Lugaru’se

eRsllon

rogrammer’s editor
>

Epsilon Programmer’s Editor
User’s Manual and Reference

Version 13.16 - Reference Edition

This is revision 13.16a of the manual.

It describes version 13.16 of Epsilon and EEL.

Copyright © 1984, 2018 by Lugaru Software Ltd.
All rights reserved.

Lugaru Software Ltd.
1645 Shady Avenue
Pittsburgh, PA 15217

TEL: (412) 421-5911
E-mail: support@lugaru.com or sales@lugaru.com

ii

LIMITED WARRANTY

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FOR EITHER THE
INSTRUCTION MANUAL, OR FOR THE EPSILON PROGRAMMER’S EDITOR AND THE EEL SOFTWARE
(COLLECTIVELY, THE “SOFTWARE”).

Lugaru warrants the medium on which the Software is furnished to be free from defects in material under normal
use for ninety (90) days from the original date of purchase, provided that the limited warranty has been registered by
mailing in the registration form accompanying the Software.

LIMITED LIABILITY AND RETURN POLICY

Lugaru will be liable only for the replacement of defective media, as warranted above, which are returned shipping
prepaid to Lugaru within the warranty period. Because Lugaru cannot anticipate the intended use to which its Software
may be applied, it does not warrant the performance of the Software. LUGARU WILL NOT BE LIABLE FOR ANY
SPECIAL, INDIRECT, CONSEQUENTIAL OR OTHER DAMAGES WHATSOEVER. However, Lugaru wants you to
be completely satisfied with the Software. Therefore, THE ORIGINAL PURCHASER OF THIS SOFTWARE MAY
RETURN IT UNCONDITIONALLY TO LUGARU FOR A FULL REFUND FOR ANY REASON WITHIN SIXTY
DAYS OF PURCHASE, PROVIDED THAT THE PRODUCT WAS PURCHASED DIRECTLY FROM LUGARU
SOFTWARE LTD.

COPYRIGHT NOTICE

Copyright © 1984, 2018 by Lugaru Software Ltd. All rights reserved.

Lugaru Software Ltd. recognizes that users of Epsilon may wish to alter the EEL implementations of various editor
commands and circulate their changes to other users of Epsilon. Limited permission is hereby granted to reproduce and
modify the EEL source code to the commands provided that the resulting code is used only in conjunction with Lugaru
products and that this notice is retained in any such reproduction or modification.

TRADEMARKS

“Lugaru” and “EEL” are trademarks of Lugaru Software, Ltd. “Epsilon” is a registered trademark of Epsilon Data
Management, Inc. Lugaru Software Ltd. is licensed by Epsilon Data Management, Inc. to use the “Epsilon” mark in
connection with computer programming software. There is no other affiliation or association between Epsilon Data
Management, Inc. and Lugaru Software Ltd. “Brief” is a registered trademark of Borland International.

SUBMISSIONS

Lugaru Software Ltd. encourages the submission of comments and suggestions concerning its products. All
suggestions will be given serious technical consideration. By submitting material to Lugaru, you are granting Lugaru the
right, at its own discretion and without liability to you, to make any use of the material it deems appropriate.

iii
Note to Our Users

Individual copies of Epsilon aren’t protected with a formal license agreement, but by copyright law. In
addition to the copying for backup permitted under copyright law, Lugaru grants you, the end-user, certain
other rights, as explained on this page.

It describes the rules for installing a single purchased copy of Epsilon on multiple computers, and
related matters. These rules apply to all copies of Epsilon purchased by an end-user and not subject to a
written license agreement.

Each copy of Epsilon includes packages for various operating systems or distributions, such as a
Windows package, a Debian Linux package, and a Macintosh package.

You may install a single purchased copy of Epsilon on up to four computers under your control, either
installing the same package on each, or a different package on each, or any combination, as long as you’re
the only one using any of these packages. Two individuals may not share a single copy of Epsilon if there is
any chance both individuals might use that copy of Epsilon at the same time, even by using separate
packages on separate computers.

You may not split a single purchased copy of Epsilon into its separate packages and sell them separately.

If you purchase an update to Epsilon, it becomes part of the same copy. You may not (for example) buy
Epsilon 10, update to Epsilon 11, and then sell Epsilon 10 while retaining Epsilon 11. The update does not
count as a separate copy and must accompany the original version if sold.

We hope that you will respect our efforts, and the law, and not allow illegal copying of Epsilon.

We wish to thank all of our users who have made Epsilon successful, and extend our welcome to all
new users.
Steven Doerfler
Lugaru Software, Ltd.

We produced this manual using the Epsilon Programmer’s Editor and the TgX typesetting system.
Duane Bibby did the illustrations.

v

Contents

1 Welcome
1.1 Introduction e e e
1.2 Features o e e e

2 Getting Started

2.1 Installing Epsilon for Windows
2.2 Installing Epsilon for Unix
2.3 Installing Epsilon forMac OS X L

2.3.1 Using Epsilonunder Mac OS X L
2.4 Installing Epsilon for DOS L
2.5 Installing Epsilon for OS/2
2.6 Tutorial
2.7 Invoking Epsilon e
2.8 Configuration Variables: The Environment and The Registry

2.8.1 HowEpsilonFindsitsFiles

2.8.2 The Customization Directory
2.9 Epsilon Command Line Flags
2.10 FileInventory o o e

3 General Concepts

3.1 Buffers
32 WINdOWS . . . o oo e e
3.3 Epsilon’s Screen Layout
3.4 Different Keys for Different Uses: Modes
3.5 Keystrokes and Commands: Bindings o
3.6 Repeating: Numeric Argumentst e
3.7 Viewing Lists o e e e e e e e e e
3.8 Typing Less: Completion & Defaults
39 Command History
3.10 Mouse Support e e e e e e e e e
3.11 TheMenuBar e

3.11.1 Customizing Epsilon’sMenu

4 Commands by Topic

4.1 GettingHelp. e
4.1.1 InfoMode.
4.1.2 Web-based Epsilon Documentation,
42 Moving Aroundo
4.2.1 Simple Movement Commands

