitive 421

time_begin() primitive 420

time_done() primitive 420

time_ms() primitive 420

time_remaining() primitive 420

TIMER, type definition 420

title, of window 369

TITLECENTER textual macro 369

TITLELEFT() textual macro 369

TITLERIGHT() textual macro 369

TMP environment variable 13

tmp_buf() subroutine 357

to_another_buffer() subroutine 367

to_begin_line() textual macro 352

to_buffer() subroutine 367

to_buffer_num() subroutine 367

to_column() subroutine 375

to_end_line() textual macro 352

512 APPENDIX A. INDEX

to-indentation command 70, 207

to-left-edge command 207

to-right-edge command 207

to_virtual_column() subroutine 376

toggle-borders command 93, 207

toggle-menu-bar command 31, 207

toggle-scroll-bar command 31, 207

toggle-toolbar command 140, 141, 208

tokenize_lines() primitive 355

tolower() primitive 436

toolbar_add_button() primitive 418

toolbar_add_separator() primitive 418

toolbar_create() primitive 418

toolbar_destroy() primitive 418

top_level primitive 435

Topindent variable 72, 277

TOPLEFT textual macro 361

toupper() primitive 436

tracing debugger 134

translation 100, 395

translation-type buffer variable 101, 277, 392,
394, 395, 396

transpose-characters command 67, 208

transpose-lines command 67, 208

transpose-words command 67, 208

transposing things 67

try_calling() primitive 440

TSR’s 141

tutorial 8

tutorial command 208

two_scroll_box() subroutine 471

type names 311

type point 118

type specifier 306

TYPE_CARRAY textual macro 442

TYPE_CHAR textual macro 442

TYPE_CPTR textual macro 442

TYPE_INT textual macro 442

TYPE_OTHER textual macro 442

type_point primitive 277, 429

TYPE_POINTER textual macro 442

TYPE_SHORT textual macro 442

typing-deletes-highlight variable 54, 277

U
Ultravision video modes 92

unbind-key command 125, 126, 208

#undef preprocessor command 301

undo command 82, 83, 191, 208

undo vs. undo-changes 82

undo-changes command 82, 83, 208

undo_count() primitive 347

UNDO_DELETE textual macro 346

UNDO_END textual macro 346

undo_flag primitive 277, 347

UNDO_FLAG textual macro 347

UNDO_INSERT textual macro 346

undo-keeps-narrowing buffer variable 277

UNDO_MAINLOOP textual macro 346

undo_mainloop() primitive 346, 471

UNDO_MOVE textual macro 346

undo_op() primitive 346

UNDO_REDISP textual macro 346

undo_redisplay() primitive 346

UNDO_REPLACE textual macro 346

undo-size buffer variable 82, 277

ungot_key primitive 278, 450, 452

Unicode conversion 133, 397

unicode-convert-encoding command 208

unicode-detection buffer variable 278

unicode-use-latin1 buffer variable 278

uniform resource locator (URL) 104

uniq command 50, 51, 209

unique_file_ids_match() subroutine 401

unique_filename_identifier() primitive 401

Unix files 100

Unix, Epsilon for 6

unsaved_buffers() subroutine 397

unseen_msgs() primitive 377

untabify-buffer command 56, 70, 209

untabify-region command 70, 209

untag-files command 49, 209

up-line command 40, 209

update Epsilon 135

update_readonly_warning() subroutine 393

updating Epsilon 135

uppercase-word command 57, 209

URL (uniform resource locator) 104

URL syntax 105

url_operation() subroutine 411

use_common_file_dialog() subroutine 468

use_common_file_dlg() subroutine 468

use_default primitive 278, 443

use-grep-ignore-file-extensions variable
278

513

use-process-current-directory variable
278, 403

user, eel keyword 128, 325, 442

user_abort primitive 279, 433

using_new_font primitive 381

using_oem_font() primitive 381

UTF-16 encoding 133, 397

V
-v command line flag 300

variables

buffer-specific 128, 304, 325

in EEL 304

setting & showing 126

window-specific 129, 304, 325

varptr() primitive 442

vartype() primitive 442

VBasic mode 79

vbasic-auto-show-delim-chars variable 279

vbasic-indent variable 80, 279

vbasic-indent-subroutines variable 279

vbasic-indent-with-tabs variable 80, 279

vbasic-mode command 80, 209

-vc command line flag 15, 373

-vclean command line flag 18

-vcolor command line flag 15

verenv() primitive 414

version primitive 279, 446

versioned-file-string variable 279

vert-border color class 91, 392

VERTICAL textual macro 360

VESA video modes 92

vga43 variable 92, 279

video modes 92

_view_border variable 365

_view_bottom variable 365

view_buf() subroutine 364

view_buffer() subroutine 364

_view_left variable 365

view_linked_buf() subroutine 365, 449

view_loop() subroutine 365

view-lugaru-web-site command 105, 210

view-process command 120, 121, 210

_view_right variable 365

_view_title variable 365

_view_top variable 365

view-web-site command 105, 210

virtual_column() subroutine 376

virtual-insert-cursor variable 88, 279

virtual-insert-gui-cursor variable 88, 279

virtual_mark_column() subroutine 376

virtual-overwrite-cursor variable 88, 280