—

O O 003 3 W L

21
21
21
21
23
24
25
25
26
28
29
30
31

vi

4.3

4.4

4.5

4.6

4.7

CONTENTS
422 MovinginLarger Units. oL e 40
423 Searching 43
424 Bookmarks e e 47
425 Tags e 48
4.2.6 Source Code Browsing Interface 50
427 Comparing i e e e e e e e e e e e e e e e e 52
Changing Text e 54
43.1 Inserting and Deleting 54
4.3.2 The Region, the Mark, and Killing 56
433 Clipboard ACCESS o o i e e e e 58
434 Rectangle Commands e 59
4.3.5 Capitalization e e e 60
43.6 Replacing 61
4.3.77 Regular Expressions 63
43.8 Rearranging L e 72
439 Indenting Commands e 74
4.3.10 Aligning e e e e 76
4.3.11 Automatically Generated Text 77
4.3.12 Spell Checking o e 77
43.13 HexMode e 79
Language Modes e 80
441 AsmMode e 81
442 BatchMode e 81
443 CMode oo 81
444 Configuration File Mode L 86
445 GAMSMode 86
44.6 HTML,XML,and CSSModes, 86
447 IniFileMode e 88
448 MakefileMode L e 89
449 PerlMode 89
44.10 PHPMode 90
44.11 PostScript Mode e 90
4412 PythonMode e 91
4413 ShellMode e 91
4414 TclMode e 91
44.15 TeXandLaTeXModes e 92
44.16 VHDLMode 93
44.17 Visual BasicMode 93
More Programming Features o 94
4.5.1 Navigatingin Source Code e 94
452 PullingWords e e e 94
453 AccessingHelp 95
454 Context-Sensitive Help 96
4.5.5 Commenting Commands 97
Fixing Mistakes e 98
4.6.1 Undoing e e e 98
4.6.2 InterruptingaCommand 99
The Screen L 100
47.1 Display Commands 100
472 Horizontal Scrolling 101

473 WINdOWS e e 102

CONTENTS vii

4774 Customizing the Screen oL 104

475 Fonts 106

47.6 Setting Colors e 106

4777 CodeColoring i i e e e e e e e 108

47.8 Window Borders 108

479 TheBell. 109

4.8 BuffersandFiles e 110
4.8.1 Buffers e 110

482 Files. 111

483 FileVariables e 120
4.84 Internet SUPPOTt e e e e e 122

4.8.5 Unicode Features e 127

4.8.6 Printing 128

4.8.7 Extendedfilepatterns L. 128

4.8.8 Directory Editing 130

4.8.9 BufferListEditing 133

4.9 Starting and Stopping Epsilono oo oo 134
49.1 SessionFiles 134
4.9.2 File AssoCiations e e 136

493 Sending FilestoaPriorInstance 136
494 MS-Windows Integration Features 137

4.10 Running Other Programs 139
4.10.1 The Concurrent Process o 140
4.10.2 Compiling FromEpsilon L o 142

4.11 Repeating Commands L e 145
4.11.1 Repeating a Single Command oL 145
4.11.2 Keyboard Macros o o i e e e e e e 145

4.12 Simple CuStomizZing v v v v i e e e e e e e e e e e e e e e e 147
4.12.1 BIndings e e e e e e e e 147
4122 BriefEmulation. L 148
4.12.3 CUA Keyboard e e 150
4.12.4 Variables e 151
4.12.5 Saving Changes to Bindings and Variables 152
4126 CommandFiles 154

4.13 Advanced Topics e 158
4.13.1 Changing Commands withEEL 158
4.13.2 Updating froman Old Version 159
4.13.3 Keys and their Representation 162
4.13.4 Customizingthe Mouse 165

4.14 Miscellaneous 165
5 Alphabetical Command List 169
6 Variables 253
7 Changing Epsilon 369
8 Introduction to EEL 373
8.1 Epsilon Extension Language o 373
82 EEL Tutorial e 373

9 Epsilon Extension Language 379

viii

10

CONTENTS

9.1 EEL Command Line Flags 379
9.2 The EEL Preprocessor 380
93 Lexical Rules e e e e e 383
9.3.1 Identifiers e e e e e 383

9.32 NumericConstants e e e 383

9.3.3 Character Constants i i e e e e e 383

9.3.4 String Constants e e e e e e e e e e 384

9.4 Scopeof Variables 384
9.5 DataTypes e 385
9.5.1 Declarations e e e e e e e e e 386

9.5.2 Simple Declarators L 387

9.5.3 Pointer Declarators 387

9.54 ArrayDeclarators 388

9.5.5 Function Declarators e 388

9.5.6 Structure and Union Declarations 389

9.5.7 Complex Declarators 390

9.5.8 Typedefs e e e 391

959 TypeNames e 391

9.6 Initialization e e e e e e e e 392
9.7 Statements e e e e e e e e e e e e e 394
9.7.1 Expression Statementl e e 394

972 IfStatement e e e 394

9.7.3 While, Do While, and For Statements 395

9.7.4 Switch, Case, and Default Statements 395

9.7.5 Break and Continue Statements 396

9.7.6 Return Statement e e e e e e e e e e e 396

9.7.7 Save_var and Save_spot Statementso 396

9.7.8 On_exitStatement 397

9.7.9 Gotoand Empty Statements 397
9.7.10 Block e e e e e 398

9.8 ConverSionS e e e e e e e 398
9.9 Operator Grouping L e e e 398
9.10 Order of Evaluation e e 399
911 EXPressions o v v v i it i e e e e e e e e 400
9.11.1 Constants and Identifiers 400
9.11.2 Unary Operators v v v v v et e e e e e e e e e e 401
9.11.3 Simple Binary Operators oo e 401
9.11.4 Assignment Operators v vttt e e e e 403
9.11.5 Function Calls e e e e 404
9.11.6 Miscellaneous Operators oo v v v vttt i 404

9.12 Constant EXpressionsot 405
9.13 Global Definitions e e e e e e e 405
9.13.1 KeyTables e 406
9.13.2 ColorClasses o v i e e e e e e 406
9.13.3 Function Definitions 409

9.14 Differences Between EEL AndC 411
9.15 Syntax SUmmary e e e e 412
Primitives and EEL Subroutines 421
10.1 Buffer Primitives e e e e e 421

10.1.1 Changing Buffer Contents 421

CONTENTS ix

10.1.2 Moving Text Between Buffers 422
10.1.3 Getting Text fromaBuffer oL 423
10.1.4 Spots . . o o v o 424
10.1.5 Narrowing L e e e 426
10.1.6 Undo 426
10.1.7 Searching Primitives e 427
10.1.8 Movingby Lines e 432
10.1.9 Other Movement Functions 433
10.1.10 Sorting Primitives L e e 434
10.1.11 Other Formatting Functions 435
10.1.12Comparing v v e e e e e e e e e e e 435
10.1.13 Managing Buffers 437
10.1.14 Catching Buffer Changes 438
10.1.15 Listing Buffers 440
10.2 Display Primitives 440
10.2.1 Creating & Destroying Windows 440
10.2.2 Window Resizing Primitives oL 442
10.2.3 Preserving Window Arrangementso e e 442
10.2.4 Pop-up WIindows 444
10.2.5 Pop-up Window Subroutines 445
10.2.6 Window Attributes 446
10.2.7 Buffer Textin Windows L 447
10.2.8 Window Titles and Mode Lines 449
10.2.9 Normal Buffer Display 452
10.2.10 Displaying Status Messages o v v v v it e 458
10.2.11 Printf-style Format Strings 461
10.2.12 Other Display Primitives L 462
10.2.13 Highlighted Regions 463
10.2.14 Character Coloring o i it e e e 467
10.2.15 Code Coloring Internals 469
10.2.16Colors o o o e 472
103 File Primitives 475
103.1 ReadingFiles e 475
10.3.2 Writing Files e 477
10.3.3 Line Translation e 479
10.3.4 Character Encoding Conversions 480
10.3.5 More File Primitives 482
10.3.6 File Properties 485
10.3.7 Low-level File Primitives 487
10.3.8 Directories i e 488
10.3.9 Manipulating File Names 490
10.3.10 Internet Primitives L 494
10.3.11 Tagging Internals L 499
10.4 Operating System Primitives 499
10.4.1 System Primitives L 499
10.4.2 Window System Primitives L 503
1043 Timingo o 507
10.4.4 Calling DLLs (Windows Only) 508
10.4.5 RunningaProcess 509
10.5 Control Primitives 514

10.5.1 Control Flow e 514

10.5.2 Character Types
10.5.3 Examining Strings oL
10.5.4 Modifying Strings oo
1055 Byte Arrays
10.5.6 Memory Allocation
10.5.7 The Name Table
10.5.8 Built-in and User Variables

10.5.9 Buffer-specific and Window-specific Variables

10.5.10 Bytecode Files
10.5.11 Starting and Finishing
10.5.12 EEL Debugging and Profiling
10.5.13 Help Subroutines
10.6 Input Primitives
10.6.1 Keys o e
10.6.2 TheMouse
10.6.3 Window Events
10.6.4 Completion L
10.6.5 Other Input Functions
10.6.6 Dialogs
10.6.7 TheMainLoop
10.6.8 Bindings
10.7 Defining Language Modes
10.7.1 Language-specific Subroutines

11 Error Messages

A Index

CONTENTS

CONTENTS

X1

Chapter 1

Welcome

1.1

Introduction

Welcome! We hope you enjoy using Epsilon. We think you’ll find that Epsilon provides power and
flexibility unmatched by any other editor for a personal computer.

Epsilon has a command set and general philosophy similar to the EMACS-style editors used on many

different kinds of computers. If you’ve used an EMACS-style editor before, you will find Epsilon’s most
commonly used commands and keys familiar. If you haven’t used an EMACS-style editor before, you can
use Epsilon’s tutorial program. Chapter 2 tells you how to install Epsilon and how to use the tutorial
program.

1.2

Features

Full screen editing with an EMACS-style command set.

An exceptionally powerful embedded programming language, called EEL, that lets you customize or
extend the editor. EEL provides most of the expressive power of the C programming language.

You can invoke your compiler or “make” program from within Epsilon, then have Epsilon scan the
output for error messages, then position you at the offending line in your source file. See page 142.

An undo command that lets you “take back” your last command, or take back a sequence of
commands. The undo facility works on both simple and complicated commands. Epsilon has a redo
command as well, so you can even undo your undo’s. See page 98.

Very fast redisplay. We designed Epsilon specifically for the personal computer, so it takes advantage
of the high available display bandwidth.

Epsilon can dynamically syntax-highlight source code files written in many different languages,
showing keywords in one color, functions in another, string constants in a third, and so forth.

Epsilon can finish typing long identifier names for you.

You can interactively rearrange the keyboard to suit your preferences, and save the layout so that
Epsilon uses it the next time. Epsilon can also emulate the Brief text editor’s commands, or use a
CUA-style keyboard (like various Windows programs).

You can edit a virtually unlimited number of files simultaneously.

Epsilon understands Internet URLs and can asynchronously retrieve and send files via FTP. It also
includes support for Telnet, SSH, SCP, and various other protocols.

Epsilon provides a multi-windowed editing environment, so you can view several files simultaneously.
You can use as many windows as will fit on the display. See page 102.

Under Windows, Epsilon provides a customizable tool bar.
The ability to run other programs from within Epsilon in various ways. See page 139.

The ability to run some classes of programs concurrently with the output going to a window. Details
begin on page 140.

An extensive on-line help system. You can get help on what any command does, what any key does,
and on what the command executing at the moment does. And Epsilon’s help system will
automatically know about any rearrangement you make to the keyboard. See page 35.

Chapter 1. Welcome

An extensible “tags” system for many programming languages that remembers the locations of
subroutine and variable definitions. You provide a subroutine name, for instance, and Epsilon takes
you to the place that defines that subroutine. Alternatively, you can position the cursor on a function
call, hit a key, and jump right to the definition of that function. See page 48.

Completion on file names and command names. Epsilon will help you type the names of files and
commands, and display lists of names that match a pattern that you specify. You can complete on
many other classes of names too. This saves you a lot of typing. See page 26.

Support for Unicode files and files using a variety of other character sets.

Under Windows, you can drag and drop files or directories onto Epsilon’s window, and Epsilon will
open them.

Commands to manipulate words, sentences, paragraphs, and parenthetic expressions. See the
commands starting on page 40.