virtual-overwrite-gui-cursor variable 88,
280

virtual-space buffer variable 40, 280

visit-file command 97, 210

Visual Basic mode 79

Visual Studio, integration with 114

visual-diff command 50, 51, 210

visual-diff-mode command 51, 210

-vl command line flag 15, 373

-vm command line flag 18

-vmono command line flag 15

VMS 239

volatile, eel keyword 312

-vsnow command line flag 18

-vt command line flag 15

-vv command line flag 15

-vx command line flag 15

VxD 5

-vy command line flag 15

W
-w command line flag 15, 233, 300

w-bottom variable 280

w-left variable 280

w-right variable 280

w-top variable 280

-wait command line flag 16

wait_for_key() primitive 449, 450, 451, 452, 471,
472

wall-chart command 36, 210

want-auto-save variable 100, 280

want-backups buffer variable 99, 280

want-bell variable 94, 280, 416

want-code-coloring buffer variable 91, 281

want_cols primitive 281, 373

want-common-file-dialog variable 102, 281

want-display-host-name variable 281

want-gui-help variable 36, 281

want-gui-help-console variable 36, 281

want-gui-menu variable 281

want-gui-printing variable 106, 281

want-gui-prompts variable 281

514 APPENDIX A. INDEX

want_lines primitive 282, 373

WANT_MODE_LINE textual macro 370

want-sorted-tags variable 48, 282

want-state-file-backups variable 130, 282

want_toolbar primitive 282, 419

want-warn buffer variable 99, 282

want-window-borders variable 282

warn-before-overwrite variable 98, 282

warn_existing_file() subroutine 395

was_key_shifted() subroutine 456

was-quoted variable 282

Web URL 105

what-is command 35, 36, 211

wheel mouse button 31

wheel mouse support 282

wheel-click-lines variable 282

when_aborting() subroutine 433

when_activity buffer variable 430, 432

when_displaying variable 389

when_exiting() subroutine 433

when_idle() subroutine 450

when_loading() subroutine 330, 444

when_net_activity buffer variable 411

when_repeating() subroutine 450

when_resizing() subroutine 373

when_restoring() subroutine 446

when_setting_ subroutines 441

while, eel keyword 314

widen-buffer command 143, 211

wildcard file patterns 107

wildcard searching 59

WIN_BUTTON textual macro 461

win_display_menu() primitive 418

WIN_DRAG_DROP textual macro 114, 460

WIN_EXIT textual macro 460

win_help_contents() primitive 417

WIN_HELP_REQUEST textual macro 460

win_help_string() primitive 418

win_load_menu() primitive 418

win_menu_popup() primitive 418

WIN_MENU_SELECT textual macro 250, 460

WIN_RESIZE textual macro 460

WIN_VERT_SCROLL textual macro 460

WIN_WHEEL_KEY textual macro 261, 459, 461

window

keyword 325, 331

window handle 360

window number 360

window storage class 129

window title 369

window, eel keyword 129, 304, 325

window_at_coords() primitive 364

window-black color class 94

window-blue color class 94

window_bufnum primitive 282, 367

window-caption variable 283

window-caption-file variable 283

window_create() subroutine 362

window_edge() primitive 361

window_end primitive 283, 367

window_extra_lines() primitive 368

_window_flagswindow variable 370

window_handle primitive 283, 360

window_height primitive 283, 361

window_kill() primitive 359

window_left primitive 283, 364

window_line_to_position() primitive 368

window_lines_visible() primitive 469

window_number primitive 283, 360

window_one() primitive 359

window-overlap variable 84, 283

window_scroll() primitive 368

window-specific variables 129, 304

window_split() primitive 360

window_start primitive 283, 367

window_title() primitive 369

window_to_fit() subroutine 368

window_to_screen() primitive 364

window_top primitive 284, 364

window_width primitive 284, 361

windows 1, 23

creating 85

deleting 86

selecting 86

sizing 86

windows_help_from() subroutine 418

windows_maximize() primitive 417

windows_minimize() primitive 417

windows_restore() primitive 417

windows_set_font() primitive 381

winexec() primitive 432

winhelp-display-contents variable 196, 284

word commands 40

word searching 43

WORD textual macro 349

word wrap mode 68

515

word-pattern buffer variable 40, 164, 284

word_search() subroutine 349

wrapping during searches 44

wrapping, lines 84

write-file command 99, 211

write-files-and-exit command 211

write_part() subroutine 398

write-region command 99, 211

write-session command 112, 113, 211

write-state command 130, 211, 287, 325

WWW URL 105

X
-x command line flag 18

x_pixels_per_char() primitive 456

-xf command line flag 19

xfer() subroutine 343

xfer_rectangle() subroutine 384

-xi command line flag 19

xterm 15

xterm-color variable 390

-xu command line flag 19

Y
y_pixels_per_char() primitive 456

yank command 54, 55, 118, 211

yank-pop command 54, 212

yank-rectangle-to-corner variable 284

Z
zap() primitive 356

zeroed, eel keyword 325

zoom-window command 86, 212