Indenting and formatting commands. Details start on page 73.

A Kkill ring to store text you’ve previously deleted. You can set the number of such items to save. See
page 56.

A convenient incremental search command (described on page 43), as well as regular searching
commands, and search-and-replace commands.

Regular expression searches. With regular expressions you can search for complex patterns, using
such things as wildcards, character classes, alternation, and repeating. You can even search based on
syntax highlighting, finding only matches in a programming language comment or string, or using
Unicode property names.

A fast grep command that lets you search across a set of files. See page 46. You can also replace text
in a set of files.

Extended file patterns that let you easily search out files on a disk.

A directory editing command that lets you navigate among directories, copying, moving, and deleting
files as needed. It even works on remote directories via FTP or SCP.

Fast sort commands that let you quickly sort a buffer. See page 72.

A powerful keyboard macro facility (see page 145), that allows you to execute sequences of
keystrokes as a unit, and to extend the command set of the editor. You’ll find Epsilon’s keyboard
macros very easy to define and use.

Commands to compare two files and find the differences between them. You can compare
character-by-character or line-by-line, displaying results in a variety of formats. See page 52.

You can choose from a variety of built-in screen layouts, making Epsilon’s screen look like those of
other editors, or customize your own look for the editor.

1.2. Features

Chapter 2

Getting Started

This chapter tells you how to install Epsilon on your system and explains how to invoke Epsilon. We also
describe how to run the tutorial, and list the files in an Epsilon distribution.

2.1 Installing Epsilon for Windows

Epsilon for Windows is provided as a self-installing Windows executable. Run the program
r:\setup.exe

where r represents your CD-ROM drive.

The installation program installs the GUI version of Epsilon for Windows, and the Win32 console
version. We named the Windows GUI version epsilon.exe and the console version epsilonc. exe.

The installation program creates program items to run Epsilon. You can recreate them, set up file
associations, change the registration information shown in Epsilon’s About box, and do similar
reconfiguration tasks by running Epsilon’s configure-epsilon command.

The installer also sets the registry entry Software\Lugaru\Epsilon\EpsPathversion in the
HKEY_CURRENT_USER hierarchy to include the name of the directory in which you installed Epsilon (where
version represents Epsilon’s version number).

Under Windows 95/98/ME, the installation program directs the system to install Epsilon’s VXD each
time it starts, by creating the registry entry
System)\CurrentControlSet\Services\ VxD\Epsilonversion\StaticVxD in the HKEY_LOCAL_MACHINE
hierarchy. If you’re running Windows 95/98/ME, the program will warn that you must restart Windows
before the concurrent process will work.

You can uninstall Epsilon by using the “Programs and Features” Control Panel (called “Add/Remove
Programs” prior to Windows Vista).

2.2 Installing Epsilon for Unix

Epsilon includes a version for Linux and a separate version for FreeBSD. We describe them collectively as
the “Unix” version of Epsilon. To install either one, mount the CD-ROM, typically by typing

mount -o exec /cdrom
or for FreeBSD and some Linux systems
mount /cdrom
Then, as root, run the appropriate shell script. For Linux, use
/cdrom/linux/einstall
and for FreeBSD use
/cdrom/freebsd/einstall

The installation script will prompt you for any necessary information.

If for some reason that doesn’t work, you can manually perform the few steps needed to install Epsilon.
For Epsilon for Linux, you would type, as root:

6 Chapter 2. Getting Started

cd /usr/local

tar xjf /cdrom/linux/epsilonl3.16.tar.bz2
cd epsilon13.16

./esetup

For FreeBSD, substitute freebsd for 1inux in the second command.

You can also install Epsilon in a private directory, if you don’t have root access. If you do this on some
systems, you might have to define an environment variable to ensure Epsilon can locate its files, such as

EPSPATH1316="/.epsilon:/home/bob/epsilonl3.16

If needed, the esetup command will display an appropriate environment variable definition.

Some versions of Epsilon use a helper program to access certain shared library files from the glibc 2.1
NSS subsystem. If necessary, the installation script will compile a helper program to provide Epsilon with
these services.

Epsilon runs as an X11 program when run under the X11 windowing system, and as a text program
outside of X. Epsilon knows to use X when it inherits a DISPLAY environment variable. You can override
Epsilon’s determination by providing a -vt flag to make Epsilon run as a text program, or an appropriate
-display flag to make Epsilon connect to a given X server. On platforms where Epsilon uses shared libraries,
you can run the program terminal-epsilon instead of epsilon; it will run as a text program even where
X11 shared libraries are not installed.

Epsilon also recognizes these standard X11 flags:

-bw pixels or ~borderwidth pixels This flag sets the width of the window border in pixels. An
Epsilon.borderWidth resource may be used instead.

-display disp This flag makes Epsilon use disp as the display instead of the one indicated by the DISPLAY
environment variable. It follows the standard X11 syntax.

~fn font or —font font This flag specifies the font to use. The Alt-x set-font command can select a different
font from within Epsilon. Epsilon will remember any font you select with set-font and use it in future
sessions; this flag overrides any remembered font.

-geometry geometry This flag sets the window size and position, using the standard X11 syntax. Without
this flag, Epsilon looks for an Epsilon.geometry resource.

-name resname This flag tells Epsilon to look for X11 resources using a name other than “Epsilon”.

~title title This flag sets the title Epsilon displays while starting. An Epsilon.title resource may be used
instead.

-xrm resourcestring This flag specifies a specific resource name and value, overriding any defaults.

Epsilon uses various X11 resources. You can set them from the command line with a flag like -xrm
Epsilon.cursorstyle:1 or put a line like Epsilon. cursorstyle:1 in your X resources file, which is
usually named ~/.Xresources or ~/.Xdefaults:

Epsilon.cursorstyle: 1

You’ll need to tell X to reread the file after making such a change, using a command like xrdb -merge
~/.Xresources.

Epsilon uses these X resources:

2.3. Installing Epsilon for Mac OS X 7

Epsilon.borderWidth This sets the width of the border around Epsilon’s window.

Epsilon.cursorstyle Under X11, Epsilon displays a block cursor whose shape does not change. Define a
cursorstyle resource with value 1 and Epsilon will use a line-style cursor, sized to reflect overwrite
mode or virtual space mode. Note this cursor style does not display correctly on some older X11
servers.

Epsilon.font This resource sets Epsilon’s font. It must be a fixed-width font. If you set a font from within
Epsilon, it remembers your selection in a file /. epsilon/Xresources and uses it in future
sessions. Epsilon uses this resource if there’s no font setting in that file.

Epsilon.geometry This resource provides a geometry setting for Epsilon. See the —geometry flag above.

Epsilon.title This resource sets the title Epsilon displays while starting.

2.3 Installing Epsilon for Mac OS X

Epsilon for Mac OS X supports drag and drop installation. Simply open the disk image in the “macos”
folder on the CD-ROM and drag the Epsilon application inside to your Applications folder. Epsilon supports
Mac OS X version 10.4 and later on Intel-based Macs. A legacy package in the “powerpc” folder supports
old PowerPC-based Macs running OS X 10.3.9 through 10.6.8.

Epsilon includes a setup script, and there are some advantages to running it, though it’s optional. The
setup script will install Epsilon and its EEL compiler on your path, so you can run them from the command
line more conveniently. And it will link Epsilon’s Info documentation into the main Info tree, so other
Info-reading programs can locate it. To run Epsilon’s setup script from a shell prompt, type

sudo "/Applications/Epsilon.app/Contents/esetup"

assuming /Applications is where you installed Epsilon.

Epsilon for Mac OS X can run as an X11 program or as a curses-based console program. Normally it
automatically chooses the best way: as an X11 program if there’s a DISPLAY environment variable or if
X11 is installed, otherwise as a console program. OS X versions through 10.7 (Lion) come with X11
preinstalled (or available on your installation disk as an optional extra), but starting in 10.8 (Mountain Lion),
the XQuartz program must be installed from http://xquartz.macosforge.org/ for X11 support. This is highly
recommended, since Epsilon for OS X works best as an X11 program.

Any time Epsilon documentation mentions the “Unix version” of Epsilon, this also includes the Mac
OS X version. In particular, Epsilon for Mac OS X recognizes all the X11 flags described in the previous
section, and all the X11 resource names documented there.

2.3.1 Using Epsilon under Mac OS X

When you run Epsilon for Mac OS X as an application bundle, the Finder runs a shell script named
Mac0S/start-epsilon within the bundle. This script picks the best method to invoke Epsilon. If there’s a
DISPLAY environment variable, indicating X11 is already running, it simply executes bin/epsilon.
Otherwise, if X11 is installed, it uses X11’s open-x11 program to start X11 and run bin/epsilon within it.
Finally, if X11 is not installed, it runs the bin/terminal-epsilon program, which can run without X11.

If you want to create a link to Epsilon in a common bin directory for executables and retain this
behavior, create a symbolic link to its Mac0S/start-epsilon script.

When the Mac0S/start-epsilon shell script uses open-x11 to run Epsilon, the Epsilon process
created may or may not be a child of Mac0S/start-epsilon. So passing special ulimit or environment

8 Chapter 2. Getting Started

variable settings to it can’t be done by simply wrapping this script in another. The Mac0S/start-epsilon
script sources a script file named ~/.epsilon/start-epsilon.rc, if it exists, which can set up any
special environment or ulimit setting you want, and loads any resources defined in your ~/ .Xresources
file.

When Epsilon runs under Mac OS X, certain keyboard issues arise. This section explains how to
resolve them.

* Mac OS X normally reserves the function keys F9 through F12 for its own use. Epsilon also uses
these keys for various functions. You can set Mac OS X to use different keys for these four functions,
system-wide, but the simplest approach is to use alternative keys in Epsilon.

For the undo and redo commands on F9 and F10, the undo-changes and redo-changes commands on
Ctrl-F9 and Ctrl-F10 make fine replacements. Or you can run undo and redo using their alternative
key bindings Ctrl-X u and Ctrl-X r, respectively.

For the previous-buffer and next-buffer commands on F11 and F12, you can use their alternative key
bindings, Ctrl-X < and Ctrl-X >, respectively.

* Under X11, Epsilon uses the Command key as its Alt modifier key. X11’s Preferences should be set
so the “Enable key equivalents under X11” option is disabled (called “Enable Keyboard Shortcuts” in
older X11 versions); otherwise the X11 system will reserve for itself many key combinations that use
the Command key. Alternatively, you can substitute multi-key sequences like Escape f for the key
combination Alt-f. See the alt-prefix command.

* When Epsilon for Mac OS X runs as a console program because X11 is not installed, it uses the
TERM environment variable and the terminfo database of terminal characteristics. If you run Epsilon
under a terminal program like Terminal and the TERM setting doesn’t match the terminal program’s
actual behavior, some things won’t work right. As of Mac OS X version 10.4, it appears that no
setting for TERM exactly matches Terminal’s default behavior, but the “xterm-color” setting comes
closest. Select this option from Terminal’s Preferences.

With the xterm-color setting, function keys F1-F4 may not work right; the commands on these keys
almost all have alternative bindings you can use instead: For F1 (the help command), use the key
labeled “Help” on Mac keyboards that have one, or type Alt-7 or Ctrl-_. For F2 (the named-command
command), use the Alt-x key combination instead. For F3 (the pull-word command), use the Ctrl-(Up)
key. For F4 (the bind-to-key command), type Alt-x bind-to-key. Or you can change Terminal’s settings
for these keys, or the terminfo database, so they match. But the best way to avoid these issues entirely
is to install X11 so Epsilon can run as an X11 program, as above.

2.4 Installing Epsilon for DOS

An older version of Epsilon for DOS is also provided on the CD-ROM, for users who must use DOS.

The Win32 console version, described previously, and the DOS version have a similar appearance, and
both will run in Windows, but of the two, only the Win32 console version can use long file names or the
clipboard in all 32-bit versions of Windows. The DOS version also lacks a number of other features in the
Win32 console version. If you wish to run Epsilon from a command line prompt (a DOS box) within any
32-bit version of Windows, use the Win32 console version, not the DOS version, for the best performance
and feature set.

To install Epsilon for DOS, cd to the \DOS directory on the Epsilon CD-ROM. Run Epsilon’s
installation program by typing:

install

2.5. Installing Epsilon for OS/2 9

Follow the directions on the screen to install Epsilon. The installation program will ask before it
modifies or replaces any system files. The DOS executable is named epsdos.exe. A list of files provided
with Epsilon starts on page 17.

2.5 |Installing Epsilon for 0S/2

An older version of Epsilon for OS/2 is also provided on the CD-ROM. To install Epsilon for OS/2, start a
command prompt and cd to the \0S2 directory on the Epsilon CD-ROM. Run Epsilon’s installation program

by typing:
install
Follow the directions on the screen to install Epsilon. The installation program will ask before it

modifies or replaces any system files. The OS/2 executable is named epsilon.exe. A list of files provided
with Epsilon starts on page 17.

2.6 Tutorial

Once you install Epsilon, put the distribution medium away. If you’ve never used Epsilon or EMACS
before, you should run the tutorial to become acquainted with some of Epsilon’s simpler commands.

The easiest way to run the tutorial is to start Epsilon and select Epsilon Tutorial from the Help menu. (If
you’re running a version of Epsilon without a menu bar, you can instead press the F2 key in Epsilon and
type the command name tutorial. Or you can start Epsilon with the -teach flag.)

The tutorial will tell you everything else you need to know to use the tutorial, including how to exit the
tutorial.

2.7 Invoking Epsilon

You can start Epsilon for Windows using the icon created by the installer. Under other operating systems,
you can run Epsilon by simply typing “epsilon”.

Depending on your installation options, you can also run Epsilon for Windows from the command line.
Under Windows, type “epsilon” to run the more graphical version of Epsilon, or “epsilonc” to run the Win32
console version of Epsilon. “Epsdos” runs the DOS version, if one is installed.

The first time you run Epsilon, you will get a single window containing an empty document. You can
give Epsilon the name of a file to edit on the command line. For example, if you type

epsilon sample.c

then Epsilon will start up and read in the file sample. c. If the file name contains spaces, surround the entire
name with double-quote characters.

epsilon "a sample file.c"

When you name several files on the command line, Epsilon reads each one in, but puts only up to three
in windows (so as not to clutter the screen with tiny windows). You can set this number by modifying the
max-initial-windows variable.

If you specify files on the command line with wild cards, Epsilon will show you a list of the files that
match the pattern in dired mode. See page 130 for more information on how dired works. File names that
contain only extended wildcard characters like , ; [or], and no standard wildcard characters like * or ?, will

10 Chapter 2. Getting Started

be interpreted as file names, not file patterns. (If you set the variable expand-wildcards to 1, Epsilon will
instead read in each file that matches the pattern, as if you had listed them explicitly. Epsilon for Unix does
this too unless you quote the file pattern.)

Epsilon normally shows you the beginning of each file you name on the command line. If you want to
start at a different line, put “+number” before the file’s name, where number indicates the line number to go
to. You can follow the line number with a : column number too. For example, if you typed

epsilon +26 file.one +144:20 file.two

then you would get file.one with the cursor at the start of line 26, and file.two with the cursor at line 144,
column 20. You can instead specify a character offset using the syntax “+pnumber” to go to character offset
number in the buffer.

Windows users running the Cygwin environment may wish to configure Epsilon to accept Cygwin-style
file names on the command line. See the cygwin-filenames variable for details.

By default, Epsilon will also read any files you were editing in your previous editing session, in addition
to those you name on the command line. See page 134 for details.

If you’re running an evaluation version of Epsilon or a beta test version, you may receive a warning
message at startup indicating that soon your copy of Epsilon will expire. You can disable or delay this
warning message (though not the expiration itself). Create a file named no-expiration-warning in
Epsilon’s main directory. Put in it the maximum number of days warning you want before expiration.

2.8 Configuration Variables: The Environment and The Registry

Epsilon for Unix uses several environment variables to set options and say where to look for files. Epsilon
for Windows stores such settings in the System Registry, under the key
HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon. Epsilon’s setup program will generally create all
necessary registry keys automatically.

We use the term configuration variable to refer to any setting that appears as an environment variable
under Unix, or a registry entry under Windows. There are a small number of settings that are stored in
environment variables on all platforms; these are generally settings that are provided by the operating
system. These include COMSPEC, TMP or TEMP, EPSRUNS, and MIXEDCASEDRIVES.

Under Windows, the installation program creates a registry entry similar to this:
HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath=";c:\epsilon

Of course, the actual entry, whether it’s an environment variable setting or an entry in the system
registry, would contain whatever directory Epsilon was actually installed in, not c:\epsilon.

If you have more than one version of Epsilon on your computer, you may want each to use a different
set of options. You can override many of the configuration variables listed below by using a configuration
variable whose name includes the specific version of Epsilon in use. For example, when Epsilon needs to
locate its help file, it normally uses a configuration variable named EPSPATH. Epsilon version 6.01 would
first check to see if a configuration variable named EPSPATH601 existed. If so, it would use that variable. If
not, it would then try EPSPATH60, then EPSPATHS6, and finally EPSPATH. Epsilon does the same sort of
thing with all the configuration variables it uses, with the exception of DISPLAY, EPSRUNS, TEMP, and
TMP.

Epsilon uses a similar procedure to distinguish registry entries for the Win32 console mode version
from registry entries for the Win32 GUI version of Epsilon. For the console version, it checks registry
names with an -NTCON suffix before the actual names; for the GUI version it checks for a -WIN suffix. So
Epsilon 10.2 for Win32 console would seek an EPSPATH configuration variable using the names

2.8. Configuration Variables: The Environment and The Registry 11

EPSPATH102-NTCON, EPSPATH102, EPSPATH10-NTCON, EPSPATH10, EPSPATH-NTCON, and
finally EPSPATH, using the first one it finds.

For example, the Windows installation program for Epsilon doesn’t actually add the EPSPATH entry
shown above to the system registry. It really uses an entry like

HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath80=c:\epsilon

where EpsPath80 indicates that the entry should be used by version 8.0 of Epsilon, or version 8.01, or 8.02,
but not by version 8.5. In this way, multiple versions of Epsilon can be installed at once, without overwriting
each other’s settings. This can be helpful when upgrading Epsilon from one version to the next.

Here we list all the configuration variables that Epsilon can use. Remember, under Windows, most of
these names refer to entries in the registry, as described above. Under Unix, these are all environment
variables.

CMDCONCURSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command
line when you use the start-process command with a numeric argument. It overrides
CMDSHELLFLAGS. See page 140.

CMDSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command line when
it runs a subshell that should execute a single command and exit.

COMSPEC Epsilon for Windows needs a valid COMSPEC environment variable in order to run another
program. Normally, the operating system automatically sets up this variable to give the file name of
your command processor. If you change the variable manually, remember that the file must actually
exist. Don’t include command line options for your command processor in the COMSPEC variable. If
a configuration variable called EPSCOMSPEC exists, Epsilon will use that instead of COMSPEC.
(For Unix, see SHELL below.)

DISPLAY Epsilon for Unix tries to run as an X11 program if this environment variable is defined, using the
X server display it specifies.

EEL The EEL compiler looks for a configuration variable named EEL before examining its command line,
then “types in” the contents of that variable before the compiler’s real command line. See page 379.

EPSCOMSPEC See COMSPEC above.

EPSCONCURCOMSPEC If defined, Epsilon for Windows runs the shell command processor named by
this variable instead of the one named by the EPSCOMSPEC or COMSPEC variables, when it starts a
concurrent process. See page 140.

EPSCONCURSHELL If defined, Epsilon for Unix runs the shell command processor named by this
variable instead of the one named by the EPSSHELL or SHELL variables, when it starts a concurrent
process. See page 140.

EPSCUSTDIR Epsilon uses the directory named here as its customization directory (see page 13) instead
of the usual one (under \Users or \Documents and Settings, for Windows, or at */.epsilon,
for Unix). The directory must already exist, or Epsilon will ignore this variable.

EPSILON Before examining the command line, Epsilon looks for a configuration variable named
EPSILON and “types in” the value of that variable to the command line before the real command line.
See page 13.

EPSMIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 119 for details.

12 Chapter 2. Getting Started

EPSPATH Epsilon uses this configuration variable to locate its files. See page 12.

EPSRUNS When Epsilon runs another program, it sets this environment variable to indicate to the other
program that it’s running within Epsilon. A setting of C indicates the subprocess is running within
Epsilon’s concurrent process. A setting of P indicates the subprocess is running via the filter-region
command or similar. A setting of Y indicates Epsilon ran the process in some other way, such as via
the shell command.

EPSSHELL See SHELL below.
ESESSION Epsilon uses this variable as the name of its session file. See page 134.

INTERCONCURSHELLFLAGS If defined, Epsilon uses the contents of this variable as the command
line to the shell command processor it starts when you use the start-process command without a
numeric argument. It overrides INTERSHELLFLAGS. See page 140.

INTERSHELLFLAGS If defined, Epsilon uses the contents of this variable as a subshell command line
when it runs a subshell that should prompt for a series of commands to execute. See page 140.

MIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 119 for details.

NOFOCUSCLICK If defined, when you click on an Epsilon window under Windows while another
program has the focus, Epsilon will get the focus but will otherwise ignore the mouse click. By
default, it treats mouse clicks the same whether or not they switch the focus to Epsilon, setting point
to the character you clicked on.

PATH The operating system uses this variable to find executable programs such as epsilon.exe. Make sure
this variable includes the directory containing Epsilon’s executable files if you want to conveniently
run Epsilon from the command line.

SHELL Epsilon for Unix needs a valid SHELL environment variable in order to run another program. If a
configuration variable called EPSSHELL exists, Epsilon will use that instead of SHELL. (See
COMSPEC above for the non-Unix equivalent.)

TEMP Epsilon puts any temporary files it creates in this directory, unless a TMP environment variable
exists. See the description of the -fs flag on page 14.

TMP Epsilon puts any temporary files it creates in this directory. See the description of the -fs flag on page
14.

2.8.1 How Epsilon Finds its Files

Sometimes Epsilon needs to locate one of its files. For example, Epsilon needs to read an .mnu file like
gui.mnu or epsilon.mnu to determine what commands go in its menu bar.

Epsilon searches for the file in each directory named by the EPSPATH configuration variable. This
configuration variable should contain a list of directories, separated by semicolons (or for Unix, colons).
Epsilon will then look for the file in each of these directories. Under Windows, a directory named ~ in an
EPSPATH variable has a special meaning. It refers to the current user’s customization directory. See the
next section.

If there is no EPSPATH configuration variable, Epsilon constructs a default one. It consists of the user’s
customization directory, then the parent of the directory containing Epsilon’s executable. For Unix, the
default EPSPATH also contains the directory /usr/local/epsilonVER (where VER indicates the current
version, such as 10.01).

2.9. Epsilon Command Line Flags 13

If the name of the directory with Epsilon’s executable doesn’t start with bin, or its parent doesn’t start
with eps (they do, in a normal installation), Epsilon uses the directory containing Epsilon’s executable, not
its parent, in the default EPSPATH.

Some flags can change the above behavior. The -w32 flag makes Epsilon look for files in the directory
containing the Epsilon executable before trying the EPSPATH. The -w8 flag keeps Epsilon from including
the executable’s directory or its parent in the default EPSPATH.

The EEL compiler also uses the EPSPATH environment variable. See page 379.

2.8.2 The Customization Directory

Epsilon searches for some files in a user-specific customization directory. It also creates files like its
initialization file einit.ecm there. (See page 154, and the edit-customizations command.)

To locate your customization directory, switch to Epsilon’s #messages# buffer. Epsilon writes the
name of its customization directory to this buffer when it starts up. Or run the edit-customizations command,
which opens the einit.ecmn file located in this directory.

Under Linux, FreeBSD, and Mac OS X, the customization directory is ~/.epsilon.

Under Windows, the customization directory is located in the Lugaru\Epsilon subdirectory within the
current user’s Application Data directory, which varies by version of Windows. Here are some typical
locations:

For Windows Vista and later:
\Users\username\AppData\Roaming\Lugaru\Epsilon

For Windows 2000/XP:

\Documents and Settings\username\Application Data\Lugaru\Epsilon
For Windows NT:

\Winnt\Profiles\username\Application Data\Lugaru\Epsilon

For Windows 95/98/ME, when user login is enabled:
\Windows\Profiles\username\Application Data\Lugaru\Epsilon

For Windows 95/98/ME, when user login is disabled:

\Windows\Application Data\Lugaru\Epsilon

You can force Epsilon to use a different customization directory by defining a configuration variable
named EPSCUSTDIR. See page 10 for more on configuration variables.

2.9 Epsilon Command Line Flags

When you start Epsilon, you may specify a sequence of command line flags (also known as command-line
options, or switches) to alter Epsilon’s behavior. Flags must go before any file names.

c_9

Each flag consists of a minus sign (“~”), a letter, and sometimes a parameter. You can use the special
flag -- to mark the end of the flags; anything that follows will be interpreted as a file name even if it starts
with a - like a flag.

If a parameter is required, you can include a space before it or not. If a parameter is optional (-b, -m,
-p) it must immediately follow the flag, with no space.

14 Chapter 2. Getting Started

Before examining the command line, Epsilon looks for a configuration variable (see page 10) named
EPSILON and “types in” the value of that variable to the command line before the real command line. Thus,
if you define a Unix environment variable:

export EPSILON=-m250000 -smine
then Epsilon would behave as if you had typed

epsilon -m250000 -smine myfile
when you actually type

epsilon myfile

Here we list all of the flags, and what they do:

+number Epsilon normally shows you the beginning of each file you name on the command line. If you
want to start at a different line, put “+number” before the file’s name, where number indicates the line
number to go to. You can follow the line number with a colon and a column number if you wish.

-add This flag tells Epsilon to locate an existing instance of Epsilon, pass it the rest of the command line,
and exit. Epsilon ignores the flag if there’s no prior instance. If you want to configure another
program to run Epsilon to edit a file, but use an existing instance of Epsilon if there is one, just include
this flag in the Epsilon command line. See page 136 for details on Epsilon’s server support.

-bfilename Epsilon normally reads all its commands from a state file at startup. (See the -s flag below.)
Alternately, you can have Epsilon start up from a file generated directly by the EEL compiler. These
bytecode files end with a “.b” extension. This flag says to use the bytecode file with name filename, or
“epsilon” if you leave out the filename. You may omit the extension in filename. You would rarely use
this flag, except when building a new version of Epsilon from scratch. Compare the -1 flag.

—dvariable!value You can use this flag to set the values of string and integer variables from the command
line. The indicated variable must already exist at startup. You can also use the syntax
-dvariable=value, but beware: if you run Epsilon for Windows via a .BAT or .CMD file, the system
will replace any =’s with spaces, and Epsilon will not correctly interpret the flag.

~dir dirname Epsilon interprets any file names that follow on the command line relative to this directory.

—fdfilename This flag tells Epsilon where to look for the on-line documentation file. Normally, Epsilon
looks for a file named edoc. This flag tells Epsilon to use filename for the documentation file. If you
provide a relative name for filename, then Epsilon will search for it; see page 12. Use a file name, not
a directory name, for filename.

—fsdirnames This switch tells Epsilon what directories to use for temporary files, such as Epsilon’s swap
file, which it uses when you edit files too big for available memory, or the eshell file it creates in some
environments to help capture the output of a process. Dirnames should indicate a list of one or more
directories, separated by semicolons (colons under Unix). Epsilon will use the first directory named as
long as there is space on its device; then it will switch to the second directory, and so forth. If it cannot
find any available space, it will ask you for another directory name.

If you don’t use this switch, Epsilon will create any temporary files it needs in the directory named by
the TMP environment variable. If TMP doesn’t exist, Epsilon tries TEMP, then picks a fallback
location. Epsilon calls its swap file eswap, but it will use another name (like eswap0, eswapl, etc.) to
avoid a conflict with another Epsilon using this file.

2.9. Epsilon Command Line Flags 15

—-geometry When Epsilon for Unix runs as an X program, it recognizes this standard X11 flag. It specifies
the size and position of Epsilon’s window, using the format WIDTHxHEIGHT+X0FF+YOFF. The WIDTH
and HEIGHT values are in characters. The XOFF and YOFF values are in pixels, measured from the top
left corner of the screen. You can use - instead of + as the offset separator to positon relative to the
right or bottom edge of the screen instead. You may omit trailing values (for instance, just specify
width and height).

-kanumber This switch turns off certain keyboard functions to help diagnose problems. It’s followed by a
number, a bit pattern made by summing the bit values that follow.

For Windows, the value 1 tells Epsilon not to translate the Ctrl-2 key combination to Ctrl-@.
(Ctrl-Shift-2 always produces Ctrl-@.) The value 8 tells Epsilon to be more conservative when
writing text on the screen, at the price of some performance; it may help with fonts that use
inconsistent character sizes, or with display driver compatibility issues. The value 16 makes text a
little darker, and sometimes helps with display driver compatibility too.

A value of 128 tells Epsilon for Windows not to apply the Ctrl key to those ASCII characters that
have no Control version in ASCIL. For instance, the ASCII code includes characters Ctrl-A and Ctrl-\,
but not Ctrl-9 or Ctrl-(. Epsilon for Windows will construct a non-ASCII key code for the latter pair
unless you use this bit. (Under X11, Epsilon always does this.)

For Unix, bits in this flag can set which X11 modifier keys indicate an Alt key. By default, Epsilon
chooses an appropriate key, but you can use 1 or 2 to force modifier key 1 or 2, respectively. The
number is a bit pattern specifying which of the five possible X11 modifier keys will be used as an Alt
key, using the values 1, 2, 4, 8, and 16. The value 32 tells Epsilon under X11 not to translate the Ctrl-2
key combination to NUL (as 1 for Windows does).

Both Windows and X11 GUI versions recognize the 64 bit, which tells Epsilon not to translate the
Ctrl-6 combination into Ctrl-~, or Ctrl-(Minus) on the main keyboard into Ctrl-_.

-ksnumber This flag lets you adjust the emphasis Epsilon puts on speed during long operations versus
responsiveness to the abort key. Higher numbers make Epsilon slightly faster overall, but when you
press the abort key, Epsilon may not respond as quickly. Lower numbers make Epsilon respond more
quickly to the abort key, but with a performance penalty. Th